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Abstract 

Background:  The large genus Ficus comprises approximately 800 species, most of which possess high ornamental 
and ecological values. However, its evolutionary history remains largely unknown. Plastome (chloroplast genome) 
analysis had become an essential tool for species identification and for unveiling evolutionary relationships between 
species, genus and other rank groups. In this work we present the plastomes of ten Ficus species.

Results:  The complete chloroplast (CP) genomes of eleven Ficus specimens belonging to ten species were deter-
mined and analysed. The full length of the Ficus plastome was nearly 160 kbp with a similar overall GC content, rang-
ing from 35.88 to 36.02%. A total of 114 unique genes, distributed in 80 protein-coding genes, 30 tRNAs, and 4 rRNAs, 
were annotated in each of the Ficus CP genome. In addition, these CP genomes showed variation in their inverted 
repeat regions (IR). Tandem repeats and mononucleotide simple sequence repeat (SSR) are widely distributed across 
the Ficus CP genome. Comparative genome analysis showed low sequence variability. In addition, eight variable 
regions to be used as potential molecular markers were proposed for future Ficus species identification. According to 
the phylogenetic analysis, these ten Ficus species were clustered together and further divided into three clades based 
on different subgenera. Simultaneously, it also showed the relatedness between Ficus and Morus.

Conclusion:  The chloroplast genome structure of 10 Ficus species was similar to that of other angiosperms, with a 
typical four-part structure. Chloroplast genome sizes vary slightly due to expansion and contraction of the IR region. 
And the variation of noncoding regions of the chloroplast genome is larger than that of coding regions. Phylogenetic 
analysis showed that these eleven sampled CP genomes were divided into three clades, clustered with species from 
subgenus Urostigma, Sycomorus, and Ficus, respectively. These results support the Berg classification system, in which 
the subgenus Ficus was further decomposed into the subgenus Sycomorus. In general, the sequencing and analysis 
of Ficus plastomes, especially the ones of species with no or limited sequences available yet, contribute to the study 
of genetic diversity and species evolution of Ficus, while providing useful information for taxonomic and phylogenetic 
studies of Ficus.
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Background
The genus Ficus, which composes one of the 50 largest 
genera of angiosperms with approximately 800 species, is 
widely distributed in the tropical and semi-tropical tem-
perate zones [1, 2]. Plants in this genus play a vital role 
in the ecosystem and are considered to be key species in 
tropical rainforests, because they serve as an extremely 
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important source of food for frugivores species through-
out the year [3, 4]. In addition, many Ficus species are 
traditionally used as sources of medicines and food, as 
ornamental resources, religious plants, lac hosts, fodder, 
fuel, hedges, or enclosures by humans [5, 6]. Over the 
past decades, extensive investigation on pharmacological 
studies has elucidated the medicinal properties of Ficus 
species, including antioxidant [7], anti-microbial [8], 
anti-cancer [9], anti-inflammatory [10] and anti-diabetic 
[11] properties. Therefore, the superposition of dietary 
and medicinal values endows many Ficus species with 
high research value, especially to Chinese people [12].

Ficus (Moraceae) is a key group of tropical and subtrop-
ical plants with extremely important ecological signifi-
cance, with the phylogenetic relationships of this group 
under controversy [13]. In 1965, Corner published a 
revised and more comprehensive classification system of 
Ficus, in which the Ficus genus was divided into four sub-
genera based on morphological characteristics including 
male flowers, female flowers, fruit characters, and some 
anatomical characters of leaves (such as the distribu-
tion of camphor), namely subgenus Urostigma, subgenus 
Pharmacosycea, subgenus Ficus and subgenus Sycomorus 
[14]. But this classification system has been questioned 
by Ramirez [15] and Berg [1, 2]. Hereafter, based on the 
morphologic study by Corner and the molecular system-
atics study by Weiblen [16], Berg added another two sub-
genera, namely Sycidium and Synoecia, in addition to the 
original 4 subgenera [2]. Although the classification sys-
tem in those 6 subgenera has been accepted by most tax-
onomists, emphasis was laid on the Ficus genus, raising 
issues such as classification difficulties and incomplete 
collection of species, which renders this classification still 
unresolved.

