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Abstract

Antibiotic resistance constitutes a global threat and could lead to a different pandemic. One 

strategy is to develop a new generation of antimicrobials. Naturally occurring antimicrobial 

peptides (AMPs) are recognized templates and some are already in clinical use. To accelerate the 

discovery of new antibiotics, it is useful to predict novel AMPs from the sequenced genomes of 

various organisms. The antimicrobial peptide database (APD) provided the first empirical peptide 

prediction program. It also facilitated the testing of the first machine learning algorithms. This 

chapter provides an overview of machine-learning predictions of AMPs. Most of the predictors, 

such as AntiBP, CAMP, and iAMPpred, involve a single-label prediction of antimicrobial 

activity. This type of prediction has been expanded to antifungal, antiviral, antibiofilm, antiTB, 

hemolytic, and anti-inflammatory peptides. The multiple functional roles of AMPs annotated in 

the APD also enabled multi-label predictions (iAMP-2L, MLAMP, and AMAP), which include 

antibacterial, antiviral, antifungal, antiparasitic, antibiofilm, anticancer, anti-HIV, antimalarial, 

insecticidal, antioxidant, chemotactic, spermicidal activities and protease inhibiting activities. 

Also considered in prediction are peptide post-translational modification, 3D structure, and 

microbial species-specific information. We compare important amino acids of AMPs implied from 

machine learning with those frequent occurring residues of the major classes of natural peptides. 

Finally, we discuss advances, limitations and future directions of machine learning predictions 

of antimicrobial peptides. Ultimately, we may assemble a pipeline of such predictions beyond 

antimicrobial activity to accelerate the discovery of novel AMP-based antimicrobials.
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1. Introduction

The discovery and production of antibiotics has saved millions of lives. It is regarded 

as one of the greatest achievements of humankind in the twentieth century. However, 

pathogens fight back, leading to reduced potency of conventional antibiotics. To minimize 
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toxic effects, bacteria can pump the drug out of the cells, reduce drug affinity to specific 

targets via mutations, and degrade antibiotics by proteases. Among various multi-drug 

resistant (MDR) microbes, the ESKAPE pathogens (Enterococcus faecium, Staphylococcus 
aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and 

Enterobacter species) account for the 90% infections in hospitals [1]. There are also 

other emerging resistant pathogens, including human immunodeficiency virus type 1 

(HIV-1), SARS-CoV2, Ebola, Zika viruses, resistant bacteria Mycobacterium tuberculosis, 

Salmonella, Candida, Neisseria gonorrhoeae, and Clostridioides difficile. If no action is 

taken, the projected annual deaths could reach 10 million by 2050 [2]. To meet this 

challenge, one fundamental strategy is to develop a new generation of antimicrobials that are 

capable of eliminating those MDR pathogens.

Antimicrobial peptides (AMPs) are considered as an alternative to conventional non-peptide 

antibiotics. This chapter focuses on prediction of antimicrobial peptides. First, we provide a 

brief introduction to AMPs. Second, we discuss the major prediction methods of AMPs. 

Third, both the data sets for predictions and the algorithms of machine learning are 

described. Fourth, we discuss the major machine learning prediction of AMPs. Fifth, we 

compare the prediction outcomes of machine learning in terms of accuracy on the same 

platform, results from test runs using new peptides not included in the training sets, and the 

important amino acids implied from machine learning with those derived from our database 

analysis of the major classes of natural AMPs. Then, we outline additional predictions that 

may speed up computer-aided novel antimicrobial discovery. Finally, we summarize the 

major achievements and limitations of AMP predictions and discuss future directions.

2. Innate immune antimicrobial peptides

Naturally occurring antimicrobial peptides are important components of innate immune 

systems. Such peptides are deployed in a variety of organisms such as plants and animals. 

