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Purpose: Tinnitus and hyperacusis are debilitating conditions
often associated with age-, noise-, and drug-induced
hearing loss. Because of their subjective nature, the neural
mechanisms that give rise to tinnitus and hyperacusis are
poorly understood. Over the past few decades, considerable
progress has been made in deciphering the biological bases
for these disorders using animal models.
Method: Important advances in understanding the biological
bases of tinnitus and hyperacusis have come from studies
in which tinnitus and hyperacusis are consistently induced
with a high dose of salicylate, the active ingredient in aspirin.
Results: Salicylate induced a transient hearing loss
characterized by a reduction in otoacoustic emissions,
a moderate cochlear threshold shift, and a large reduction
in the neural output of the cochlea. As the weak cochlear
neural signals were relayed up the auditory pathway, they
were progressively amplified so that the suprathreshold
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neural responses in the auditory cortex were much
larger than normal. Excessive central gain (neural
amplification), presumably resulting from diminished
inhibition, is believed to contribute to hyperacusis
and tinnitus. Salicylate also increased corticosterone
stress hormone levels. Functional imaging studies
indicated that salicylate increased spontaneous activity
and enhanced functional connectivity between structures
in the central auditory pathway and regions of the brain
associated with arousal (reticular formation), emotion
(amygdala), memory/spatial navigation (hippocampus),
motor planning (cerebellum), and motor control (caudate/
putamen).
Conclusion: These results suggest that tinnitus and
hyperacusis arise from aberrant neural signaling in a
complex neural network that includes both auditory and
nonauditory structures.
Clinical disorders in one discipline often spark re-
search in others. A classic example of this was the
early use of aspirin, a nonsteroidal anti-inflammatory

drug, to treat rheumatoid arthritis (Kersley, 1957; Mainland
& Sutcliffe, 1965). The active ingredient in aspirin is salicy-
late, and when taken in excess, it can lead to death. The
optimal serum salicylate dose needed to treat rheumatoid
arthritis approaches those that are mildly toxic, which can
result in mild temporary hearing loss and tinnitus (Boettcher
& Salvi, 1991; Cazals, 2000; Myers & Bernstein, 1965). To
optimize dosing, clinicians adopted a simple strategy that
involved telling the patient, “Increase the dose of aspirin
until your ears start to ring, then lower the dose until the
phantom sound of tinnitus disappears” (Mongan et al.,
1973). Because the hearing impairments associated with
high-dose salicylate are temporary, it has been widely used
as a research tool to investigate the perceptual consequences
and biological bases of hearing loss, tinnitus, and hypera-
cusis in humans (McFadden & Plattsmier, 1984; McFadden
et al., 1984) and animals (Cazals, 2000). While most early
studies of salicylate ototoxicity focused on its effects on the
cochlea, more recent studies have revealed its novel effects
on structures in the central nervous system, effects that
should not come as a surprise given that aspirin is used to
treat headache and fever and readily crosses the blood–brain
barrier (Boettcher et al., 1990). This review article provides
an overview of our research efforts to characterize some
Disclosure: The authors have declared that no competing interests existed at the time
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of the major salicylate-induced changes that occur in the
peripheral and central auditory pathways and the central
nervous system, which are relevant to understanding the
neural mechanisms likely to contribute to salicylate-in-
duced tinnitus, hyperacusis, and sensorineural hearing
loss.
Figure 1. Salicylate dose dependently induces tinnitus-like behavior.
Schedule-induced polydipsia avoidance conditioning (SIP-AC) was used
to determine the dose of sodium salicylate that could induce tinnitus.
Rats were trained to avoid foot shocks on trials in which sound
was presented and only lick on trials with no sound (quiet). Here is a
schematic illustrating lick suppression data obtained with SIP-AC as
a function of salicylate dose. Rats seldom licked on trials when a sound
was presented regardless of the salicylate dose or in the absence
of salicylate (0 = control). On no-sound trials, rats licked robustly in
the absence of salicylate (0 mg/kg, control); however, as the dose
of salicylate exceeded 100 mg/kg, licks on no-sound trials largely
ceased, which is behavioral evidence that the rats were perceiving
the phantom sound of tinnitus in the absence of an external stimulus.
Aspirin-Induced Hearing Loss and Tinnitus
Early insights on salicylate-induced tinnitus and other

hearing disorders were originally gleaned from human clin-
ical studies. Unlike other ototoxic drugs that produce a
high-frequency hearing loss, aspirin typically induces a rela-
tively flat hearing loss of 10–20 dB; however, losses of up
to 40 dB have been reported with high levels of serum
salicylate (Cazals, 2000). Aspirin-induced hearing loss is
greatest in regions of normal hearing, but in regions of
preexisting sensorineural hearing loss, the threshold shifts
attributable to salicylate are less pronounced, suggesting
that they affect the same underlying mechanisms responsi-
ble for most cases of cochlear hearing loss, namely, impair-
ment to the outer hair cell amplification system (Cazals,
2000; Mellado Lagarde et al., 2008; Myers et al., 1965).
The hearing loss from oral ingestion of aspirin reportedly
begins 24–48 hr later as serum salicylate levels rise. Hear-
ing thresholds typically recover 24–48 hr after the cessation
of treatment as serum salicylate levels decline (McFadden,
1982). Aspirin-induced tinnitus is perceived as tonal and
high pitched (7–9 kHz), is associated with ear fullness, and
is easily suppressed for 30–60 s by low-level tones presented
near the perceived tinnitus pitch (McCabe & Dey, 1965;
McFadden, 1982; Mongan et al., 1973). Tinnitus onset and
offset reportedly occurs before changes in hearing thresh-
old are noted. The masking patterns for the phantom sound
of tinnitus are much different than those for a real tone
(Feldmann, 1981). Sounds in the contralateral ear can
mask tinnitus at relatively low sound levels, and external
sounds suppress the tinnitus for many seconds or minutes
after the stimulus is turned off, a phenomenon referred to
as residual inhibition (Roberts et al., 2008; Sedley et al.,
2015; Terry et al., 1983). Collectively, these results suggest
that aspirin-induced cochlear hearing loss leads to neuro-
plastic changes in the central nervous system that give rise
to the phantom sound of tinnitus.
Animal Model of Salicylate-Induced
Hearing Loss