With the advances of next-generation sequencing [17], 
the acquisition of whole genomes becomes easier than 
before. As an important organelle in plants, CP con-
tains the whole enzymatic machinery, which is neces-
sary for photosynthesis and plays a crucial role in carbon 
uptake [18]. Simultaneously, it possesses a small, highly 
conserved genome that takes the form of a circular dou-
ble-stranded DNA molecule. In most angiosperms, the 
typical CP genome exhibits a conserved tetrad structure, 
formed by two IRs, one LSC region and one SSC region 
[19]. In general, the size of the CP genome ranges from 
115 to 165 kb, owing to a contraction or expansion of the 
IR region. Additionally, the CP genome contains approxi-
mately 114 genes, among which there are ~ 80 protein-
coding genes, 4 rRNA genes, and 30 tRNA genes [20, 
21]. Even though the plant CP genome is evolutionarily 
conserved, it presents highly variable regions that some 
of them exhibit an accelerated evolution rate [22–24]. 
Based on these characteristics, the CP genome is often 

used for phylogenetic and evolutionary studies, and has 
been proved useful for screening species-specific genetic 
markers, i.e. DNA barcoding, SNPs, among others in 
recent years [25–28]. Therefore, we expect that plastome 
comparative genomics on more Ficus species might pro-
vide insights on Ficus taxonomic and phylogenetic con-
cerns raised previously, and will allow the development 
of DNA barcodes for a reliable identification of Ficus 
species.

In this study, ten Ficus plastomes were obtained by 
Illumina NGS. Genome comparative analysis showed 
their quadripartite structure and their genetic diversity 
was assessed, including the identification of repeated 
regions (SSRs, large sequence repeats, among others). 
Barcode DNAs were developed in hypervariable regions 
for species molecular identification. Furthermore, the 
phylogenetic analysis revealed the evolutionary relation-
ships of Ficus species, shedding light in the actual contro-
versy among others.

Results
Features of the Ficus species chloroplast (CP) genome
The studied Ficus CP genomes display a typical circular 
double-chain structure, with sizes ranging from 160,238 
to 160,700  bp (Fig.  1, Table  1). The Ficus plastomes 
show the classic quadripartite architecture, with an LSC 
region (88,400–88,804  bp) and an SSC region (19,926–
20,145 bp) separated by two inverted repeat (IR) regions 
(25,840–25,901 bp). All eleven CP genomes show similar 
total GC content (ranging from 35.88% to 36.02%), being 
significantly higher in the IR regions (Table 1).

While only counting one copy of those duplicated 
genes in the IR region, we annotated a total of 114 unique 
genes, consisting of 30 tRNAs, 4 rRNAs, and 80 protein-
coding genes in each of the Ficus plastomes character-
ized. Furthermore, the overall length of the CDS region 
ranged from 80,334 to 80,598 bp. And the content of GC 
in CDS regions is slightly higher than that of the whole, 
varying from 37.1 to 37.2% (Table S1). In detail, in all 
eleven CP genomes, we identified 16 duplicated genes in 
the IR region, among which there are seven tRNA genes, 
four rRNA genes, and five protein-coding genes. A total 
of 63 CDS and 22 tRNA genes are present in the LSC 
region, while 12 CDS and one tRNA gene exist in the SSC 
region (Table S2). Two pseudogenes (ycf1 and rps19) are 
located in the boundary between IR-SSC and IR-LSC.

There were 18 genes harbouring introns, which can 
regulate gene expression and enhance the expression of 
exogenous genes at specific sites and specific times of the 
development of the plant [29, 30]. Among those, 12 are 
protein-coding genes and 6 are tRNA genes. Most genes 
[15] have only a single intron, whereas ycf3 and clpP 
genes contain two introns. The rps12 gene is so unique 
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that it is composed of three complex exons, contain-
ing one 5’ exon and two 3’ exons. The 5’ exon is located 
in the LSC region, while the 3’ exons are distributed 
within the IR regions, which is consistent with close spe-
cies such as Ficus religiosa [31], Morus celtidifolia [32], 
and Broussonetia kazinoki [33]. Two pseudogenes, ycf1 
and rps19, are located between the IRB/ SSC and IRA /

LSC, respectively. On account of the reverse repeating 
property of the IR region, these two genes fail to be fully 
duplicated and lose the ability to encode a complete pro-
tein, which leads to the presence of two pseudogenes. In 
addition, the trnK-UUU​ gene, which embodies the matK 
gene, has the largest intron (2,583–2,601 bp), compared 
to other genes (Table S3).