They play a critical role in protecting organisms from infections. AMPs have remained 

potent for millions of years. As a consequence, they are recognized candidates for 

developing novel antimicrobials since they can kill drug-resistant pathogens, including 

bacteria, fungi, viruses, and parasites. AMPs are usually gene-encoded and can be expressed 

constitutively to guard certain niches or induced in response to invading pathogens [3–8]. 

According to the antimicrobial peptide database (APD, https://aps.unmc.edu), over 3000 

natural AMPs have been discovered from six life kingdoms (bacteria, archaea, protists, 

fungi, plants, and animals) [9–11]. At present, 74% of the peptides originated from animals, 

while 11.2% and 11.1% were discovered in bacteria and plants, respectively. Most of 

natural AMPs (88%) are cationic and only a small portion (6%) are anionic. Anionic 

AMPs, such as daptomycin already in clinical use, may need metal to be active [12]. In 

the APD, the majority of AMPs possess hydrophobic contents (Pho) between 10 and 70% 

(defined in Table 1). Only about 1% such peptides have very high (>70%) or very low 

(<10%) Pho. In terms of length, 2879 peptides in the current APD3 (88%) are shorter 

than 50 amino acids. The average length of all AMPs (3257 as of January 2021) in the 

APD3 is 33.2 with an averaged net charge of +3.3. The frequently occurring amino acids 

(>8%) are leucine (L), glycine (G), and lysine (K) [10], while the least occurring amino 

acids (<2%) include methionine (M) and tryptophan (W) (Table 1). Such frequencies are 
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proportional to the percentage of natural AMPs containing one of the 20 amino acids 

also calculated in Table 1. The variation of the amino acid (composition) signatures of 

natural AMPs in different structure, activity, and source groups has been tabulated elsewhere 

[13]. Figure 1 displays amino acid signatures for known α-helical, β-sheet peptides (panel 

A), tryptophan-rich (Trp-rich), histidine-rich (His-rich), proline-rich (Pro-rich) AMPs, and 

leucine-rich (Leu-rich) temporins (panel B). It is evident that such signatures depend on 

the amino acid composition of a group of AMPs in the APD. The amino acid sequence 

of a peptide, however, clearly plays a role as well in determining peptide structure and 

activity [6,14]. Another important player is post-translational modification (e.g., amidation, 

glycosylation, halogenation, hydroxylation, and cyclization) of peptide sequences, with 24 

types of modifications annotated in the current APD3 as of October 2020 [11,15]. Typically, 

cationic AMPs target anionic bacterial membranes due to the formation of the classic 

amphipathic helix structure [3–6]. However, such peptides can also attack other targets such 

as bacterial cell walls and ribosomes. It is believed that the simultaneous attack of more than 

one targets renders it difficult for bacteria to develop resistance to AMPs. Beyond bacterial 

killing and biofilm inhibition, AMPs are found to have other functional roles, ranging from 

pathogen toxin neutralization, wound healing to host immune regulation [4,5,16]. A total of 

24 types of AMP functions are annotated in the APD3 [11,13].

3. An overview of prediction methods of antimicrobial peptides

The majority of natural AMPs were identified using the classic isolation and characterization 

methods [3–5]. Such peptide identification procedures are laborious and time-consuming. 

One alternative method is to predict AMPs by computers based on the current peptide 

knowledge and sequenced genomes of numerous organisms [9,17–19]. These prediction 

methods are grouped into five classes based on the information considered in programming 

[20]: (1) mature peptide (i.e., AMPs), (2) propeptide, (3) mature peptide and propeptide, (4) 

processing enzyme, and (5) genomic context (Figure 2). Some AMPs such as cathelicidins 

possess a conserved pro-sequence domain prior to the mature peptide. Such a conserved 

sequence pattern became one method for identifying uncharacterized cathelicidins from 

sequenced genomes for mammals, fish, reptiles, birds, and amphibians (method 2). The 

human cathelicidin was initially predicted as FALL-39 [21], which is merely 1–2 resides 

longer than the mature forms isolated in human neutrophils and reproductive system (LL-37 

and ALL-38), respectively [22,23]. In the same vein, the discovery of bacteriocins from 

bacteria has been expanded from highly conserved processing enzymes (method 4a) to 

transporters (method 4b) and the entire gene clusters (i.e., genomic context; method 5). 

