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Humans are impressive social learners. Researchers
of cultural evolution have studied the many biases
shaping cultural transmission by selecting who we
copy from and what we copy. One hypothesis is
that with the advent of superhuman algorithms a
hybrid type of cultural transmission, namely from
algorithms to humans, may have long-lasting effects
on human culture. We suggest that algorithms might
show (either by learning or by design) different
behaviours, biases and problem-solving abilities than
their human counterparts. In turn, algorithmic-
human hybrid problem solving could foster
better decisions in environments where diversity
in problem-solving strategies is beneficial. This study
asks whether algorithms with complementary biases
to humans can boost performance in a carefully
controlled planning task, and whether humans
further transmit algorithmic behaviours to other
humans. We conducted a large behavioural study and
an agent-based simulation to test the performance
of transmission chains with human and algorithmic
players. We show that the algorithm boosts the
performance of immediately following participants
but this gain is quickly lost for participants further
down the chain. Our findings suggest that algorithms
can improve performance, but human bias may
hinder algorithmic solutions from being preserved.

2022 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2020.0426&domain=pdf&date_stamp=2022-05-23
https://doi.org/10.1098/rsta/380/2227
mailto:brinkmann@mpib-berlin.mpg.de
https://doi.org/10.6084/m9.figshare.c.5885349
https://doi.org/10.6084/m9.figshare.c.5885349
http://orcid.org/0000-0002-1642-8744
http://orcid.org/0000-0002-9687-2772
http://orcid.org/0000-0001-6744-3533
http://orcid.org/0000-0002-8663-1035
http://orcid.org/0000-0002-1796-4303
http://orcid.org/0000-0002-8826-2202
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20200426

...............................................................

This article is part of the theme issue ‘Emergent phenomena in complex physical and socio-
technical systems: from cells to societies’.

1. Introduction
When the first superhuman computer program in the game of Go—AlphaGo—beat the world
champion Lee Sedol in 2016, its gameplay was considered surprising and unconventional,
apparently violating longstanding Go traditions. In particular, for move 37, AlphaGo calculated
the chance of a human player making the same move as 1 in 10 000 [1]. Its unconventional play
likely originated from the fact that AlphaGo, and more so its successor AlphaGo Zero [2,3],
learned through self-play with little or no reliance on human historic gameplay. The performance
of AlphaGo raises the question of how such novel gameplay would influence human strategies
[1]. Replaying historic human matches of the last 300 years showed that an algorithm similar to
AlphaGo Zero increasingly often chooses the same move as humans [4], indicating convergence
towards a common gameplay. Remarkably, there has been a steep increase in this alignment
since 2017 when such an algorithm became available to the public [4,5]. These observations
suggest the fascinating hypothesis that increased alignment is the result of a hybrid form of social
learning, where AI solutions are copied and maintained by humans. Similar patterns of increased
alignment between human and algorithmic play have been suggested in the game of chess [6].

The use of technology, such as books or software, for human training in games like Go and
chess is not a novel phenomenon and represents a common method of socially transmitting
knowledge from one generation to the next. Yet, current development in AI has made it possible
for algorithms to not only play chess, but to play creatively without the need to rely on human
games. This opened up the possibility of social learning—namely learning by observation [7]—
between artificial and biological agents. Digital technology already influences the processes of
social transmission among people by providing new and faster means of communication and
imitation [8,9]. Going one step further, we argue that rather than a mere means of cultural
transmission (such as books or the Internet), algorithmic agents and AI may also play an active
role in shaping cultural evolution processes online where humans and algorithms routinely
interact.

The influence of algorithms on human culture is increasingly coming under investigation.
Much work has focused on the influence on cultural consumption by recommendation engines
that create personalized rankings of, for instance, video clips or news [10,11]. On the production
side of culture, algorithms are likewise gaining traction. For instance, in engineering or
professional gaming, algorithms are involved in the design of products or provide new
strategies. If and under which circumstances such algorithmic solutions merge with the human
cultural repertoire remains an open question. In this study, we investigate social learning and
reproduction of algorithmic behaviour, which might be a precondition for persistence within
human culture.

We propose and test the hypothesis that social learning between humans and algorithms
may be especially beneficial when biological and artificial problem solvers show diversity in
the heuristics and strategies they adopt to problem-solving. Diversity in information, biases and
problem-solving strategies has been suggested to reduce herding and error cascades [12–15]. By
self-learning or by design, algorithms showing complementary biases to humans could foster
the discovery of new solutions in domain-specific problems and improve outcomes compared
to human-only problem solvers. We would expect this effect to be greater in domains where
human bias is suboptimal for the problem to be solved. Algorithms learning from interaction
with their environment, rather than from human data, may be able to innovate over human
solutions, as in our opening anecdote. Similarly, when human biases are known, algorithms can
intentionally be designed to exhibit complementary biases to their human counterpart to enhance
collective performance [16]. Although several heuristics that humans employ are adaptive under
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assumptions of cognitive constraints and bounded rationality [17–19], they can be suboptimal
under restricted circumstances—e.g. in digital environments to which they are not adapted [20–
23]. In this study, we focus on a specific human bias, namely the tendency for myopic behaviour
when facing a sequential decision [24–26].