Fig. 1  Genome map of the average Ficus CP genome obtained in this work. The inner circle represents the quadripartite structure, with two 
copies of the inverted repeat (IRA and IRB), an LSC, and an SSC region in black with GC content in dark grey and AT content in light grey. External 
circle represents gene content, with those inside the circle transcribed clockwise, while the ones located at the outer side are counter clockwise 
transcribed. Genes are coloured following functional groups according to the legend show on the left bottom
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Identification of repeat elements
A mass of repeated sequences is widely distributed in the 
intergenetic spacer and intron sequences of the Ficus CP 
genome, which have always been the focus of genome 
research [34, 35]. Long repeats with a length greater 
than 30  bp might have functions in promoting chloro-
plast genome rearrangement and increasing population 
genetic diversity [36]. For the purpose of getting a com-
prehensive understanding of the long repeats within the 
Ficus CP genome, we classified those repeated sequences 
into five categories, namely tandem, forward, palindro-
mic, reverse, and complementary repeats. These results 
manifested that the number of repeated sequences in the 
eleven Ficus CP genomes ranges from 69 (F. hispida) to 82 
(F. tikoua). Among them, the number of tandem repeats 
were found to be the most abundant (46.4%-54.1%), var-
ied from 32 (F. hispida) to 42 (F. sarmentosa var. lacry-
mans, F. microcarpa), followed by palindromic repeats 
(26.0%-31.7%), ranging from 20 (F. formosana, F. simpli-
cissima) to 26 (F. tikoua), and then by forward repeats 
(14.9%-20.3%), with the scope of 11 (F. simplicissima) to 
16 (F. sarmentosa var. impressa) (Fig. 2A). Among the ten 
Ficus species, the length of tandem repeats is generally 
distributed between 10 and 20 bp, while the size of palin-
dromic and forward repeats is concentrated between 30 
and 39 bp (Fig. 2B-D).

Simple sequence repeats (SSRs) are composed of small 
repeated sequences ranging from 1 to 6  bp [37], which 
are extensively distributed at different locations such as 
intergenic region, intron region, and even protein-coding 
region [38]. The CP genome possesses the nature of uni-
parental inheritance, leaving SSRs a high level of varia-
tion within the same species [39]. Thus, chloroplast SSRs 
are important sources for developing molecular markers, 
which are widely used in phylogenetic and population 

genetic analysis [40, 41]. Here, a total of 299–317 SSRs 
were identified in these Ficus plastomes (Fig.  3), with 
average percentages of mononucleotide, dinucleotide, 
trinucleotide, tetranucleotide SSRs being 48.59%, 24.39%, 
24.94%, and 3.16%, respectively. It can be found that pen-
tanucleotide SSRs are very rare in all sequenced genomes, 
and we were able to detect hexanucleotide SSRs only in 
the plastome of Ficus simplicissima.

Codon usage and RNA editing sites
Codon usage patterns and nucleotide composition help 
to lay a theoretical foundation for genetic modifications 
of the CP genome [42, 43]. Here, amino acid frequency, 
codon usage number, and the relative synonymous codon 
usage (RSCU) in the eleven Ficus plastomes were ana-
lysed and summarized (Fig.  4, Table S4). A total of 64 
RSCU were presented in the Ficus plastomes, and the 
number of codons varied from 53,412 to 53,566. Leucine 
and cysteine were the most and least universal amino 
acids, with UUU (encoding phenylalanine) and GCG 
(encoding alanine) as the most and least used codons in 
Ficus, respectively. Most of amino acid codons, except 
for methionine and tryptophan, had more than one syn-
onymous codon, among which, leucine, serine, and argi-
nine showed the maximum (six codon usage). Preferred 
codon is defined when its RSCU value was greater than 
1.00. In the studied eleven Ficus plastomes, the number 
of preferred codon usage identified ranged from 28 to 
32 (Fig. 4). Moreover, many of the preferred codons end 
with an A or T, whereas non-preferred codons ended 
with a C or G, supporting the reduced GC content in 
coding regions. This phenomenon is common in chloro-
plast genomes from other species [44, 45].

Previous studies have shown that the distribution of 
chloroplast RNA editing sites is uneven and more prone 

Table 1  Summary features of the Ficus species CP genomes characterized

Species Total cp 
genome 
size(bp)

LSC length (bp) IR length (bp) SSC length (bp) Total GC 
content 
(%)

LSC GC 
content 
(%)

IR GC 
content 
(%)

SSC GC 
content 
(%)