Computer programs such as BAGEL, antiSMASH, and BACIIα have been established 

for bacteriocin identifications [24–26]. Occasionally, both precursor and mature sequences 

(method 3) were considered in clustering AMPs probably due to the nature of a particular 

data set then available [27]. The most widely explored information for prediction are mature 

peptides (method 1). Sequence patterns such as multiple disulfide bonds were utilized for 

identifying defensin-like AMPs in plants, cattle, mice, and humans [28–30]. A GXC γ-core 

motif has also been identified in these peptides and utilized for AMP prediction [31].

The construction of databases for AMPs greatly facilitated the development of computer-

based design [32] and prediction methods. Table 2 provides a list of databases for AMPs 
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[11,18,33–49]. In 2004, the APD and ANTIMIC were simultaneously published in the 

database issue of Nucleic Acid Research in 2004 [9,50]. The APD, with a focus on structure 

and activity of mature AMPs, was widely accepted and utilized by the AMP field [9]. Since 

then, more databases have been established with varying scopes or by entering additional 

details (Table 2). A systematic review on such databases has been described elsewhere [51]. 

Because of the model role of the APD, it is useful to describe its data scope and evolution. In 

the first two versions [9,10], the APD attempted to cover all AMP sequences: experimentally 

determined, predicted, and synthetic. This history can be seen from a small number of 

synthetic and predicted entries remaining in the current APD (72 synthetic peptides and 211 

predicted peptides without activity data). There are three types of activity data annotated in 

the APD: (1) minimal inhibitory concentration (MIC); (2) diffusion distance; and (3) optical 

density decrease as an evidence of inhibition. Due to convenience, MIC values based on 

microdilution assays are frequently measured and reported. Since predicted peptides without 

experimental data might not be true AMPs [11], it was decided to postpone the collection 

of such peptides in the APD. Also, a large number of the synthetic peptides derived from 

the same template tended to dominate data filtering in the database, thereby deviating the 

database filtering from natural wisdom to artificial peptides. As a consequence, the APD 

also postponed the collection of synthetic peptides. Thus, the third version of the APD 

(APD3) [11] uses the following criteria to register AMPs: (1) natural peptides, (2) peptides 

with known amino acid sequences, (3) peptides with known activity (MIC < 100 μM), 

and (4) peptides less than 100 amino acids [11]. The last condition was relaxed to 200 

amino acids to incorporate important human antimicrobial proteins. This practice generates 

a welcomed data set for AMP search, prediction and design.

Based on mature peptides, the first computer-based prediction was programmed in the APD 

in 2003 [9]. The program informs users whether the input sequence is likely to be an AMP 

based on some known AMP knowledge, such as positive charge and amphipathic nature. 

Later, it was improved based on the peptide parameter space (net charge, hydrophobic 

content, and peptide length) defined by the entire database [19]. If such parameters of a new 

sequence are out of the scope, the program will inform the users that the input sequence is 

less likely to be an AMP. The APD also outputs five peptide sequences most similar to the 

user’s input.

Subsequently, Lata et al. first programmed artificial neural network (ANN), quantitative 

matrices (QM), and support vector machine (SVM) in 2007 based on the APD data set [17]. 

Since then, there has been a growing interest in AMP prediction at both the single-label 

and multi-label levels. The single-label prediction will predict the likelihood of being 

antimicrobial, while multi-label predictions were developed based on different functions 

of AMPs annotated in the APD3 [11], such as chemotaxis, toxin neutralization, protease 

inhibition, and wound healing. The first multi-label prediction [52] predicts antibacterial 

activity in the initial stage followed by predictions of other types of activities, including 

antifungal, antiviral, anti-HIV, and anticancer activities. CAMP collected both synthetic and 

predicted peptides. Its prediction tool [18,53] enables three tasks. First, users can predict 

the antimicrobial activity of a peptide sequence by four different models. Second, users can 

predict the antimicrobial region within a peptide sequence. Third, users can generate a large 

combinatorial list of sequences for a user-defined sequence and then can predict effect of 
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single residue substitutions on antimicrobial activity using the AMP predictor. Table 3 lists 

some major machine learning prediction programs [53–78].