Operant behavioral techniques have been used to
quantify the amount of salicylate-induced hearing loss in
animal models. When monkeys were treated with 500–
600 mg/kg of salicylate, they developed a flat hearing loss
of 17–24 dB several hours later. The hearing loss completely
recovered a day or two after treatment cessation, consis-
tent with human clinical reports and data from other species
(Crifò, 1975; Myers & Bernstein, 1965; Radziwon et al.,
2015; Stebbins et al., 1973).
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Animal Model of Salicylate-Induced Tinnitus
A prerequisite for investigating the neural corre-

lates of salicylate-induced tinnitus is the development of an
animal behavioral model that can “tell us” that it is experienc-
ing a phantom auditory sensation. Jastreboff et al. (1988)
developed the first behavioral model to assess salicylate-
induced tinnitus based on a Pavlovian conditioned sup-
pression paradigm. Since then, many different procedures
have been developed, as discussed in a recent review (Hayes
et al., 2014). We developed a schedule-induced polydipsia
avoidance conditioning paradigm to test for tinnitus. This
paradigm relies on the fact that food-restricted rats will
spontaneously begin to lick for water even though they are
not thirsty (i.e., polydipsia) when a food pellet is delivered
once per minute (Lobarinas et al., 2004). Rats are trained
to avoid a foot shock by not licking for water on trials in
which a real sound is presented. However, rats are allowed
to lick for water (no shock) when the external sound is off
(quiet). Once rats correctly discriminated sound trials (stop
licking) from no-sound trials (licking allowed), rats were
treated with salicylate. The basic assumption is that rats
would stop licking on no-sound trials (quiet) if the dose of
salicylate was sufficient to induce the phantom sound of
tinnitus, whereas they would continue to lick for water on
no-sound trials when the dose of salicylate was extremely
low or if the rat was treated with a placebo (saline). When
rats were treated with salicylate, they stopped licking for
water on no-sound trials when the dose of salicylate was
equal to or greater than 150 mg/kg (see Figure 1), a behav-
ior indicating that rats were perceiving a phantom sound.
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Figure 2. Schematic of reaction time–intensity functions used to
assess the growth of loudness during baseline testing and a few
hours after salicylate treatment (200 mg/kg). During baseline testing,
reaction times gradually decreased as intensity increased. Post-
salicylate reaction times increased at low intensities (~30 dB SPL)
because salicylate induced a hearing loss of approximately 20 dB,
making low-intensity sound less audible. However, as intensity
increased, reaction times rapidly increased, catching up to baseline
reaction times at moderate intensities (~50 dB SPL) and then
becoming shorter than normal at higher intensities. Intensities at
which reaction times were shorter than baseline indicate that the
sounds were perceived as louder than normal, which is behavioral
evidence of hyperacusis. BBN = broadband noise.
In contrast, rats continued to lick for water on no-sound
trials when treated with a placebo (saline) or with a very
low dose of salicylate (50–100 mg/kg). Licking was always
suppressed on sound trials regardless of the experimental
condition, indicating that the rat’s behavior was under stim-
ulus control.

Animal Model of Salicylate-Induced Hyperacusis
Hyperacusis is a loudness intolerance disorder in

which moderate-intensity sounds are perceived as intoler-
ably loud. Among patients whose primary complaint is
tinnitus, approximately 40% have hyperacusis (Baguley,
2003), although the true percentage is likely higher because
most tinnitus patients are unaware they are intolerant of
loud sounds (Gu et al., 2010). Conversely, among those with
a primary complaint of hyperacusis, 86% have tinnitus
(Baguley, 2003). Because hyperacusis is often associated
with tinnitus, we predicted that high doses of salicylate
would induce hyperacusis.

Loudness is a subjective phenomenon that is often
assessed in humans using loudness scaling procedures or
questionnaires, procedures difficult or impossible to employ
in animal models (Hellman, 1984; Khalfa et al., 2002).
Fortunately, researchers have been able to employ reaction
time to assess loudness, because reaction time decreases in
an orderly manner as sound intensity increases. Because
of this reliable relationship, reaction time–intensity func-
tions are extremely useful for obtaining reliable estimates
of loudness growth in both humans and animals. In this
case, reaction time serves as a surrogate metric for loud-
ness, a perceptual measure, whereas intensity is an acoustic
property of the stimulus. This procedure is especially pow-
erful when reaction time–intensity functions are obtained
from the same subject before and after an experimental
manipulation (Marshall & Brandt, 1980; Pfingst et al., 1975;
Stebbins, 1966). If reaction time at a given intensity becomes
shorter than it was before an experimental treatment (e.g.,
salicylate or noise exposure), this would indicate that the
sound was perceived as louder than normal, evidence of
hyperacusis. Conversely, if reaction time became longer than
it was before the experimental treatment, it would indicate
that the sound was perceived as less loud (i.e., hypoacusis).
To determine if salicylate would disrupt loudness growth,
we measured reaction time–intensity functions in rats before
and after administering salicylate doses between 50 and
300 mg/kg (Radziwon et al., 2017). During baseline testing,
reaction times systematically decreased from approximately
250 to 150 ms as broadband noise intensity increased from
30 to 90 dB SPL, as schematized in Figure 2. Treatment
with a high dose of salicylate disrupted the reaction time–
intensity functions in two important ways. At low intensities,
reaction times were longer than pretreatment, indicating
that sounds near 30 dB SPL were perceived as less loud
(quieter). This change in loudness is most likely caused by
the salicylate-induced hearing loss of approximately 20 dB,
which would make 30–dB SPL broadband noise just above
threshold barely audible. As the intensity of the broadband
noise increased, reaction times rapidly declined, such that
reaction times were similar to baseline at moderate intensi-
ties but much shorter than pretreatment values at higher
intensities. These results indicate that moderate- to high-
intensity sounds are perceived as louder than normal after
high-dose salicylate treatment. Reaction time–intensity
functions completely recovered 24–48 hr after treatment was
discontinued. Results similar to this were obtained for tone
bursts and noise bursts. Importantly, salicylate doses equal
to or greater than 150 mg/kg (i.e., the same dose that induced
tinnitus) consistently induced hyperacusis-like behaviors
(shorter-than-normal reaction time), whereas reaction times
were unaffected by lower salicylate doses or a placebo
treatment. Because high-intensity sounds are perceived as
louder than normal after high-dose salicylate treatment, it
is conceivable that salicylate enhances sound-evoked hyper-
activity somewhere along the auditory pathway.
Salicylate Upregulates Corticosterone
Stress Hormone