F. pumila 160,279 88,400 25,889 20,101 35.98 33.64 42.65 29.05

F. tikoua 160,700 88,804 25,876 20,144 35.88 33.52 42.63 28.92

F. hispida 160,323 88,533 25,840 20,110 35.92 33.57 42.65 28.95

F. virens 160,501 88,593 25,885 20,138 35.90 33.54 42.62 28.95

F. sarmentosa var. impressa 160,447 88,645 25,864 20,074 36.02 33.68 42.68 29.14

F. sarmentosa var. lacrymans 160,374 88,524 25,893 20,064 35.95 33.62 42.65 28.95

F. pandurata 160,644 88,701 25,899 20,145 35.88 33.50 42.63 28.97

F. tinctoria 160,366 88,508 25,878 20,102 35.94 33.58 42.69 29.03

F. formosana 160,463 88,518 25,901 20,143 35.90 33.56 42.62 28.91

F. microcarpa 160,238 88,540 25,886 19,926 35.93 33.59 42.60 28.97

F. simplicissima 160,375 88,446 25,897 20,135 35.92 33.56 42.66 28.97
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to protein-coding genes [46]. A total of 35 protein-coding 
genes were evaluated with the PREP program, to predict 
RNA editing sites in the Ficus plastomes. In sum, 59–65 
RNA editing sites were identified (Table S5), in which 
amino acid conversion from S to L occurred the most 
frequently, while R-G occurred the least. Interestingly, it 
was found that all RNA editing sites appeared in the first 
position or second position of the corresponding codon, 
while no potential RNA editing sites were observed at the 
third position. The base conversion type is all from C to 
T, which is similar to those of other land plants [47, 48].

IR contraction and expansion in the Ficus CP genome
The typical quadripartite structure of the CP genome 
results in four boundary limits among IR, LSC, and 
SSC regions, namely IRB-LSC, IRB-SSC, SSC-IRA, and 
IRA-LSC [49, 50]. Although the inverted repeat regions 
(IRA and IRB) are the most conserved regions of the CP 
genome, shrinkage and expansion of the IR boundaries 

are hypothesized to help explain size differences between 
CP genomes beyond genus. The length of the IR region 
in the twelve CP genomes exhibited a modest expansion, 
ranging from 25,710 bp to 25,901 bp. In this work the IR-
SSC and IR-LSC boundaries of Ficus species were com-
pared to that of Morus alba var. atropurpurea (belonging 
to another genus within the Moraceae). Four affected 
protein coding genes that create some variable regions 
were found useful for species identification (Fig. 5).

In M. albo var. atropurpurea, the rps19 gene is entirely 
located within the LSC region, while it expands to the 
IRB region in the studied eleven Ficus plastomes, alter-
ing the boundary LSC-IRB. This fact resulted in trun-
cated rps19 copies (ψrps19) at the junction IRA-LSC in 
Ficus species. Another gene crossing junction border is 
ycf1 that crosses the IR-SSC borders within the twelve 
CP genomes, creating truncated ψycf1 at the joint of IRB-
SSC with a size variation from 986 to 1027 bp. It has been 
reported that the ycf1 gene contributes to the analyses 

Fig. 2  Repeat sequences analysis in eleven Ficus plastomes. A: Repeat types of eleven CP genomes. B: Tandem repeats in eleven CP genomes. 
C: Palindromic repeats in eleven CP genomes. D: Forward repeats in eleven CP genomes. Repeats with different lengths are indicated in different 
colours, the ordinate represents the number of repeats
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of the CP genome variation in higher plants. Another 
affected gene, ndhF, covers the IRB-SSC region exhibits 
high similarity in ten Ficus species. Whereas the trnH 
gene was found to be shifted from the IRA-LSC border 
in all twelve species, with the longest distance (118 bp) to 
the border observed in F. tikoua species (Fig. 5).

Comparative genomic analysis
Interspecific comparisons employing the online software 
mVISTA were performed to reveal the conservation and 
divergence among Ficus species, as previously done with 
other species [39, 51]. The eleven Ficus plastomes were 
compared to the F. pumila plastome as the reference (Fig. 
S1). We found that the two IR regions were less divergent 
than the LSC and the SSC regions, which also occurred 
in almost higher plants [52]. Moreover, the non-coding 
region exhibited more nucleotide divergence than the 
coding regions. In the coding region, most genes were 
relatively conservative except matK, rps16, rpoC2, psbD, 
ndhD, and ycf1. These divergence hotspot regions iden-
tified in the eleven plastome sequences provided vast 
information for the development of molecular mark-
ers for phylogenetic analyses and for Ficus plant species 
identification.

Divergence hotspot region
Highly variable sequences can be utilized to determine 
the phylogenetic relationship between species and gen-
era [53, 54]. Nucleotide diversity (Pi) values were calcu-
lated within 800-bp windows (Fig. 6) to identify sequence 

divergence hotspots. The result showed that the Pi value 
of the whole Ficus CP genome varied from 0 to 0.01543, 
which represents the nucleotide diversity. Eight highly 
variable regions (Pi > 0.009) were detected: matK-rps16, 
rpoB-trnC, trnT-psbD, trnL-trnF, rpl32-trnL, clpP, ndhD 
and ycf1. Among these, five regions (matK-rps16, rpoB-
trnC, trnT-psbD, trnL-trnF, and clpP) are located in 
the LSC region, and the remaining three are in the SSC 
region (Fig.  6). This is consistent with preceding results 
that the IR region is generally more conserved than the 
LSC and the SSC regions [34, 55].