Many decision-making tasks (including Go and chess) are composed of sequential decisions
that require an agent to explore large decision trees. As the tree grows exponentially large with
increasing number of decisions, humans and algorithms rely on various heuristics to avoid
exploring the full tree [3,26,27]. Huys et al. [26] introduced a goal-directed decision-making task
where participants plan and make sequential moves on a directed network (figure 1). Each move
is associated with gains or losses of different magnitude. Participants have full knowledge of
the network and the rewards associated with each transition between two nodes. The authors
found that people tend to selectively discount decision branches following a large cost [26,28].
We call this selective discounting aversive pruning bias. Such a heuristic can lead to sub-optimal
solutions when an initial cost has to be born before a larger reward can be gained [29]. Lieder
et al. showed that an algorithm can augment human decisions by providing pseudo-rewards
(e.g. gamified badges and direct rewards) that reshapes the value of each option based on an
optimal value function so as to render people’s myopic strategy optimal [29]. They showed
that such pseudo-rewards can significantly increase participants’ performance. Similar asocial
algorithmic aids to human cognition have been investigated [30], but it remains unclear whether
the associated benefits disappear when the aid is removed. We address the question of whether
algorithms can durably improve human performance via social learning and whether humans
further transmit such new behaviour to new human imitators. Social learning can be especially
useful in complex problems and under uncertainty [7,31–33], and it does not require explicit
causal understanding to be effective [34].

This paper explores hybrid social learning in the lab, adapting Huys’s decision-making task
to a transmission chain paradigm with human and algorithmic players [35–37]. In a transmission
chain, players solve a task in a sequence and can observe (and copy) the solution of the previous
player before they enter theirs [38]. We compare a control condition of human-only players
with a hybrid treatment condition where an algorithm replaced a human player in the second
generation. Transmission chains have been used to investigate how biases in social learning shape
cultural evolution [38–40]. Previous research has shown that humans have different biases of what
(content bias) and who (context bias) is copied [7,41]. Both content and context biases are likely
to be important in hybrid social learning. For instance, people differ in how they develop and
sustain trust in human and algorithmic partners [42,43]. As we were interested in what people
learn from artificial players, we controlled context bias by not revealing whether the previous
player in the transmission chain was a human or an algorithm.

Participants repeatedly playing on the same network tend to reuse similar actions [28]. To
exclude such asocial learning, we developed a novel randomized version of the task, in which
each participant plays the same network only once. We classified environments where the human
aversive pruning bias is adaptive (human-rewarding environments) or misadaptive (human-
regretful environments). An agent with aversive pruning bias would perform well in the former
and poorly in the latter. We designed the algorithmic player to show a bias opposite to humans,
namely a tendency to explore decision branches associated with initial costs. We predicted
performance improvement over generations and better performance in hybrid chains than in
human-only chains (control) due to the increased strategic diversity of the former. In line with
our preregistered hypotheses, we found increased performance over generations and a short-
term performance improvement in the generation after the algorithmic solutions was introduced.
However, in contrast to our initial hypothesis, the improvement introduced by the algorithm
was not sustained over following generations of players. Solutions that conflict with the human
aversive pruning bias had lower copying fidelity and therefore quickly disappeared. We develop
an agent-based model that replicates some of our findings and makes novel predictions about
untested experimental conditions. We discuss our results in terms of content bias and frequency
of encounters with algorithmic solutions.
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Figure 1. (a) In the first stage of the task, participants saw an animation of the solution entered by the previous player (left-
hand side). A snapshot showing the transition from node E to node C is depicted. In the second stage, the participants could
enter a pathby clicking on the respective nodes in sequence (centre). Thenodewith grey background colour indicates the current
node the participant is in. In the last stage, the total score of the player’s sequence is revealed (right-hand side). The network
presented here is classified as human-regretful. (b) For each environment class, we constructed two chains of eight generations
of players. In hybrid chains, the second generation player was replaced by an algorithm. The networks depict the solutions of
the first four generations as well as the last generation for a selected environment (corresponding to (a)). The integer on the
arrows denotes the step at which a player was choosing the move. The cumulative reward is shown in the upper right corner of
each graphic. In this example, for the human-only chain the cumulative reward increases at first, but quickly reaches a plateau.
For the hybrid chain, the algorithm shows a performance greater than observed in the human-only chain, but this improvement
gets lost over subsequent human generations. (Online version in colour.)

2. Methods

(a) Participants
All 177 participants were recruited through Prolific (www.prolific.co), where they were redirected
to an external website to complete the experiment. Before starting, they completed a consent
form and read the instructions. The experiment, including two practice rounds, took around
60 min in total. Participants were paid £7 for the completion of the experiment. Furthermore,
there was a reward of one penny given for every 100 points gained during the experiment.
Participants received on average £3.20 bonus payments, depending on their performance. In
cases where participants had to drop out because of technical issues (failed network connection,

www.prolific.co
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etc.), they were paid a compensation of £3.50. The experiment was run in multiple sessions. Two
sessions failed for technical reasons. Data from failed sessions were disregarded entirely and
the experiment restarted from the last saved image. The only entry requirement was speaking
English. All participants were included in the analyses.