Tinnitus and hyperacusis are often associated with
hearing loss. However, many patients with hearing loss do
not suffer from tinnitus or hyperacusis, suggesting that
hearing loss plus other comorbid factors may be needed to
induce tinnitus and/or hyperacusis (Nelson & Chen, 2004).
In contrast to other forms of hearing loss that may or may
not induce tinnitus or hyperacusis, every rat treated with
high-dose salicylate invariably develops hearing loss, tinni-
tus, and hyperacusis. These results suggest that some other
Salvi et al.: Neural Mechanisms Tinnitus Hyperacus 903



factor might be acting synergistically with the cochlear
hearing loss to make salicylate a reliable inducer of tinnitus
and hyperacusis.

Many patients with tinnitus and hyperacusis indicate
that their symptoms are exacerbated by stress (Alpini &
Cesarani, 2006; Hasson et al., 2011). Interestingly, cortisol,
the human stress hormone, has been linked to tinnitus se-
verity, suggesting that stress hormones might be a medi-
ating factor (Hébert & Lupien, 2009). Taken together, these
results suggest that high-dose salicylate might be inducing
a stress response that interacts with hearing loss to consis-
tently induce tinnitus and hyperacusis. To test this hypothe-
sis, we measured the corticosterone stress hormone levels
in blood samples taken from rats treated with various doses
of salicylate (Y.-C. Chen, Chen, et al., 2017). High doses
of salicylate that reliably induce tinnitus and hyperacusis
(≥ 150 mg/kg) caused a dramatic increase in blood cortico-
sterone levels, whereas low doses of salicylate that failed
to induce tinnitus or hyperacusis also failed to increase
corticosterone levels. Corticosterone levels declined to base-
line levels 24–48 hr posttreatment in concert with the dis-
appearance of tinnitus and hyperacusis (Lobarinas et al.,
2004; Radziwon et al., 2017). These results, together with
clinical observations, suggest that high levels of stress com-
bined with hearing loss may substantially increase the risk
of developing tinnitus and/or hyperacusis.
Salicylate Depresses Distortion Product
Otoacoustic Emissions

The cochlear amplifier, which imbues the inner ear
with its exquisite sensitivity and sharp tuning, is dependent
on prestin, an electromotile protein heavily expressed along
the lateral wall of outer hair cells (Cheatham et al., 2004;
Zheng et al., 2000). Aspirin not only induces tinnitus and
hearing loss in humans with salicylate intoxication but also
suppresses otoacoustic emissions (Wecker & Laubert, 2004),
presumably because it reduces outer hair cell electromotility
(Santos-Sacchi et al., 2006; Zheng et al., 2002). It is unclear,
however, if salicylate causes hyperacusis in humans. Consistent
with these clinical observations, when rats were treated with
a high dose of salicylate, it suppressed distortion product oto-
acoustic emission (DPOAE; Stolzberg et al., 2011). DPOAE
input/output functions were shifted rightward to higher inten-
sities (threshold shift), and suprathreshold amplitudes were
reduced (see Figure 3). DPOAE amplitudes were moderately
reduced at high intensities, and DPOAE threshold shifts
were generally 10 dB or less. The DPOAE threshold shifts
were smaller than the behavioral threshold shifts reported
previously (Myers & Bernstein, 1965), raising the possibility
that other pathophysiologies might be occurring elsewhere
in the cochlea (e.g., inner hair cells or auditory nerve [AN]).
Salicylate Depresses the Cochlear Neural Output
Sound-evoked neural activity transduced by cochlear

hair cells is relayed to the central auditory system by Type I
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AN fibers that innervate the inner hair cells (Spoendlin,
1972). The neural output of the cochlea can be conveniently
assessed by presenting tone bursts to elicit the compound
action potential (CAP), a local field potential that reflects
the synchronous onset response of Type I AN fibers that
innervate the inner hair cells (Bourien et al., 2014). CAP
input/output functions can be used to quantify changes in
the thresholds of the CAP and the amplitude of the CAP
at suprathreshold intensities. CAP input/output functions
were drastically altered 2 hr after treatment with a high
dose of salicylate (see Figure 4). The post-salicylate CAP
input/output function was right-shifted (i.e., threshold shift)
by approximately 20 dB at low intensities (solid blue line),
and the CAP amplitude at high intensities (i.e., the cochlear
output) was reduced by more than 60% (dashed green line).
The drastic reduction in CAP amplitude observed at inten-
sities greater than 50 dB is difficult to reconcile with the
fact that high doses of salicylate induce hyperacusis. How
is it possible for moderate- or high-intensity sounds to be
perceived as excessively loud when the neural output of the
cochlea is significantly reduced?
Neural Amplification in the Central
Auditory Pathway

If the auditory system behaved as a simple linear
system, the weak neural signals from a damaged cochlea
should cause normal everyday sounds to seem muffled
and barely audible. However, this is clearly not the case
because patients with cochlear hearing loss hear supra-
threshold sounds similar to listeners with normal hearing
due to loudness recruitment. Growing evidence suggests
that cochlear damage leads to neuroplastic changes in the
central nervous system that partially compensate for
the weak neural output from the cochlea; these neuro-
plastic changes can occur in a matter of minutes or hours
(Auerbach et al., 2014; Salvi et al., 1990, 2016). To deter-
mine if rapid central compensation was occurring in the
central nervous system following high-dose salicylate treat-
ment, we recorded the local field potentials and multiunit
spike discharges from sites along the ascending auditory
pathway.