4. Training data sets, machine learning models and algorithms for 

classification and prediction of antimicrobial peptides

Machine learning models are commonly used for classification and prediction of AMP. 

Nearly all machine learning predictions of AMPs are supervised. The quality of these 

models is determined by a number of different factors. Among the most important 

contributors to the model performance are training sets consisting of antimicrobial and 

non-antimicrobial peptides, features used to represent the peptides, classification schemes, 

and machine learning algorithms.

4.1. Training sets for predictions

4.1.1. Positive training set—Quality of the training set is critically important for the 

model performance, since it is the only source of information the model uses to learn. AMP 

sequences for the training set are usually extracted from one or more of AMP databases. 

The growing number of AMP databases (some examples are listed in Table 2) represents a 

wide range of approaches to data collection, data curation, and data management. For the 

purpose of training set design, it is important to take into account that AMP databases vary 

in size, sources of information, amount and quality of annotations, and other parameters. 

Sizewise, the current versions stretch from over 3,000 peptides in the APD [9–11] to 

10,000 in CAMP [18,53], 12,000 in dbAMP [48], 16,000 in DBAASP [33], and 23,000 

in LAMP2 [40]. Some of the larger databases (e.g., LAMP2 [40]) may contain the entire 

content of the smaller ones by copying the peptide entries from existing databases. At the 

same time, the non-overlapping components are frequently present, primarily in the scope 

of synthetic peptides and due to different definitions of AMPs. Some specialized databases 

have expanded the data set by including other types of peptides, which do not necessarily 

fall into the definition of classic AMPs [44,49]. For instance, antiviral peptides can also be 

designed by investigators in the laboratories based on the viral machinery such as proteases. 

As a result, the distribution of peptides by sequence length in databases can be different as 

well. The APD contains mostly natural AMPs, which are templates for making synthetic 

peptides. For example, there are hundreds of LL-37 derived peptides. 88% of the entries 

in the APD are less than 50 amino acids and only 80 peptides out of 3257 have a length 

greater than 100 residues. Similarly, most peptides in DBAASP database are shorter than 50 

residues. Only 20 entries in DBAASP are longer than 100 residues, while CAMP contains 

1,850 such sequences. The longest sequence in APD and DBAASP is less than 190 residues 

compared to 1,256 residues in CAMP.

The first training set for machine learning model test was extracted from the APD [17]. 

Another data set used in AMP prediction was derived from the CAMP [18]. Because the 

majority of natural AMPs in the CAMP were taken from the APD, there is a significant 

overlap between these two data sets. Some recent studies generated a hybrid data set by 

merging the peptide sequences from different databases [61,62,70,71,78]. The size of the 

positive data set appears to influence prediction outcome [61]. Species-specific predictions 
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of AMPs [69] were made based on the DBAASP, which annotate antimicrobial activity in 

more details [33]. For 3D structural data, the APD has direct links to the Protein Data Bank 

(PDB) [79]. Hence, a list of training peptides with 3D structures can also be generated 

without redundancy (i.e., multiple coordinates for the same peptide).

4.1.2. Negative data set—Ideally, the negative set should consist of peptides which 

were tested experimentally and displayed no antimicrobial activity against one or more 

relevant pathogens. Non-AMP sequences are a natural byproduct of any wet lab screening 

for antimicrobial peptides. However, negative results are rarely published and as a result the 

large sets of validated non-AMP sequences are likely sitting in the drawers of investigators 

and not available to the public. Creating a database of non-AMP sequences and convincing 

researchers to contribute data into this database would be a helpful step in improving the 

quality of the training sets.