(b) Task
The task was an adaptation of Huys et al. [26], in which participants were asked to find an optimal
sequence of moves on a carefully designed directed network of six nodes. We generalized the
task, by randomly sampling networks, instead of using a single network. From each node, there
were exactly two possible moves to other nodes, each being associated with one of four possible
payoffs (−100, −20, 20 or 140) (figure 1a). The full network, including all possible moves and
their payoffs, was visible to the participant. Possible moves were visualized by directed arrows
with colours coding for their respective payoffs (red, orange, blue and green for increasingly
larger payoffs). The aim was to find a path of eight moves which maximizes cumulative payoffs,
beginning at a fixed starting node. We called a network together with a specific starting position
an environment. The experiment was implemented using a customized version of the Empirica
framework [44] and consisted of three consecutive stages (figure 1a). In the first stage, participants
were asked to watch the moves of the previous player’s attempt to find the optimal solution.
They saw the score of the previous player and a 15 s animation of the eight moves. The moves
were animated on the same environment the participant played on. All moves were animated
sequentially for about 2 s each with the start and target nodes being highlighted by a darker
colour and the corresponding directed arrow and reward thickened (electronic supplementary
material, figure S1 and video S1). In the second stage, participants were then asked to select a path
of eight moves. The path could be entered by clicking on the nodes in sequence. The currently
occupied node was displayed in a darker colour. If a node was selected which could not directly
be reached from the current node, the erroneously selected node was coloured in bright red. The
participant was then able to select a different node instead. Participants were able to see their
current accumulated score, the number of steps remaining and a score of the last moves entered.
This information was immediately updated whenever a participant clicked a possible target node
(electronic supplementary material, figure S2). The answer of the participant was considered to be
valid if all eight moves were played in the allotted time (15 s). Of all solutions entered by human
participants, 9% were invalid. As invalid solutions were not considered in the formation of the
chains, those were also omitted from the analysis. To strongly incentivise participants to respond
even if they were uncertain about the solution, participants paid a large cost (−500) for the round
if they did not provide a valid answer on time. In the third and final stage, the final score of the
current round was displayed for 5 s in large fonts (electronic supplementary material, figure S3).
Additionally, participants were informed if they had failed to enter a response on time.

((i)) Experimental design

Transmission chains featured eight different players, who could be human or algorithmic. We call
the position in the chain a generation. Within each chain, each player was exposed to the solution
of the previous player. Players in the first generation were exposed to a random solution.

We manipulated the chain type (human versus hybrid, figure 1b) and the environment type
(human-rewarding versus human-regretful), in a 2 × 2 design. In human-only chains (control
condition), all eight generations featured human players. In hybrid chains (treatment condition),
an algorithm (described below) replaced a participant in the second generation and provided an
algorithmic solution instead. The rest of the chain comprised human players. 800 environments of
two different types were investigated. The two types, ‘human-rewarding’ and ‘human-regretful’,
differed in whether aversive pruning respectively increases or reduces the expected reward (see
below for further detail). For each of the 800 environments two chains where constructed, one for
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each of the two chain conditions. This led to a total of 1600 chains and 12 800 games, of which 800
were played by the algorithm.

Participants were assigned to new environments on the fly at random based on availability,
with the constraints that (a) the previous generation in the chain had successfully completed all
stages and (b) that participants played each environment at most once. If a participant did not
enter a path of eight moves on time, the solution was considered invalid and the corresponding
position in the chain was reopened for a new participant. Each participant played a maximum
of 80 rounds. Towards the end of the experiment, participants completed less than 80 rounds as
no further environments were available. Due to the random assignment procedure, participants
were equally likely to play in each of the chain types as well as the environment types throughout
the experiment. However, participants entering the experiment at the beginning were more likely
to be placed in earlier generations, compared to participants who entered the game at a later stage.
Hence, we added to our regression models a random effect for each individual participant and, to
control for individual experience with the task, we added a fixed effect for the number of rounds
already played in the experiment.

((ii)) Aversive pruning model

Huys et al. described a pruned tree search algorithm for this type of task that best fitted human
decisions [26]. The model calculated the state-action value Q(a, s) of each action (move) a in
state s. The value of a particular action is given by the sum of the immediate reward R(a, s) and the
maximum value of the next action a′ from the next state s′ = T (a, s) where T is the deterministic
transition function. At each level of depth of the search tree, future rewards are discounted by a
factor of (1 − γa,s). Together, this leads to the Bellman equation

Q(a, s) =R(a, s) + (1 − γa,s) max
a′ Q(a′,T (a, s)). (2.1)

The parameter γa,s is interpreted as the rate of pruning of the search tree in a mean field
approximation [26]. Correspondingly, rewards k steps ahead are discounted by a factor of
(1 − γa,s)(1−k). Scaling the state-action value Q by the inverse temperature β and applying a
softmax function leads to the policy

π (at|st) = eβQ(at,st)∑
a′ eβQ(a′,st)

. (2.2)

Central to their work, Huys et al. defined a selective ‘Pruning’ version of this model to account
for stronger pruning when participants encounter a large cost [26]. In our experiment, a large cost
is defined as a reward of −100. In this model, which we will call the aversive pruning model, the
γa,s parameter takes two different values, a specific pruning rate γs in the case of large costs and
general pruning rate γg in all other cases (2.3).