Phylogenetic analysis
Phylogenetic analysis is often used to infer or evalu-
ate evolutionary relationships [28, 56]. To examine the 
phylogenetic positions of the ten Ficus species and their 
relationships within Moraceae, ML phylogenetically 
analyses was performed using concatenated protein cod-
ing genes sequences from 32 CP genomes belonging to 
5 genera of Moraceae and two CP genomes beyond the 
Moraceae family. As illustrated in Fig. 7, the phylogenetic 
tree has divided all species into six groups (I to VI), with 
almost all nodes supported with 100% bootstrap values 
(BP). Group I contained two species (Cannabis sativa 
and Rhamnus taquetii), which were set as outgroups. 
Those Moraceae species shaped into four paraphyl-
etic groups. Group II and Group III consisted of Malai-
sia scandens from the genus Malaisia, and Artocarpus 
heterophyllus from the genus Artocarpus, respectively. 
Group IV contained six species belonging to the genus 

Fig. 3  Analysis of number and type of SSRs in eleven Ficus plastomes. SSRs with different types are indicated in different colours
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Fig. 4  Codon content for the 20 amino acids and stop codons of CDS of the Ficus species CP genome. A: Codon content for CDS in the six Ficus CP 
genomes, each column in the bar graph represents a species. The corresponding species from left to right are F. pumila, F. tikoua, F. hispida, F. virens, F. 
sarmentosa var. impressa, and F. pandurata. B: Codon content for CDS in the rest five Ficus CP genomes, the corresponding species from left to right 
are F. microcarpa, F. formosana, F. sarmentosa var. lacrymans, F. simplicissima, and F. tinctoria 
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Broussonetia and Group V correspond to seven species 
from the genus Morus. Group VI was the most complex, 
and the real target of this study, which was comprised of 
17 species from the genus Ficus and was further divided 
into three subgroups, each belonging to a different sub-
genus. The first subgroup contained F. microcarpa and 
F. virens, being clustered with F. religiosa which belongs 
to the subgenus Urostigma. The second subgroup con-
tained F. tikoua and F. hispidia, being clustered with sub-
genus Sycomorus species (F. racemosa and F. beipeiensis). 
Whereas the third subgroup clustered 9 species belong-
ing to Ficus subgenus, of which 6 species (7 sequences) 
were obtained in this work (Fig. 7). The Ficus clade was 
sistered to the Morus clade, whose common ancesteor 
derives from Goup II to IV, indicating a close relationship 
between the Ficus and Morus genera.

Discussion
Ficus plastomes characterization and use for species 
identification
Eleven Ficus CP genomes were obtained and analysed in 
this study. The comparative analysis revealed highly con-
served structures and genes. The plastome sizes showed 
slight differences, which suggested that the CP genome 
length in Ficus is highly conserved.

Repeat sequences, which are dispersed in CP genomes 
at high frequency, play a vital role in genome organiza-
tion and evolution. In this work, we found resembling 
repeat types with similar distributions among ten Ficus 
species. SSRs, displaying a high level of polymorphism, 
are common in the CP genome as microsatellite repeats 
[38]. These sequences were used as a genetic marker in 
previous investigations [57]. The SSRs in the Ficus CP 

Fig. 5  Comparison of the borders of LSC, SSC, and IR regions among twelve CP genomes. Corresponding species from top to bottom are Morus 
alba var. atropurpurea, F. pumila, F. tikoua, F. hispida, F. virens, and F. sarmentosa var. impressa, F. sarmentosa var. lacrymans, F. microcarpa, F. pandurata, F. 
tinctoria, F.formosana, F. microcarpa, and F. simplicissima. Ψ: pseudogenes
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Fig. 6  Comparative analysis of the nucleotide variability by Pi values of the eleven CP genomes presented in a sliding window (window length: 
800 bp; step size: 200 bp). X-axis: position of the midpoint of a window; Y-axis nucleotide diversity in each window

Fig. 7  Phylogenetic relationships among 34 plant species based on CP genome. Phylogenetic inference was performed with concatenated protein 
coding genes sequences from all species shown using ML method, with branch support shown as Bootstrap values with green circles
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genomes were found to be particularly rich in AT, which 
corresponded with previous studies where proportions 
of polyadenine (polyA) and polythymine (polyT) were 
higher than polycytosine (polyC) or polyguanine (polyG) 
within chloroplast SSRs in many plant species [58].