Bioinformaticians/computing scientists have taken an alternative approach to obtaining 

negative data sets. The AntiBP [17] generated the first negative data set based on the Uniprot 

[80]. The negative part of the training set is usually selected from the random sequences 

in the protein sequence database, which are not annotated as antimicrobial, secretory, 

toxins, etc. Sequences in the negative set can be controlled by the level of sequence 

identity, sequence composition, similarity to the sequences in the positive set, structural 

and other properties. Since the protein sequence databases are very large (the October 2020 

release of UniProt database contains more than 200 million sequences) [80], the supply 

of sequences for the negative sets is practically unlimited. There are caveats with these 

data. The sequences in the negative set may possess antimicrobial properties, although the 

probability of this is relatively low. Also, antimicrobial activities of AMPs are very sensitive 

to sequence variation [81]. Such features may not be represented in the current negative data 

set. Training the models on different combinations of a positive set with several independent 

negative sets may provide insights into the scale of negative set contamination by hitherto 

unknown antimicrobial peptides.

In many cases it is advisable to use a balanced training set, where the AMP and non-AMP 

sequences are equally represented. AMP sequences can be selected from AMP databases 

(Table 2). Normally, only a subset of the entire database (or several databases) can be used 

to compile a positive part of the training set. Sequences from the database are filtered by 

length, activity, sequence identity, and other parameters. In most studies the positive sets 

range from several hundred to several thousand sequences, while the size of the negative set 

from the Uniprot can be much larger. However, the data sets for numerous species-specific 

predictions were much smaller due to limited MIC data [69].

4.2. Descriptors and features

Many different features of peptides can be used to characterize their antimicrobial 

activity and discriminate between antimicrobial and non-antimicrobial peptides. Frequently 

these features are based on identities, physico-chemical properties, structural properties, 

and compositions of individual amino acid residues and their combinations [61,82–84]. 

Physical and chemical properties of amino acids which are most likely to improve 
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machine learning (ML) model performance include hydrophobicity, electrostatic charge, and 

polarity. Similarly important are structural properties such as helical propensity and solvent 

accessibility. In many models feature vectors include residue locations in the sequence, 

compositional characteristics and sequence patterns. The overall number of features can be 

very large, in those cases feature selection can help to reduce the size of the feature vector 

by removing features with relatively low contributions to the model performance.

4.3. Machine learning algorithms

A large number of different machine learning algorithms (Table 3) have been implemented 

in AMP classification and prediction models since the first papers reporting this 

approach were published in 2007 [17, 27, 85]. ML methods successfully used in 

AMP modeling include K-nearest neighbor [52, 86], hidden Markov models (HMMER) 

[27], naïve Bayes [86], neural networks (NN) (including their deep learning varieties) 

[63,71,72,87–90], support vector machines [17,18,58,59,61,64,66,73,76], random forests 

(RF) [18,60,62,65,70,74,77], zero-shot learning (ZSL) [69] and many others (Table 3).

Support vector machines classification maps feature vectors representing the peptides in 

the training set into a higher dimensional space. Then the algorithm constructs an optimal 

hyperplane which separates two classes of peptides, AMPs and non-AMPs, with the 

maximal margin of separation between the classes. This hyperplane serves as a decision 

boundary in the original space. The hyperplane divides the entire higher dimensional space 

into two half-spaces, and each new peptide from the prediction set is going to be located 

in one of these two half-spaces. This location will determine the predicted class for new 

peptides.