γa,s =
{

γs, if R(a, s) = −100

γg, else
(2.3)

(c) Environment generation, selection and classification
Before the experiment, we created 800 environments, each one characterized by a directed
network of six nodes and a starting node, with each edge of the network defining a possible
move between two nodes. First, we created a pool of 60 000 strongly connected directed
networks and uniformly sampled, for each link between two nodes, one of four possible
rewards (−100, −20, 20, 140). Considering six possible starting nodes for each network, this
yielded 360 000 environments. We then calculated for each environment a path maximizing
the cumulative reward across eight consecutive moves. To reduce variation in the reward
distributions, environments with a maximum reward in the upper and lower quartile were
removed from the pool. To avoid trivial solutions (e.g. loops between two nodes), environments
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were rejected if the maximum path did not cover at least four distinct nodes. Finally, to exclude
environments with myopic optimal solutions, we compared for each node on the optimal path,
the reward of the optimal move with the reward of the alternative sub-optimal move. We required
environments to have at least four moves in which the optimal move had the same or a lower
direct reward then the sub-optimal one.

The final selection of environments was based on the sensitivity of the expected total reward to
changes in the aversive pruning parameter. The aversive pruning sensitivity for each environment
was examined by choosing a reference policy ((2.2), γg = γs = 0.35 and β = 0.03) and calculating
the derivative of the expected reward with respect to the aversive pruning parameter γs. We then
randomly selected 400 environments in the lowest and highest decentiles of aversive pruning
sensitivity. We defined environments in the lowest decentile human-regretful as showing an
aversive pruning bias in these environments leads to lower rewards. Environments in the highest
decentile were called human-rewarding.

(d) Matching the algorithmic performance
Rather than using an algorithm with super-human performance, we were interested in the
effect of hybrid social learning between players that similarly discount future rewards and
yet show different biases. We thus tuned the algorithm to have a comparable performance
with a human player. In a pilot study, we estimated with a Bayesian model fit (see electronic
supplementary material) the model parameter of a human player as γg = 0.20 (CI90 : (0.15, 0.25)),
γs = 0.45(CI90 : (0.32, 0.58)) and β = 0.012(CI90 : (0.011, 0.014)). Note that γg and γs are comparable
to the values reported by Huys et al. [26]. However, in our pilot data, we observed a lower inverse
temperature β. One possible difference is that in Huys and colleagues’ work participants were
extensively trained on one specific network, while in our work participants played in different
environments (and each environment only once). Lower inverse temperature β in our study might
then indicate more randomness in our participants’ responses.

We designed a risk seeking algorithm with a bias inverse to humans but with comparable
performance. We fixed γg = 0.5 and γs = 0.05 so as to have a comparable tree depth as human
players, and then fitted β = 0.0264 to match the performance of a human player on the pilot study.
To mimic social learning, the algorithm used an additional heuristic at run time. First, a solution,
i.e. a sequence of eight actions, was sampled using the parameters described above, then the
total reward of this solution was compared with the one of the previous player. If the reward
of the algorithm’s solution was greater or equal to the previous player’s reward, the algorithmic
solution was played. Otherwise, an exact copy of the previous player’s solution was played by
the algorithm.

(e) Statistical analysis
We ran two separate hypothesis-driven regressions models, one on solution total reward (i.e. the
sum of the rewards over the eight moves of a single round) and the other on whether a solution
was optimal or not. Additionally, we ran exploratory regressions on the number of actions
copied between solutions, modelled as Poisson distribution with a logarithmic link function.
Different models were compared with a likelihood ratio test (anova function in R). We used a
single model for both types of environments and consequently added interactions between each
fixed effect of interest and the environment type. We used the human regretful environments as a
baseline.

We ran a maximum-likelihood estimation of the pruning parameters (2.3) and inverse
temperature (2.2) for each condition and environment type on 100 bootstrapped resamples of the
solutions. We reported percentile confidence intervals and p-values based on the rate of samples
satisfying the null hypotheses. 95% confidence intervals are reported throughout. The code of the
statistical analysis and the corresponding data is published with this work.
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(f) Preregistration
Our preregistered hypotheses were that (H1) in human-only chains, individual solutions will
improve across generations, within each environment, via social learning; (H2) we expected that
placing the algorithm in the chain at generation two (GenHy2) will locally increase performance
so that a score boost is observed in generation three (GenHy3) and following generations
compared to the first generation (GenHy1); we expected our algorithmic manipulation (H3) to
globally increase performance as measured by normalized score accrued in the game, (H4) to
accelerate solution discovery as measured by the slope of score improvement and reduction
of error compared to the global optimal solution, and (H5) to increase the likelihood of chains
discovering the best solution. Furthermore, we expected the algorithmic intervention to not affect
performance in human rewarding environments as people will judge that their solution is better
than the algorithm’s (H6).

3. Results

(a) Algorithm impacts the following generations, but the effect quickly decays
To investigate and compare the evolution of the performance of solutions in the different
chains, we ran a linear mixed-effects model predicting the reward of a individual solution,
by considering (a) the numeric position in the chain (generation), (b) individual generations
following the algorithm and (c) the number of rounds participants had previously played
(max 80) as additive effects. For the first two effects (a,b) we added an interaction with the
environment type. Additionally we added random effects for the (d) individual participants and
(e) individual environments. The round of a participant (c) was added to account for non-social
learning of participants. We considered the first generation of the human regretful environments
as the baseline. Algorithmic solutions were not considered in this analysis because they were part
of our treatment.