RNA editing is a very common phenomenon that exists 
in plant CP genomes. The main functions of RNA editing 
include modifying mutations, correcting and regulating 
translation [59]. Interestingly, among the 35 protein-
coding genes used to predict RNA editing sites, ndhB and 
ndhD have the most editing sites, and both encode subu-
nits of the chloroplast NADH dehydrogenase complex, 
which is involved in electron transfer during photosyn-
thesis [60].

The expansion and contraction of IR and SC (includ-
ing LSC and SSC) boundaries are thought to be the main 
cause of CP genome size changes, although CP genomes 
in land angiosperms are highly conserved [61]. After 
comparing CP genomes among the ten Ficus species in 
our study, we found that the boundary region between 
the SC and two IR regions was relatively conserved, 
with gene distribution and specific location exhibiting 
high consistency. Compared with the other Morus spe-
cies from the same family, the IR region of Ficus spe-
cies showed expansion, mainly because the rps19 gene 
located at the LSC-IR boundary, expanded to the IR 
region by 109 bp. This indicates that the contraction and 
expansion of the IR regions are more common among 
different genera.

DNA barcoding is a method for rapid and accurate 
identification of species using a short and accurate DNA 
fragment. The concept of DNA barcoding was first pro-
posed in 2003 by Hebert et al. [62]. Since then, an increas-
ing number of researchers have focused on the selection 
of one or a few standard markers as DNA barcode(s). 
The earliest proposed DNA barcoding technology can 
identify species through ITS2, matK, psbA-trnH, rbcL 
and other DNA sequences [63]. However, it was found 
that these classical DNA barcodes were not suitable for 
the identification of the Ficus species of this study, due 
to the low nucleotide diversity in those ‘universal’ bar-
code fragments. Hence, finding suitable DNA markers 
for proper identification of these species was crucial. 
Here, according to nucleotide diversity analysis shown in 
Fig. 6, eight regions arose as putative barcoding regions, 
including five intergenic regions (matK-rps16, rpoB-trnC, 
trnT-psbD, trnL-trnF, and rpl32-trnL) and three genic 
regions (clpP, ndhD, and ycf1). Among these regions or 
genes, the ycf1 gene, as the second-largest gene in the 
chloroplast genome, is crucial for plant viability. Dong 
et al. [64] have proposed that the ycf1 is the most variable 
site in the chloroplast genome, showing greater variabil-
ity than existing chloroplast candidate barcodes such as 

rbcL, matK, and trnH-psbA, and thus may have potential 
applications as land plant DNA barcodes. Another two 
genic markers clpP [65] and ndhD [66] have also been 
reported as a region of high variation for plant molecular 
identification.

Five intergenic spacer regions including matK-rps16, 
rpoB-trnC, trnT-psbD, trnL-trnF and rpl32-trnL, located 
within the SSC, are highly variable regions in the Ficus 
chloroplast genome, which have also been proposed as 
potential DNA barcodes in other species. Among them, 
matK-rps16 was demonstrated well utilization as DNA 
barcodes for Triticum plant [67] and rpoB-trnC was 
identified to be an effective marker for three Synstylae 
species [68]. Cheng et  al. [69] suggested that trnT-psbD 
and rpl32-trnL potentially be used as molecular genetic 
markers for population genetics and phylogenetic studies 
of E. mollis. And trnL-trnF has a long history of use in 
plant phylogenetic studies [70], whereas this spacer often 
contains large A/T-rich regions that may lead to a low 
sequence quality [71]. Generally, although several candi-
date barcoding regions were identified, further research 
is still necessary to determine whether these highly diver-
gent markers could be used in the identification and phy-
logenetic analyses of Ficus species.