The neural output of the AN is relayed to the ipsilat-
eral cochlear nucleus (CN) complex where it generates a
robust local field potential. This is schematized in Figure 5A
by plotting the percent normalized local field potential
input/output function. In this schematic, 100% represents
the maximum amplitude obtained at the highest intensity
prior to salicylate treatment; lower intensities evoked pro-
portionately smaller responses relative to the maximum.
Pretreatment local field potential gradually increased with
intensity, starting around 20 dB SPL. The CN input/output
function measured several hours after high-dose salicylate
treatment was shifted rightward approximately 20 dB, as
previously reported (Jiang et al., 2017). The threshold shift
in the CN was similar to that seen in the CAP (see Figure 5,
dashed line), indicating that the salicylate-induced hearing
1



Figure 3. Salicylate depresses otoacoustic emissions. Distortion product otoacoustic emission (DPOAE) input/
output functions measured pre-exposure and 2 h postexposure. Postexposure input/output functions shifted to
the right (threshold shift), and suprathreshold amplitudes reduced. The largest rightward shifts and largest amplitude
reductions occurred above and below 16 kHz.
loss in the CN was inherited from the AN. Suprathreshold
responses from the CN increased rapidly with intensity
such that the maximum response at the highest intensity,
100 dB SPL, was approximately 90% of pretreatment values;
this is a surprising result given that the maximum response
of the CAP (see Figure 4) was reduced by more than 60%.
These results suggest that homeostatic changes must have
occurred over a relatively short period of time to boost the
weak neural signals inherited from the cochlea (Auerbach
et al., 2014; Salvi et al., 2000). Nevertheless, the maximum
neural response in the CN was still below normal.

To determine if additional changes were occurring at
higher levels of the auditory pathway, local field potential
input/output functions were recorded from the inferior
Figure 4. Salicylate suppresses the compound action potential (CAP).
Here is a schematic of CAP input/output functions pre-salicylate and
2 hr post-salicylate. Salicylate right-shifted the input/output function
by approximately 20 dB (threshold shift, blue line) and reduced the
amplitude of the CAP by more than 60% at high intensities (green
dashed line), greatly reducing the neural output of the cochlea
delivered to the central auditory pathway.
colliculus (IC), an important binaural processing center in
the midbrain (G.-D. Chen et al., 2013; Jiang et al., 2017;
Sun et al., 2009). Neural responses from the IC gradually
increased in amplitude, beginning around 20 dB SPL (see
Figure 5B). The post-salicylate input/output function in
the colliculus was right-shifted by approximately 20 dB,
consistent with data from the AN and CN. The amplitude
of the response from the IC rapidly increased as intensity
was increased. At intensities equal to or greater than 60 dB
SPL, responses were slightly greater than pretreatment values
(see Figure 5B), evidence of enhanced neural gain at supra-
threshold intensities.

When local field potentials were recorded more centrally
from the medial geniculate body (MGB) (see Figure 5C),
an auditory processing area in the thalamus, and from the
auditory cortex (AC; see Figure 5D), more dramatic changes
were observed at suprathreshold intensities. In both of these
regions, the post-salicylate input/output functions were
shifted to the right of pretreatment values by approximately
20 dB, similar to that seen at lower levels of the auditory
pathway. However, suprathreshold response amplitudes in
the MGB and AC were much larger than normal after salic-
ylate treatment, particularly in the AC.
Serial Neural Amplification
Taken together, these results show that the weak

signals from a salicylate-impaired cochlea are progres-
sively amplified as the neural responses are relayed from
the periphery up through the central auditory pathway.
To visualize these salicylate-induced changes, the schematic
in Figure 6 illustrates the frequency-dependent changes
in neural activity at different locations along the auditory
pathway when suprathreshold (> 60 dB SPL) tone bursts
are presented. Neural responses in the AN, reflecting the
output of the cochlea, are typically depressed by more than
60% after systemic administration of high-dose salicylate.
Neural responses in the CN, which receives its input from
the AN, are only reduced by 10%–20%. By the time the
Salvi et al.: Neural Mechanisms Tinnitus Hyperacus 905



Figure 5. Salicylate depresses sound-evoked neural responses in the auditory periphery, but suprathreshold responses are enhanced in the
central auditory pathway. Here are schematics illustrating the input/output functions obtained pre-salicylate (solid line) and post-salicylate
(dashed line). Salicylate was administered systemically in Panels A–E but infused into the lateral amygdala (LA) while recordings were obtained
from the auditory cortex (AC) in Panel F. Postexposure input/output functions in the cochlear nucleus (CN; Panel A), inferior colliculus (IC;
Panel B), medial geniculate body (MGB; Panel C), and AC (Panel D) all shifted to the right of pre-exposure functions at low intensities, reflecting
the salicylate-induced cochlear threshold shift. (A) Neural responses in the CN depressed at all intensities post-salicylate. (B) Post-salicylate
neural responses in the IC depressed at low intensities but slightly larger than normal at high intensities. (C) Post-salicylate neural responses in the
MGB and (D) AC depressed at low intensities but enhanced at high intensities. Salicylate-induced enhancement increases between the MGB
and the AC. (E) Post-salicylate input/output function in the LA enhanced at high intensities. (F) Suprathreshold responses in the AC enhanced after
salicylate was infused into the LA; however, threshold was unaffected when salicylate was applied to the LA (compare Panel F with Panel D).
neural activity reaches the MGB (IC), the responses are
essentially normal or moderately enhanced around 16 kHz.
Further neural amplification takes place as the information
is progressively relayed to the MGB and then to the AC.
Each stage of the auditory pathway appears to cause a
small increase in gain such that by the time the signal
reaches the AC, it has been amplified multiple times, a pro-
cess of serial amplification.
Frequency-Dependent Neural Amplification
Modern hearing aids include hardware and software