We encoded the influence of the algorithm on the performance of following generations by
adding two independent effects for the two generations directly following the algorithm (GenHy3
and GenHy4). All further generations were assigned a single effect (GenHy5+) and we considered
solutions not following an algorithm in the chain as the baseline. This includes all solutions
in human-only chains as well as the first generation (GenHy1) in the hybrid chains, where the
algorithm has not yet been introduced. We selected this most parsimonious model (electronic
supplementary material, table S1), because others that either included independent effects for
all generations following the algorithm (χ2 = 1.99, df = 2, p = 0.37) or that included independent
effects on the three generations (GenHy3, GenHy4 and GenHy5) following the algorithm (χ2 = 5.13,
d.f.= 6, p = 0.52) did not significantly improve model fit.

As a first validation of our experimental set-up, we quantified the effect of social learning by
investigating the impact of generation on reward. We found for human regretful environments an
improvement of 3.867 (s.e. = 1.244, t = 3.109, p = 0.002, CI = (1.429, 6.305)) points from generation
to generation, and for the human rewarding environment an additional improvement of
4.859 (s.e. = 1.390, t = 3.495, p < 0.001, CI = (2.134, 7.583)) points per generation. The inset in
figure 2a depicts the average reward of solutions in human-only chains in relation to the
reward of the first player in the chain. The positive slope indicates increase in performance
over the eight generations suggesting the presence of social learning as predicted (H1) and the
accumulation of higher performing solutions in later generations. Social learning appears to lead
to larger increases in performance for ‘human rewarding’ environments where the human bias is
beneficial.

Having found that social learning does occur, we investigated the impact of the algorithm
on following generations in mixed chains. Figure 2a depicts the average within-environment
reward difference between hybrid chains with human-only chains. We found for human regretful
environments a significant effect (β(s.e.) = 30.786(7.974), t = 3.861, p < 0.001, CI = (15.157, 46.415))
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Figure 2. (a) Difference in performance between conditions (hybrid—human-only); (inset) performance improvement over
generations within human-only chains in relation to the first generation; (b) average number of actions of solutions that match
those of generation 2 within the same chain; (c) maximum-likelihood estimates of the pruning parameter for human-only
chains; (d) difference of the maximum-likelihood estimates of the pruning parameter between conditions (hybrid—human-
only). All panels share the same colour code. Vertical bars are indicating bootstrapped 95% confidence intervals. A dashed
vertical line shows the algorithm’s position. (Online version in colour.)

for participants directly following the algorithm and a weak effect (β(s.e.) = 13.225(7.922), t =
1.669, p = 0.095, CI = (−2.302, 28.753)) for the second generation following the algorithm. No
effect was found for the remaining generations (β(s.e.) = −2.473(5.094), t = −0.485, p = 0.627, CI =
(−12.457, 7.511)). We did not find evidence for interactions of these effects with the environment
type (see electronic supplementary material, table S2). Participants in the generation following
the algorithm (generation 3) gained higher rewards than their counterparts in human-only
chains. However, this effect appears to quickly wear off, suggesting a temporary boost in human
performance due to hybrid social learning (H2). However, we found no evidence for global
performance improvements in hybrid chains (H3) when considering the second half of the
transmission chain (generation 5–8).

We then investigated how participants’ behaviour changed over the generations. We calculated
a maximum-likelihood estimate of the aversive pruning model parameters, independently
for each generation and each condition. To calculate confidence intervals around each point
estimate, we bootstrapped 100 resamples. Figure 2c shows the pruning parameters estimates
for human-only chains. For these chains, we ran a linear regression on the estimates and
with generation as the only predictor, and found a significant reduction of general pruning
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rate γg over generations for human rewarding (β = −0.017, p < 0.01, CI = [−0.026, −0.0056])
and human regretful environments (β = −0.0078, p = 0.05, CI = [−0.016, 0.0013]), respectively. For
the specific pruning rate γs, we found a similar reduction in both environments (human
rewarding: (β = −0.017, p < 0.01, CI = [−0.026, −0.0056]); human regretful (β = −0.0078, p =
0.05, CI = [−0.016, 0.0013])). These findings suggest that social learning led over the generations
to solutions, which, on average, required more planning if done by individuals in isolation.

Given that the algorithm had a significant but temporary effect on following human
performance, we investigated the effect of the algorithm on participants’ behaviour. Figure 2d
shows the difference between parameter estimates in human-only and hybrid chains. Not
surprisingly, we observed a difference between the algorithm and humans in generation two, as
we designed the algorithmic parameter to show a different bias than participants. For solutions
following the algorithm, we estimated for human regretful environments a lower specific pruning
parameter (δ = −0.1, p = 0.03, CI = [−0.2, −0.006]) and a higher general pruning parameter
(δ = 0.056, p = 0.03, CI = [0.0014, 0.13]). For human rewarding environments, we found in the
same generation no significant differences between conditions (human rewarding: (δ = −0.046,
p = 0.24, CI = [−0.21, 0.11]); human regretful: (δ = 0.065, p = 0.08, CI = [−0.019, 0.13])). We found
no significant difference between the two conditions in the following generations. On the one
hand, these findings show that solutions directly following the algorithm are qualitatively
different from the ones in human chains and that the algorithmic strategy is partially transmitted
to participants following the algorithm. On the other hand, participants further down the
transmission chain appear to reverse back to their typical strategies.