Decision tree (DF) classifier has the form of a rooted binary tree. A divide-and-conquer 

approach is used during model training. It traverses the tree starting from the root, and at 

each node an input feature is selected that best separates the output classes. Learned trees 

are frequently pruned to decrease overfitting. After the tree is created using a training set, 

a new peptide can be sorted down the tree based on the values of the input features on the 

corresponding node, and the appropriate branch is followed to the next node. The recursive 

process terminates once the peptide reaches a leaf node, where the peptide class, AMP or 

non-AMP is identified. Random forests algorithm is an ensemble method based on decision 

trees. It generates multiple bootstrapped datasets, each dataset trains a classification tree by 

randomly selecting a fixed-size subset of the available predictors for splitting at each node, 

and predictions are made by majority vote over all trees. Random forests help to avoid many 

pitfalls of the decision tree algorithm, particularly overfitting.

While most of the predictions aimed to discriminate AMP and non-AMP (i.e., single-label), 

several labs have attempted a multi-label prediction based on the multi-functional data 

annotated in the APD3 [11,13]. The four multi-label predictions (iAMP-2L, MLAMP, 

AMAP, and AMPfun) all conduct predictions in two levels [52,60,66,68]. Similar to the 

single-label prediction described above, the first level of the multi-label prediction predicts 

whether the peptide is an AMP or non-AMP. If it is, then the program moves onto the 

second level prediction to predict the likelihood of other functions the peptide may have. 

These can include antibacterial, antibiofilm, antiviral, anti-HIV, antifungal, antiparasitic, 
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antimalarial, anticancer, insecticidal, antioxidant, chemotactic, enzyme inhibitors, and 

spermicidal activity. It appears that AMAP is best in terms of accuracy. It also predicted 

more biological functions of AMPs at the second level.

To evaluate the performance of an algorithm on a training set, cross-validation (CV) 

and random split into two subsets are commonly used. Implementation of tenfold CV 

begins with a random grouping of the training set peptides into ten equally sized subsets. 

Stratification is applied to maintain class proportions of the full training set in each of the 

subsets. At the next step, one of the subset is held out while the remaining nine subsets 

(90% of the original training set) are combined into one set that is used to train a model. 

The held - out subset (10% of the original training set) is then treated as a test set, and 

the trained model predicts the class for each peptide in the subset. Then the procedure 

is repeated for the remaining nine combinations. The iterative procedure yields a single 

prediction for each of the peptides in the original training set, which is then compared to 

the actual class. These comparisons allow to calculate the numbers of true positive (TP), 

true negative (TN), false positive (FP), and false negative (FN) predictions. Commonly used 

performance measures, such as sensitivity, specificity, precision, balanced error rate and 

Matthew’s correlation coefficient, are all functions of these four numbers. Many published 

ML models report CV accuracy values which are close to 100%. The actual real world 

performance of these models on predicting novel antimicrobial peptides may be lower due in 

part to the extremely complex AMP activity landscape.

5. Machine learning predictions of special antimicrobial peptides

5.1. Utility and Main drawbacks of AMP prediction algorithms

Overall, our ability to accurately predict the antimicrobial activity, hemolytic activity or 

cytotoxic activity of any peptide sequence is a developing field. While advances in machine 

learning, positive and negative data-sets and analytic approaches have been made, the 

accuracy of predicting the properties of a new peptide sequence is still low, too low to 

be of reliable use in a screening step for example. Improvements in the peptide sorting 

and analysis, especially thinking about the different surface properties of gram-negative 

and gram-positive bacteria, could yield significant advancements in accuracy, which would 

significantly advance the field. This lack of reliability is the main drawback of AMP 

prediction algorithms and the main hindrance in their use in high-throughput design 

programs to generate new AMPs.

5.2. Antiviral peptide predictors and data

The antiviral activity of antimicrobial peptides is of considerable interest. In particular, 

antiviral peptides (AVPs) appear to have activity against membrane-enveloped viruses, such 

as LL-37 against influenza virus [91,92]. Some peptides (e.g., LL-37 and θ-defensins) have 

been found to have HIV inhibitory activities [93]. Antiviral peptides (AVPs) have been 

shown to exert their activities at various steps in the viral lifecycle, including impeding 

attachment to host cells, altering viral replication within cells or indirectly by recruiting 

other parts of the immune system to promote host defense [93]. The antimicrobial peptide 

LL-37 has been shown to be effective to inhibit attachment and entry of the influenza virus 
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[91,92]. As an example of the indirect mode of antiviral activity, the Rhesus theta-defensin 

has been shown to be indirectly antiviral against SARS-CoV-1 [94], with the major effect 

being an increase in the host defense that allows survival of the mice against this infection. 