to compensate for varying amounts of hearing loss in differ-
ent frequency regions of the audiogram, a process referred
to as frequency-dependent gain or amplification. Salicylate-
induced cochlear hearing loss results in a frequency-dependent
906 American Journal of Audiology • Vol. 30 • 901–915 • October 202
amplification process at higher levels of the auditory path-
way. The amplification that occurred in the IC, MGB, and
AC was greatest near 16 kHz, the midfrequency region
of the rat’s audiogram. What could be occurring in these
auditory regions to provide the additional midfrequency
amplification? To answer this question, we measured each
neuron’s threshold (dB SPL) as a function of frequency
to delineate the neuron’s tuning curve (i.e., threshold vs.
frequency function). Tuning curves consist of a low-threshold,
narrow V-shaped region of high sensitivity and a high-
threshold, broadly tuned low-frequency tail. The frequency
with the lowest threshold is referred to as the characteristic
frequency (CF). Neurons with high CFs mainly receive
information from the high-frequency basal region of the
cochlea. Neurons with CFs in the midfrequencies mainly
receive information from the midfrequency region in the
1



Figure 6. Suprathreshold sound-evoked activity is progressively
amplified post-salicylate as neural activity is relayed along the
auditory pathway from the auditory nerve (AN), cochlear nucleus
(CN), inferior colliculus (IC), medial geniculate body (MGB), and
auditory cortex (AC). Here is a schematic depicting percent reduction
(depressed, down arrow on the right) or enhancement (enhanced,
up arrow on the right) following high-dose salicylate treatment
observed in the AN, CN, IC, MGB, or AC as a function of stimulus
frequency. Note the massive reduction in neural response from the
cochlea. The greatest enhancement of suprathreshold neural
activity occurs in the midbrain and cortical areas (IC, MGB, and AC),
particularly near 16 kHz.
middle of the cochlea, and low-CF neurons mainly receive
information from the low-frequency apical region of the
cochlea. Each region in the auditory system has a tonoto-
pic organization such that CFs vary along an anatomical
axis (e.g., dorsal to ventral or anterior to posterior) much
like the frequency organization of a piano keyboard.

To determine if salicylate disrupted the tonotopic or-
ganization of the IC, MGB, and AC, we measured the tuning
curve and the CF of neuron multiunit clusters before and
after administering a high dose of salicylate (G.-D. Chen
et al., 2013; Jiang et al., 2017). Most neural tuning curves
in the IC, MGB, and AC had a low-threshold, narrow
V-shaped tip with a distinct CF. Following salicylate treat-
ment, the thresholds of most neurons in the IC, MGB, and
AC had increased by approximately 20 dB due to the co-
chlear hearing loss. However, a small percentage (10%–20%)
of the tuning curves in each of these regions showed dra-
matic changes in their CF after salicylate treatment. Some
neurons with a low CF showed an expansion of the tuning
curve toward the high frequencies, which resulted in an
increase in the neuron’s CF. That is, the CF of a subpop-
ulation of low-CF neurons shifted toward the 16-kHz re-
gion. Conversely, some high-frequency neurons (> 20 kHz)
showed an expansion of the tuning curve toward the low
frequencies; this resulted in a downshift of the CF toward
16 kHz. One way to conceptualize this is to think of the
tonotopic organization of the IC, MGB, and AC as a piano
keyboard. Imagine that salicylate caused a small subset of
the low-frequency keys on the left side of the keyboard to
start to produce midfrequency sounds. Likewise, some
high-frequency keys on the right side of the keyboard would
begin to produce midfrequency sounds. These salicylate-
induced CF upshifts and downshifts would increase the
percentage of neurons that responded mainly to mid-frequency
sounds (Jiang et al., 2017). Because more neurons have CFs
tuned to the midfrequencies after salicylate treatment, neural
responses to midfrequency stimuli would be greater than
those evoked by low or high sounds, resulting in greater
amplification at the midfrequencies.

What neural mechanisms could account for these
CF shifts? Neurons in the central auditory pathway are
flanked above and below the CF by strong lateral inhibi-
tion that helps sharpen neural tuning and limit excitability
at high intensities (Nelken & Young, 1994; Palombi &
Caspary, 1996; Wang et al., 2002). Cochlear damage from
various forms of trauma reduces the flow of neural activity
into the central nervous system, thereby reducing the need
for lateral inhibition to limit excitability. The loss of lateral
inhibition increases excitability and enhances central gain
(Salvi et al., 2016). CF shifts similar to this have been seen
in the central auditory pathway after pharmacological
treatments that suppress lateral inhibition (Avery et al.,
2009; Wang et al., 2002).

Emotional Centers Affect Auditory Gain
The acoustic information transmitted up the auditory

pathway is relayed to many other structures in the central
auditory pathway where it is used to react to and make
informed decisions about the environment, for example,
“Wake up, it is the alarm clock!” (arousal), “Does the
sound signify danger or reward?” (emotion), and “Where
should I go when I hear the sound?” (spatial navigation,
motor coordination). The amygdala, a region of the brain
that assigns emotional significance to sensory stimulation,
can be activated by sounds relayed to it from various parts
of the auditory brain (Campeau & Davis, 1995; LeDoux
et al., 1991; Quirk et al., 1997; Sander et al., 2007). To
determine if salicylate affects this emotional center, local
field potential input/output functions were recorded from
the lateral amygdala pre- and posttreatment. Pretreatment
sound-evoked responses from the lateral amygdala gradu-
ally increased as intensity increased (see Figure 5E). A few
hours after systemically administering a high dose of sa-
licylate, the input/output function shifted to the right by
approximately 20 dB because of the cochlear hearing loss.
However, neural responses to suprathreshold sounds were
much larger than pretreatment values, similar to what
was observed in the MGB and AC. The magnitude of the
salicylate-induced changes in the amygdala was similar to
that seen in the MGB and AC but greater than that ob-
served in the IC. This suggests that additional sound amplifi-
cation may be occurring in the amygdala from information
received from lower levels of the auditory pathway. How-
ever, it is possible that other complex and reciprocal inter-
actions may be occurring between the amygdala and the
MGB and AC. Thus, salicylate induces hyperactivity not
only in the auditory pathway but also in the amygdala,
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Table 1. Salicylate-induced changes in spontaneous neural activity
reflected in terms of amplitude of low-frequency fluctuations (ALFF)
via functional magnetic resonance imaging.