Finally, we investigated the rate at which participants in human-only and hybrid chains
followed optimal strategies (see electronic supplementary material, figure S4). We ran a logistic
regression with the same variables as previously described, on whether a solution was optimal.
For hybrid chains, we found an increased rate at which optimal solutions are discovered in
generation 3 (β(s.e.) = 0.598(0.147), Z = 4.059, p < 0.001, CI = (0.310, 0.887)) compared to human-
only chains. However the difference quickly decayed and we did not find any significant
difference in optimal solution discovery in final generations (β(s.e.) = 0.598(0.147), Z = 4.059,
p < 0.001, CI = (0.310, 0.887)). Correspondingly, these findings do not support the hypotheses of a
faster optimal solution discovery (H4) and sustained increase in discovery rate (H5) caused by the
algorithm.

(b) Algorithmic solutions are copied less, after controlling for scoring
Figure 2b depicts the average number of matching moves between second generation solutions
(either human or algorithmic) and solutions in following generations (human). Despite their
higher performance algorithmic solutions did not appear to be preserved, compared to their
human counterparts. This finding may result from two opposite effects being at play. On the
one hand, the higher reward of algorithm solutions could lead to a higher rate of copying. On the
other hand, the mismatch with the inherent bias of participants might reduce copying. Note that
algorithmic solutions can be either from the algorithm itself or the previous player if that solution
was of higher performance. In chains with human regretful and human rewarding environments,
the algorithm copied 21% and 43% of the solutions, respectively. This imbalance reflects the tuning
of the algorithm towards human regretful environments.

To examine the mechanisms behind the algorithmic solution decay and a potential human
content bias against algorithmic solutions, we conducted a set of exploratory analyses only on
the third generation. We modelled the number of actions copied as a Poisson distribution with
fixed effects for the previous solution’s (a) creator (algorithm or human) and (b) standardized
reward (electronic supplementary material, table S2). We added random effects to account
for covariation due to individual participants and environments. We found an increased rate
of copying high scoring solutions (β(s.e.) = 0.394(0.034), Z = 11.423, p < 0.001, CI = (0.326, 0.461))
and a lower rate of copying algorithmic solutions (β(s.e.) = −0.189(0.041), Z = −4.625,
p < 0.001, CI = (−0.269, −0.109)). A model including an interaction between the two effects did
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not significantly improve model fit (χ2 = 1.35, df = 2, p = 0.51), suggesting that the two effects
were additive. These findings suggest that once controlling for reward magnitude, algorithmic
solutions were copied at a lower rate than human solutions. We found no significant interaction
between the two main effects and type of environment.

We did not disclose to participants whether the previous solution they see is from an
algorithm or another human, which ruled out any bias against algorithmic solutions beyond
the characteristics of the solution itself. If this were the case, we should also expect to find
reduced copying of those human solutions that happened to show a higher number of large
costs (and an increased copying rate of high-performing solutions). We thus independently
tested the hypotheses that both higher rewards and fewer large costs lead to increased copy
rates. A model predicting the number of copied actions in generation 2 to 8 in human-only
chains (electronic supplementary material, table S3) showed a positive effect of the previous
solution’s reward (β(s.e.) = 0.393(0.014), Z = 28.162, p < 0.001, CI = (0.366, 0.420)) and a negative
effect of the previous solution’s number of large costs (β(s.e.) = −0.040(0.011), Z = .3.544, p <

0.001, CI = (−0.061, −0.018)). Both factors interacted with environment type, suggesting that they
were stronger in human regretful environments.

These findings suggest a content bias in human social learning that favours higher rewards
and fewer large costs. Consequently, solutions that do not match human bias, such as those of the
algorithm, are less well preserved. In the next section, we explore whether reduced copying rates
can be overcome by repeated exposure to algorithmic solutions.

(c) An agent-based model: sustained performance improvements with repeated
algorithmic exposure

We developed a simple agent-based model mimicking our experimental set-up to theoretically
explore the impact of biases on social learning in hybrid cultural evolution (see electronic
supplementary material, Methods for details). We modelled task solutions as points in a two-
dimensional space with two independent qualities. The dimension sg represents the general
quality of a solution, and the second dimension ss the specialization of a solution, i.e. how
adaptive (or maladaptive) it is to a specific environment. Thus, human-like agents are adapted
in ‘human-rewarding’ environments and algorithmic agents in ‘human-regretful’ environments.
Notice that we modelled human and algorithmic agents symmetrically. Hence, ‘human-only’
chains on ‘human rewarding’ environments are symmetric in their performance with an
‘algorithmic-only’ on ‘human regretful’ environments and vice-versa (figure 3).

As in the experiment, we constructed chains of eight agents. Agents first assessed a perceived
quality of the previous player’s solution. Depending on this perceived quality, they decided to
copy it or to sample an entirely new solution. The perceived quality determines the content
bias of the agent. We compared two types of content biases. Agents with an ‘adapted’ content
bias considered both the score of the previous solutions and the match with their specialization
(dashed in figure 3). Agents with a ‘utilitarian’ content-bias considered only the score of the
previous solution (solid in figure 3). Agents sampled new solutions from a distribution screed
towards their adaptive bias. We initialized chains with a neutral solution.