Ficus phylogenetic relationships with other members 
of Moraceae family
The Moraceae family consists of approximately 40 genera 
with 1100 species, most of which are distributed in tropi-
cal and subtropical regions [72]. It mainly includes genus 
Ficus, Malaisia, Artocarpus, Broussonetia, Morus among 
others. At present, little research has been reported on 
the phylogeny of Moraceae, especially focusing on Ficus 
species. Ficus, regarded as a model system for under-
standing co-evolution dating back more than 75 million 
years, has not been able to confidently resolve phylog-
enomic relationships due to the lack of well-supported 
phylogenetic hypothesis, lack of species involved in 
the study or reduced dataset [73, 74]. Previously, Herre 
et al. (1996) performed the molecular phylogenetic stud-
ies of 15 Ficus species based on trnL-F and rbcL chloro-
plast markers [75]. Then, Renoult et  al. (2009) revealed 
the potential of five non-coding chloroplast markers to 
address deep phylogenetic relations in Ficus, accounting 
for 38 species of African Ficus from the Urostigma sec-
tion of Galoglychia subgenus [76]. Appearing significant 
conflicts when Ficus plastid phylogeny was compared 
with Ficus phylogeny based on ribosomal ITS and ETS 
[77]. These studies failed to represent what we currently 
know about the phylogenetic diversity within Ficus, and 
only sampled a maximum of 3,604  bp of plastid DNA 
[75, 76, 78]. More recently, Bruun-Lund et  al. (2016) 
have examined the chloroplast genomes of 59 Ficus 
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species and revealed that the phylogenies built from these 
genetic data provided both additional support to the 
current understanding of the evolutionary relationship 
of major species groups and discordance with informa-
tion inferred from nuclear data [31]. In this study, eleven 
new CP genomes from ten Ficus species were added to 
solve this controversy, finding that Morus and Ficus are 
closely related compared with other genera. The eleven 
new CP genomes clustered into the same clade, with 
other reported Ficus species and can be distinguished 
from other genera of the Moraceae family (see Fig.  7). 
Furthermore, our study allowed unveil clustering of spe-
cies within species from subgenus Urostigma, subgenus 
Sycomorus, and subgenus Ficus, all with high bootstrap 
values. These results support Berg classification system 
[2], in which the subgenus Ficus was further divided into 
the subgenus Sycomorus, and also support species differ-
entiation based on molecular data. For example, F. tikoua, 
belonging to the Ficus subgenus based on morphology, 
helped to further differentiate a monophyletic group sep-
arating members of Ficus subgenus. Overall, these results 
are helpful to further understand the phylogenetic status 
and resolve relationships deep within Ficus.

Conclusions
In conclusion, in this work we determined the complete 
plastome sequence of ten Ficus species by NGS. Compar-
ative genomics indicate that these plastomes showed the 
typical quadripartite structure being relatively conserved, 
with eight mutation hotspot regions being presented as 
potential molecular markers for subsequent Ficus spe-
cies identification. The phylogenomic analysis performed 
clarified the taxonomy of the species, showing the relat-
edness between Ficus and Morus genera, and the split of 
Ficus genus into three subgenera (Ficus, Sycomorus and 
Urostigma). All together, these results enrich the data on 
the CP genome of the genus Ficus and provide additional 
information for future species identification and phyloge-
netic reconstruction of the Ficus species.

Materials and methods
Plant material, DNA extraction, and sequencing
Ten species (one of them contains two varieties), namely 
F. pumila, F. tikoua, F. hispida, F. virens, F. sarmentosa 
var. impressa, F. sarmentosa var. lacrymans, F. pandurata, 
F. tinctoria, F. formosana, F. microcarpa, and F. simplicis-
sima were field-collected from the Medicinal Botanical 
Garden of Guangzhou University of Chinese Medicine 
with Longitude 113°24’ and Latitude 23°03’ (Guangzhou, 
Guangdong, China,). The formal identification of the 
plant material was undertaken by Dr. Jiaxia Su (Guang-
zhou University of Chinese Medicine). Permission was 
not necessary for collecting these species, which have not 

been included in the list of national key protected plants. 
Fresh green leaves cleaned with 75% ethanol from those 
collected Ficus plants were sampled. Then those leaves 
were dried and stored at -80 °C till DNA extraction. Total 
genomic DNA was extracted from 100  mg of cleaned 
leaves using a DNeasy Plant Mini Kit (Qiagen, German). 
Then, genomic DNA was examined for purity and integ-
rity by ultraviolet spectrophotometry and gel electropho-
resis (1 × TAE agarose gel), respectively.

High quality DNA was sheared to 500  bp using an 
ultrasonic DNA fragmentation apparatus (Covaris). 
Libraries were constructed with NEB Next Ultra DNA 
Library Prep Kit (New England Biolabs, E7370L) follow-
ing the manufacturer’s protocol by the Sangon biotech 
High-Throughput DNA Sequencing Center. Libraries 
were amplified with NEB Next Q5 Hot Start HiFi PCR 
Master Mix kit, quantified on a Qubit 4.0 fluorometer 
(Thermo) and quality checked on an Agilent Technolo-
gies 2100 Bioanalyzer, prior paired-end 150 × sequencing 
in Illumina Hiseq 4000 sequencing platform at the San-
gon biotech Sequencing Center.