Brain region Function ALFF change

Auditory cortex Auditory ⇧
Medial geniculate body Auditory ⇧
Inferior colliculus Auditory ⇧
Somatosensory cortex Somesthesis ⇧
Visual cortex Visual ⇧
Superior colliculus Visual/multisensory ⇧
Amygdala Emotion ⇧
Reticular formation Arousal ⇧
Cerebellum Motor planning ⇧
Hippocampus Memory/spatial navigation ⇩
Caudate/putamen Movement regulation ⇩

Note. Up arrow = increase; down arrow = decrease.
which adds emotional valence to acoustic stimuli. The
changes in the amygdala are relevant to human brain im-
aging studies in which tinnitus distress and hyperacusis
were linked to aberrant neural activity in the amygdala
and altered structural interactions between the amygdala
and the AC (Gunbey et al., 2017; Hofmeier et al., 2018;
Levitin et al., 2003; Vanneste et al., 2010).

Because the amygdala is connected to the AC (Budinger
et al., 2008; LeDoux et al., 1991), salicylate-induced changes
occurring in the amygdala could affect the AC. To evalu-
ate this possibility, salicylate was infused locally into the
amygdala while recording the local field potential from the
AC pre- and posttreatment (Y.-C. Chen et al., 2015). Local
infusion of salicylate into the amygdala resulted in a large
increase of suprathreshold sound-evoked activity in the AC
(see Figure 5F). However, unlike systemic salicylate treat-
ment, local administration into the lateral amygdala did not
alter threshold or responses to low-intensity sounds. These
results illustrate how emotionally driven activity in the
amygdala, independent of the cochlea, could alter activity in
the AC and other regions in the central auditory pathway.

Functional Brain Imaging
One of the major advances in tinnitus and hypera-

cusis research during the past two decades is the use of
functional brain imaging techniques to identify structures
in the central nervous system contributing to these disorders
(Y.-C. Chen, Xia, et al., 2017; Husain, 2016; Lockwood
et al., 1998; Melcher et al., 2009). Traditionally, auditory
electrophysiologists have focused their search for the neural
correlates of tinnitus in the auditory pathway (Eggermont,
2008; Kaltenbach, 2000; Ma et al., 2006). However, the
auditory system makes extensive direct and indirect con-
nections to other parts of the central nervous system, which
likely embellish and add additional features to the raw
tinnitus and hyperacusis percepts, for example, “Where
is the sound located in space?” “Loud sounds really make
me anxious?” “I’m really afraid my tinnitus or hyperacu-
sis will get worse.” and “I need to escape from these loud
sounds.”

Functional brain imaging techniques allow researchers
to surveil the entire central nervous system to identify
novel structures associated with tinnitus and hyperacusis.
To identify new structures that could potentially contribute
to salicylate-induced tinnitus and hyperacusis, we employed
functional magnetic resonance imaging (fMRI) to identify
regions of altered brain activity (Y.-C. Chen et al., 2015).
Because neurons do not possess an endogenous source of
energy, “brain fuel” in the form of sugar and oxygen must
be quickly brought in to meet the needs of highly active
neurons. The release of oxygen from the blood to support
changes in neural activity alters the relative abundance
of oxyhemoglobin and deoxyhemoglobin. These activity-
dependent changes in brain activity alter the magnetic sus-
ceptibility of the blood, which can be detected by fMRI
(Ogawa et al., 1990), a technique referred to as blood ox-
ygen level–dependent (BOLD) imaging.
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fMRI Spontaneous Activity
Spontaneous brain activity can be evaluated by

measuring the amplitude of low-frequency fluctuations
(ALFF) in the BOLD response throughout the central
nervous system (Hoptman et al., 2010). We used the ALFF
to identify regions of the brain in which significant changes
in spontaneous neural activity occurred in the ALFF re-
sponse after treating rats with a high dose of salicylate
known to induce tinnitus and hyperacusis. Increases in the
ALFF were observed bilaterally in three auditory regions:
AC, MGB, and IC (see Table 1). Bilateral increases
were observed in two other sensory and/or multisensory
regions that communicate with the auditory pathway, the
visual cortex, the somatosensory cortex, and the superior
colliculus (Foxe et al., 2002; Meredith & Stein, 1990;
Skaliora et al., 2004; Stein & Meredith, 1990). Bilateral
increases in the ALFF occurred in the amygdala, a region
of the brain that assigns emotional significance to audi-
tory and other sensory stimuli (Anders et al., 2008). ALFF
activity was strongly upregulated in the reticular forma-
tion, a brainstem region that responds robustly to sound,
is affected by cortisol levels, and is important for arousal
(Born et al., 1988; Kornetsky & Eliasson, 1969; Paus,
2000).

Salicylate also increased ALFF activity bilaterally
in the cerebellum. The cerebellum plays an important role
in motor planning and coordination. Portions of the cere-
bellum also respond to sound and have been implicated in
tinnitus (Azizi et al., 1985; Bauer et al., 2013; Lockwood
et al., 1999). In animals with noise-induced tinnitus, imag-
ing studies revealed elevated activity in the parafloccular
lobe of the cerebellum (Brozoski et al., 2007). These results
suggested that the parafloccular lobe might act as a tinni-
tus generator. In support of this hypothesis, it was found
that ablation of the paraflocculus in animals with pre-
existing tinnitus abolished tinnitus (Bauer et al., 2013;
Brozoski et al., 2017, 2013). Tinnitus was also temporarily
suppressed by acute pharmacologic inactivation of the
parafloccular lobe.
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Salicylate also caused bilateral decreases in the ALFF
in two regions, namely, the hippocampus, a structure im-
portant for spatial navigation and memory (Bates & Wolbers,
2014; Goodman et al., 2010; Robinson & Bucci, 2012), and
the caudate/putamen, a structure important for movement
regulation (Herrero et al., 2002; Villablanca, 2010). Both
of these structures have been implicated in tinnitus (Larson
& Cheung, 2012; Ueyama et al., 2013; Wunderlich et al.,
2010). Patients with tinnitus often report that they perceive
their tinnitus in the left ear, the right ear, or the head. The
aberrant activity in the hippocampus, which is involved
in spatial processing, could conceivably be involved in
“telling the listener” in which area the phantom sound is
located. Activation or inactivation of the locus of the cau-
date, a region outside the classical auditory pathway, can
trigger or suppress the phantom sound of tinnitus, suggest-
ing that this region might serve as a gate to turn tinnitus
on or off (Larson & Cheung, 2012, 2013).
fMRI Functional Connectivity
Most regions of the central nervous system form com-