Figure 3 shows the average reward over eight generations. Line colour represents chains
composed of different agent types: human-only agents (blue), algorithmic-only agents (orange),
and two hybrid chains with algorithmic and human agents. The ‘single-algorithm’ condition
(green) represents the performance of hybrid chains similar to our experiment, with only one
algorithm in generation 2. For ‘human-regretful’ environments (left panel), the algorithm in
the second generation shows higher performance than their peers, and this boost is carried
over to human-like agents in the next generation. Replicating our experimental results, the
performance boost quickly decays back to the level of human-only chains (blue). The rate of decay
is much faster for agents with an adapted content bias (solid green line) than for agents with a
utilitarian content bias (dashed green line). For ‘human-rewarding’ environments (right panel),
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colour.)

the introduction of the algorithm (green) leads to a performance drop compared to ‘human-only’
chains (blue). Again, performance converges in following generations.

The model allows us to investigate a condition that was not tested in our experiment,
namely randomly mixing of humans and algorithms. Randomly mixed hybrid chains (red)
show a performance in-between the performance of solely-adapted, e.g. algorithmic agents in
regretful human environments, and solely-misadapted, e.g. human agents in human regretful
environments. For these ‘random-hybrid’ chains, agents with a ‘utilitarian’ content-bias (red,
dashed) converge to higher average performance than agents with an ‘adapted’ content-bias
(red, solid). However, in the first two generations, agents in mixed chains with an ‘adapted’
content-bias have a slight edge over their peers.

The agent-based model shows that different chains converge to a fixed value irrespective
of algorithmic participation at the beginning of the chain. Theoretically this can be easily
shown by the underlying process being both a Markov chain and ergodic. We could reproduce
the experimental finding that a performance boost of an adapted algorithm is not sustained
by following humans—especially for human agents with a content bias against algorithmic
solutions. However, our model suggests that, under specific conditions, improvement effects can
be sustained in well-mixed hybrid social learning.

4. Discussion
In this work, we investigated the impact of algorithmic strategies on social learning using a
transmission chain experiment. We adapted the decision-making task by Huys et al. [26] to a
transmission chain paradigm to test whether introducing an algorithm to increase the diversity in
decision strategies can improve collective performance via social learning. In this task, people
are known to show an aversive pruning bias in exploring the decision tree. As expected, we
found evidence of a performance improvement over generations due to social learning. Adding
an algorithm with a different problem-solving bias than humans temporarily improved human
performance but improvements were not sustained in following generations. While humans did
copy solutions from the algorithm, they appeared to do so at a lower rate than they copied other
humans’ solutions with comparable performance.
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Our first contribution is expanding previous research in cultural evolution by suggesting a
relatively unexplored area of investigation, namely hybrid social learning. Scholars of cultural
evolution have long investigated how social learning could lead to the unmatched explosion
of human cultural complexity in comparison to non-human animals [32,45,46]. Similarly, we
might ask if the advent of self-learning algorithms can influence cultural trajectories via hybrid
human–algorithm social learning. Going one step beyond prior work that looked into cultural
evolution via digital technology [8,9], we suggest that in a hybrid society, algorithms may not
be just a medium for cultural transmission, but may play an active role in the production of
new cultural artefacts. In particular, we suggest that successful hybrid social learning may occur
when algorithms, either by design or by self-learning, show different biases than their human
counterparts. Although many algorithms quickly adopt human biases [47–49], several others can
increasingly learn from direct interactions with the environments rather than from human data,
thereby potentially showing new behaviours and biases. Greater variance in problem-solving and
copying skills has been associated with greater cultural variance [50,51] and—as long as there are
selection biases with regard to who to copy from—greater innovation. We looked at particular
situations where human biases are known to constrain human performance [26], and therefore
humans could most benefit from observing an algorithmic strategy.

In our experiment, we tested these hypotheses by introducing algorithmic players that
adopted different decision-making strategies than human players. Investigating hybrid groups
of human and algorithmic players provides the experimenter with the advantage of closely
controlling the behaviour of algorithmic agents while observing the effect on the rest of the group
[16,52,53], yet, to the best of our knowledge, bots have not prominently featured in transmission
chain experiments.

Our second contribution lies in our empirical findings. We showed that participants did
not preserve algorithmic solutions if they were incongruent with their bias in avoiding large
costs. Although human and algorithmic biases have been thoroughly investigated in their
respective fields (psychology/economics and computer science), how the two interact is still
poorly understood. We show that learning from algorithms might be limited by the specific
task and cognitive biases characterizing human players. In our experiment, higher-performing
solutions that were incongruent with human biases showed lower copying rates, and were
consequently lost over generations. Such a preference for copying congruent solutions may
limit the accumulation of algorithmic solutions into human repertoires [45,51]. This result is in
agreement with a well-replicated finding in transmission chain experiments. Many cultural traits,
such as drawings [38], stories [39], norms [54,55] and language [56], converge over generations
independently from the initial conditions of the chain. For example, the effect of implausible
values provided by human confederates in an estimation task has been shown to quickly dissipate
[55]. What these studies show is that in the absence of a difference in fitness of the cultural
artefacts, the equilibrium distribution of a transmission chain directly matches the human bias
[57]. However, these previous studies did not control for the solution’s fitness (i.e. accuracy or
informativeness). In language, for example, trade-offs of informativeness and compressibility
determine linguistic structure [56] and likewise human biases and external fitness can be in
disagreement [58].