Chloroplast genome assembly and annotation
After Illumina sequencing (paired-end, 150 ×), approxi-
mate 15 Gb of raw data for each sample was generated, 
and these raw reads were QC filtered and trimmed using 
the Trimmomatic (v0.39, Max Planck Institute of Molec-
ular Plant Physiology, Potsdam, Germany) software [79] 
with following parameters: LEADING = 20, TRAIL-
ING = 20, SLIDINGWINDOW = 4:15, MINLEN = 36, 
and AVGQUAL = 20. A more detailed information 
related to quality control of the Illumina sequencing 
of the chloroplast genome of Ficus species is shown in 
Table S6. Taking the complete sequence of Ficus religiosa 
chloroplast genome (downloaded from NCBI with Gen-
Bank accession number: NC_033979) as the reference, 
CP-like reads were extracted from those clean reads by 
mapping with the bwa software (v0.7.17) [80]. Next, 
these CP-like reads were assembled using the SPAdes 
(v3.13.1) program [81], obtaining several contigs. Contigs 
were mapped against the F. religiosa reference genome 
with mummerplot (v3.5) to form a complete chloroplast 
genome sequence with their overlapping sequences. 
BLASTn (2.8.1) was conducted for self-alignment to 
locate the precise position of the quadripartite struc-
ture. Four regions between the IR regions and the LSC/
SSC region were amplified and sequenced using specific 
primers (Table S7) in order to verify each CP assembly. 
A preliminary Ficus plastomes gene annotation was per-
formed with the GeSeq online tool (https://​chlor​obox.​
mpimp-​golm.​mpg.​de/​geseq.​html) with default param-
eters [82]. The annotation results were further examined 
and revised manually, according to reference genomes 

https://chlorobox.mpimp-golm.mpg.de/geseq.html
https://chlorobox.mpimp-golm.mpg.de/geseq.html


Page 12 of 15Huang et al. BMC Plant Biology          (2022) 22:253 

with the CLC Sequence Viewer. A detailed CP genome 
map for each Ficus species was drawn using the Organel-
lar Genome DRAW (OGDRAW) v1.2 (Max Planck Insti-
tute of Molecular Plant Physiology, Potsdam, Germany) 
[83].

SSRs and repeat sequence analysis
Repeat sequences (including forward, reverse, comple-
mentary, palindromic) were identified by running the 
REPuter tools (https://​bibis​erv2.​cebit​ec.​uni-​Biele​feld.​
de/​reput​er) [84] with a Hamming distance set at 3 and 
a minimum repeat size of 30  bp. Tandem repeats were 
analysed by the Tandem Repeats Finder (http://​tandem.​
bu.​edu/​trf/​trf.​html), with alignment parameters set to 2, 
7, and 7 for matches, mismatches, and indels. Whereas 
MISA was used to detect simple sequence repeats [85].

Genome structure and genome comparison
Molecular Evolutionary Genetics Analysis software 
MEGA v. 11 [86] (https://​www.​megas​oftwa​re.​net/) was 
used to analyse codon usage distribution, GC content 
and phylogenomic inference as described below. Thirty-
five protein-coding genes of the chloroplast genome 
of those eleven Ficus plastomes were used to predict 
potential RNA editing sites using the online program 
Predictive RNA Editor for Plants (PREP) suite (Mower 
2009), with a cutoff value of 0.8. The mVISTA program 
(http://​genome.​lbl.​gov/​vista/​index.​shtml) in the Shuffle-
LAGAN mode was used to align the obtained Ficus CP 
genomes with one reported CP genome (Morus atropur-
purea) within the Moraceae family, whose sequence was 
downloaded from NCBI (GenBank accession number: 
KU355276) [87].

Sequence divergence and phylogenetic analysis
MAFFT (v7.419) was employed to align the CP genome 
sequence of ten Ficus species and then adjusted manu-
ally by Se-Al 2.024 [88]. DnaSP v5.10 software [89] 
was used to identify rapidly evolving molecular mark-
ers that can be applied to further phylogenetic studies, 
with a sliding window analysis with the step size and 
window length set as 200 and 800 bp.

To illustrate the phylogenetic positions and evo-
lutionary relationships of Ficus species within the 
Moraceae family, the complete CP genomes of 23 spe-
cies (21 from five different genera within the Moraceae, 
with Rhamnus taquetii and Cannabis carmagnole, 
that were set as out-group) were downloaded from the 
GenBank of NCBI (Table S8). Maximum-likelihood 
(ML) phylogenetic inference analysis was performed 
on a nucleotide alignment of 80 protein-coding genes 
using MEGA v.11. In detail, an ML tree inference was 

conducted using the general time-reversible model with 
a gamma distribution of substitution rate among sites 
(GTR + G), which was selected according to a previous 
model screening analysis (Model test as implemented in 
MEGA v11). To optimize the ML method, TBR branch 
switching (a fast and efficient branch switching opera-
tion), was adopted to improve the initial evolutionary 
tree, applying also 1,000 replicates. Bootstrap analysis 
to determine the support of each branch. Nucleotide 
and phylogeny inference models were selected after 
model testing in MEGA v.11.
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