plicated structural and functional networks in order to
carry out complex activities such as interpreting speech and
movements away from or toward a sound. In order to
identify regions of the central nervous system that are work-
ing together, we conducted functional connectivity analyses
in which the temporal fluctuations in the BOLD response
in one region of the auditory system were correlated with
BOLD response in all other regions of the central nervous
system (Y.-C. Chen et al., 2015). With the “seed” region
located in the AC (see Figure 7, left), BOLD responses
showed a significant salicylate-induced increase in functional
connectivity with two other auditory regions, namely, the
MGB and IC. Salicylate also increased functional connec-
tivity between the AC and portions of the cerebellum (lob-
ule IV and parafloccular lobe) and between the AC and
the reticular formation. With the seed region placed in
the medial geniculate, functional connectivity was signifi-
cantly increased between the MGB and the AC, consistent
Figure 7. Salicylate enhances functional connectivity. With the
seed region in the auditory cortex (AC), functional connectivity was
enhanced with the medial geniculate body (MGB), lobule IV and the
parafloccular lobe of the cerebellum (CB), inferior colliculus (IC),
and portions of the reticular formation (RF). With the seed region
in the MGB, functional connectivity was increased with the AC
and hippocampus (HIP). With the seed region in the IC, functional
connectivity was enhanced with the AC and HIP.
with the previous AC analysis, and between the medial
geniculate and the hippocampus (see Figure 7, middle).
When the seed region was placed in the IC, salicylate
treatment significantly increased the functional connec-
tivity between the IC and the AC, consistent with the AC
analysis, and between the IC and the hippocampus (see
Figure 7, right).

Our ALFF and functional connectivity results identi-
fied several regions in the central nervous system that, at
first glance, seemed unlikely to be involved in tinnitus or
hyperacusis, such as the reticular formation, cerebellum,
and hippocampus. To confirm that these were not false
positives, subsequent electrophysiological experiments were
conducted to test for salicylate-induced aberrant activity
in these regions. In each case, we found evidence of sound-
evoked hyperactivity in the hippocampus, the reticular
formation, and portions of the cerebellum, consistent with
the imaging data (Y.-C. Chen, Chen, et al., 2017; Y.-C.
Chen et al., 2015).

Sound-Evoked fMRI Hyperactivity
Task-based fMRI paradigms can be used to test for

changes in sound-evoked activity, measures relevant to
hyperacusis (Gu et al., 2010). To noninvasively assess the
neural correlates of salicylate-induced hyperacusis, we used
tone bursts to locate regions of aberrant activity in the
central nervous system (Wong et al., 2020). fMRI responses
in the lateral lemniscus remained at normal levels follow-
ing salicylate treatment despite the fact that salicylate is
known to greatly reduce the neural output of the cochlea
(see Figure 4; G.-D. Chen et al., 2013; Stolzberg et al., 2011).
In contrast, sound-evoked fMRI responses were signifi-
cantly enhanced in the MGB at 16 kHz, whereas those in
the AC were enhanced to a slightly greater degree at both
8 and 16 kHz (Wong et al., 2020). Interestingly, the tempo-
ral profile of sound-evoked fMRI responses varied across
regions. Those in the lateral lemniscus and MGB gradually
increased over the duration of the 20-s stimulus (buildup),
whereas those in the AC were characterized by an onset-
like response during the first 8 s of the 20-s stimulus. These
results were largely consistent with the electrophysiological
results showing evidence of sound-evoked hyperactivity at
higher levels of the auditory pathway.

Network Model of Tinnitus and Hyperacusis
Based on the electrophysiological and functional

imaging data, a model was proposed in which hubs and
neural networks in the central nervous system can account
for many of the key features of tinnitus and hyperacusis
(Y.-C. Chen et al., 2015). Pitch, loudness, and other sen-
sory features of tinnitus and hyperacusis are likely related
to an auditory network that shows enhanced spontaneous
and sound-evoked activity as well as increased functional
connectivity in the AC, MGB, and IC after salicylate
treatment. The increased activity and functional connectiv-
ity between the AC and the amygdala provide a pathway
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through which the aversive and anxiety-provoking aspects
of a sound can be linked to negative emotions. Increased
activation and functional connectivity between the AC
and the reticular formation could further increase arousal,
causing an individual to focus on his or her tinnitus or search
for environmental cues that might signal an impending
loud sound. The hyperactivity and increased functional
activity between the hippocampus and the MGB as well
as between the MGB and the hippocampus could provide
a pathway to consolidate a memory of the phantom sound
or to signal the location of the tinnitus or a real sound
(“I hear it in my right ear”). The cerebellum would seem to
be an unlikely place to be involved in tinnitus or hyperacu-
sis, but the enhanced activity and functional connectivity
in selected portions of the cerebellum could aid in coordi-
nating movement of the head and shoulder or aid in direct-
ing one’s attention to the location of a real or phantom
sound.