Our novel contribution to this previous work is using an algorithm that provides a solution
that mismatches human biases but that is at the same time highly accurate in the task
environment. Analytical work of Griffiths et al. suggests that, in agreement with our findings,
when participant bias and solution fitness go against each other, superior solutions will not
be maintained in conditions of moderate to high transmission noise [59]. In a follow-up work,
Thompson and Griffiths modelled cultural evolution in transmission chain experiments as being
influenced by attraction towards preexisting biases and local innovations [58]. The authors
experimentally showed that, if the two are in conflict, participants’ solutions converge to a middle
ground. While their work models the effect of inductive biases on artefacts, our work focuses on
the effect of content biases on copying. Yet, biases hinder the discovery of optimal solutions in
both cases. Our work goes beyond their findings and suggests that even if an algorithm aids



14

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20200426

...............................................................

humans in achieving optimal solutions, human bias in what to copy can lead to those solutions
being quickly lost in successive human–human transmissions, unless repeated exposure takes
place. It is important to note that while human bias sped up the dissipation, convergence itself
is guaranteed in transmission chain experiments with a bounded solutions space and with a
non-zero chance of cultural loss.

We suggest that hybrid social interaction among human and algorithmic players may play an
increasingly critical role in today’s digital society. Such human–algorithmic interaction can have
diverse modes, such as observation [60], conversation [61] or even teaching [62]. Previous research
on cultural evolution using transmission chains has found that the accumulation of artefacts of
increasing performance can accrue through all of those modes [63]. Accordingly, we focus on
observational learning as the most simple form of cultural transmission. Investigating the effect of
algorithms on human behaviour in the wild [11] has the obvious advantage of validity but renders
investigating causalities challenging. In this work, we follow a tradition in cultural evolution
that tries to generalize laboratory findings to the real world [35,64]. Although the limitations
of such extrapolations are known [65], investigating human–algorithmic social learning in the
laboratory is the first step to study how these phenomena might unfold in the real world,
and how interactions in hybrid social systems may foster or hinder innovations and collective
performance.

Designing algorithms to nudge collective behaviour may add to an already long list of
ethical concerns in AI [47,49,66,67]. Our results further suggest that even algorithms that could
objectively improve human performance might be limited. Content and context biases (i.e. what
people are more likely to copy and who they are willing to copy from) might limit hybrid
social learning, especially in uncertainty, high cognitive demand, or high time pressure (i.e.
high transmission noise [58]). Under these conditions, humans are more likely to follow well-
known and adaptive biases [18,68]. This by no means suggests that algorithms do not have an
impact on human cultural evolution. Many humans routinely and repeatedly interact with AI
systems that operate on a global scale. Indirect influence on human behaviour has been low
in this work, i.e. there were diminishing effects on humans who interacted with humans who
interacted with an algorithm. However, even minor effects might have pronounced consequences
in an interconnected human–algorithmic hybrid society. More research is needed to investigate
the diffusion of algorithmic behaviour and artefacts into human culture.

Importantly, we acknowledge the limitations of our study, both in terms of generalizability and
sample size. Future studies will need to address whether AI-human collaboration may be more
successful in other domains or simpler tasks. In our experiment, we were interested in isolating
cultural transmission by exposing participants to one previous solution only. This may limit the
generalizability of our study. Outside the laboratory, people can copy from multiple models,
which may give them the option to compare alternative solutions. Also, while in our experiment
we tested the effect of a single algorithmic player, the frequency of encountering algorithmic
generated solutions in the real world may be higher. For instance, in the case of Go, it is known
that professional players include algorithms in their daily training. Our agent-based model
(figure 3) predicts that sustained improvement in performance might be observed with greater
chances to copy from algorithms, although more work is needed. Finally, in our experiment
people visited each environment only once. This likely reduced the effect of individual learning
as well as giving participants inadequate feedback on their performance. Repeated unsuccessful
feedback with the same environment before being exposed to an algorithmic solution might
give participants additional opportunities to copy the algorithm, when algorithmic solutions are
valuable.

In this work, we focused on the transmission of behaviour, rather than the transmission
of strategy itself. Social learning seems to be more effective when copying exact behaviours
rather than reasoning and decision strategies [32,69,70]. Understanding why a solution
works is not a prerequisite for successful cultural evolution [34]. Yet, more explicit
communication between model and observer—e.g. in the case of teaching [7]—could allow
for better transmission of strategy. For example, communication of intention can improve
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human–algorithm cooperation [71]. Correspondingly, we speculate that an algorithm that
communicates the reasoning behind a solution might be copied at a higher rate and allow
following humans to better critically appraise their preexisting beliefs. Professional Go software
allows players to play out different moves, comparing the consequences of an apparent alien
move with a more traditional strategy. Nevertheless, in Go and chess, humans might still be
limited and influenced by their biases in learning new strategies from an algorithm. An exciting
potential could lie in algorithms that combine human-like [72] and alien play in order to improve
the learnability of algorithmic solutions.

To conclude, in this work, we found limited influence of bots on human cultural evolution.
Our findings do not exclude the possibility of algorithmic influences on human culture, but draw
some limiting conditions. The relationship between biased human strategies and algorithmic
strategies derived by self-play might look different outside the laboratory where more complex
AI algorithms are at play. However, studying these phenomena in controlled environment is
an important first step to understanding hybrid social learning. In this study, we suggested
that differences between human and algorithmic behaviour might be relevant for the emerging
properties of cultural evolution.
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