Limitations of the Model
One of the benefits of using the salicylate model is

that it consistently induces hearing loss, tinnitus, and hyper-
acusis, and the effects are dose dependent and reversible.
While the salicylate model has helped propel tinnitus and
hyperacusis research forward, the model has a number of
limitations. Because the drug effects are completely revers-
ible when salicylate is discontinued, it is unclear if the acute
neural and biological changes accurately reflect the bio-
logical changes associated with chronic tinnitus and hyper-
acusis. Less than half of the patients with tinnitus suffer
from hyperacusis, whereas many, but not all those with
hyperacusis, also have tinnitus (Baguley, 2003). These re-
sults suggest that the neural mechanisms that give rise to
tinnitus and hyperacusis may not be identical. However,
our results show that doses of salicylate that consistently
induce tinnitus also induce hyperacusis and hearing loss.
Consequently, it is difficult to disentangle the biological
mechanisms that give rise to tinnitus from those that cause
hyperacusis and/or hearing loss using the salicylate model.
Some of these limitations could be overcome by using
noise or a drug that causes permanent hearing loss plus
tinnitus versus hearing loss alone. Similarly, by comparing
the functional changes associated with the combination
of hearing loss, tinnitus, and hyperacusis versus just hearing
loss plus tinnitus, it might be possible to isolate the neural
mechanisms primarily related to hyperacusis.

Other Considerations
It has been suggested that salicylate, the active ingre-

dient in aspirin, might serve as a useful model of sensori-
neural hearing loss (McFadden et al., 1984). However, it
is unclear whether the transient hyperacusis induced by
salicylate accurately reflects the persistent tinnitus and hyper-
acusis associated with intense noise exposure, ototoxic drugs,
and aging (Baguley, 2003; Baguley et al., 2013). The cen-
tral gain enhancement observed with salicylate-induced
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tinnitus has also been observed in some animal models of
noise-induced hearing loss, ototoxicity, and aging (Chambers
et al., 2016; Milbrandt et al., 2000; Salvi et al., 1990, 2016,
2007, 2000; Syka et al., 1994).

Some reports have linked enhanced central gain and
spontaneous hyperactivity, a putative mechanism for tin-
nitus, to enhanced excitatory signaling and/or reduced in-
hibitory neurotransmission in the central auditory pathway
(Caspary & Llano, 2017; Chambers et al., 2016; Milbrandt
et al., 2000; Salvi et al., 1990, 2016, 2007, 2000; see also
Dong et al., 2009, 2010). Decreased inhibition could con-
tribute to some of the temporal processing deficits observed
in these models (Chambers et al., 2016; Gleich & Strutz,
2011; Lobarinas, 2006; Salvi et al., 2016) and to disrup-
tions in gap detection that occurs with high-dose salicylate
(Radziwon et al., 2015). The temporal processing deficits
observed in these models could also arise from dysregula-
tion of ion channels that regulate the temporal firing pat-
terns of neurons in the auditory pathway (Chambers et al.,
2017).

It has been suggested that enhanced central gain may
be an epiphenomenon unrelated to tinnitus or hyperacusis.
One study found that enhanced neural gain was mainly asso-
ciated with noise-induced hearing loss and was unrelated
to tinnitus or hyperacusis (Möhrle et al., 2019). In the con-
text of age-related tinnitus or hyperacusis, it has also been
reported that enhanced central gain can compensate for
cochlear impairments in young animals, but not in old ani-
mals (Möhrle et al., 2016). Moreover, when the cochlear
hearing loss is severe, central gain may be insufficient to
fully boost the central neural responses back to normal
levels (Qiu et al., 2000; Radziwon et al., 2019).

Enhanced central gain has been observed in humans
with tinnitus or hyperacusis (Gu et al., 2010; Hébert et al.,
2013; Melcher et al., 2009, 2000; Norena, 2011) and sub-
jects with a history of noise exposure and diminished neu-
ral output from the cochlea (Bramhall et al., 2018, 2020).
In one report, tinnitus subjects with reduced Wave I audi-
tory brainstem response amplitudes had normal Wave V
amplitudes, indicative of central gain in the brainstem
(Schaette & McAlpine, 2011). Human studies suggesting
that enhanced central gain could contribute to tinnitus
and hyperacusis are discussed in a recent review (Brotherton
et al., 2015). On the other hand, some human studies have
found no relationship between enhanced central gain and
tinnitus (Shim et al., 2017). Other studies suggest that en-
hanced neural gain in the brainstem may be necessary, but
not sufficient for the induction of tinnitus (Brotherton
et al., 2019; Sedley, 2019).

Synopsis
Because high doses of salicylate consistently induce

tinnitus, it has been widely used for more than 30 years to
investigate the biological bases of tinnitus. More recent
studies indicate high doses of salicylate sufficient to cause
tinnitus also induce hyperacusis (Radziwon et al., 2017).
The reasons why salicylate consistently induces tinnitus
1



and hyperacusis are poorly understood, but several factors
likely contribute to this. The first is that salicylate causes
a cochlear hearing loss that triggers an increase in central
gain, similar to gain increases seen following noise-induced
hearing loss. A second factor is that tinnitus readily enters
the brain where it can enhance sound-evoked neural activity
independent of hearing loss (see Figure 5F). These changes
could occur because salicylate disrupts inhibitory circuits in
the central nervous system. Third, high doses of salicylate
cause a massive upsurge in corticosterone, a stress hormone
that has long been implicated in tinnitus and hyperacusis.
By combining electrophysiological and functional imaging
techniques with validated behavioral models of tinnitus
and hyperacusis, it has been possible to identify neuro-
plastic changes in the central nervous system that are cor-
related with these subjective perceptual disorders, such as
elevated spontaneous activity, increased levels of stress hor-
mones, and enhanced sound-evoked and increased func-
tional connectivity within the central auditory pathway
and brain regions associated with emotion, arousal, memory,
spatial navigation, and motor planning. Some of the met-
rics used to assess salicylate-induced tinnitus and hyperacusis
in animals could be employed clinically. Auditory evoked
potential amplitudes could be measured at multiple levels
of the auditory pathway to test for enhanced central gain
in patients with tinnitus and/or hyperacusis (Bramhall
et al., 2018). These measures could be correlated with
tests of anxiety, stress, and depression to identify comorbid
factors that may predispose some individuals for develop-
ing tinnitus or hyperacusis (Hasson et al., 2013; Hébert &
Lupien, 2009).
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