LL-37 is also active against Zika virus [95]. Recently, several highly effective AMPs were 

designed that show significant activity against Ebola virus (EBOV) infection of cells [96]. 

These peptides were designed or “engineered” fragments of LL-37 peptide [7], and were 

found to strongly inhibit EBOV entry into in cell lines and human primary macrophages, but 

not viral replication [96]. This study represents an exciting advance in both the design of 

active antiviral peptides and their application to important diseases such as Ebola.

Several websites [97–99] have been established to assist the prediction of AVPs (Table 4). 

Using database analysis and a feature reduction technique (recursive feature elimination 

(RFE) algorithm), one group generated a software tool to predict antiviral peptides with 

this advance, Feature-Informed Reduced Machine Learning for Antiviral Peptide Prediction 

(FIRM-AVP) [99]. The analysis assembled 649 features that correlated with antiviral activity 

and then applied a reduction of the number of features to 169 based on the Pearson’s 

correlation coefficient and computed MDGI (mean decrease of Gini index) values. They 

then applied the RFE technique to order the features by importance and to identify the most 

important features. Three features that were identified in common between two different 

parts of the analysis include “PseAAC (pseudo amino acid composition) feature for leucine 

(L) amino acid”, “PseAAC feature for lysine (K) amino acid”, and “Location oriented 

feature for α-helix” [99]. This suggests that these features may have strong contribution to 

the physicochemical features of an effective antiviral peptide. Overall, this is in agreement 

with the general observation that anti-viral peptides are often alpha-helical and positively 

charged peptides [93].

5.3. Antifungal peptide predictors and data

Specific databases and prediction models [100,101] have been developed for antifungal 

peptides (AFPs) (Table 5). Antifungal peptides appear to have a prominence of the amino 

acids cysteine (C), glycine (G), histidine (H), lysine (K), arginine (R), and tyrosine (Y) 

in their amino acid sequences [101]. A similar set of frequently occurring amino acids L, 

C, alanine (A), G, K, and R is obtained when 1210 antifungal AMPs in the APD was 

statistically analyzed [11]. Positional analysis suggests that the amino-terminus of antifungal 

peptides may predominately be R, valine (V) or K, while C and H are predominant at the 

carboxyl terminus of the peptide. This is different from the most common amino acids (G, L, 

A, and K) found in antibacterial helical peptides [10,11].

5.4. Specific and unique peptide prediction tools

Many other specialized prediction algorithms for peptides have been developed in recent 

years [102–104]. While anti-inflammatory and pro-inflammatory activities are closely linked 

to infection outcomes, these peptides may not be directly antimicrobial. However, it may 

be of interest to antimicrobial peptide researchers, especially since many antimicrobial 

peptides, such as LL-37, are known to have host-directed effects in addition to antibacterial 

effects [108]. Some websites have been developed for predicting very specific kinds 
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of activities that may be of interest to antimicrobial peptide researchers, including anti-

inflammatory peptides, pro-inflammatory peptides and anti-tubercular peptides (Table 6).

5.5. Tuberculosis

Tuberculosis (TB) continues to be a plague on humanity, infecting more than 10 million 

people each year worldwide, and is responsible for approximately 2 million annual deaths 

globally. The emergence of multi-drug resistant and extremely multidrug resistant (XDR) 

strains of TB, especially in prisons and other enclosed conditions, is an extreme challenge to 

society and to the medical community to develop new approaches to treat these infections. 

Antimicrobial peptides may represent one new approach to treating Mycobacterium 
infection [105–107], likely in combination with other treatments. The AntiTBpred website 

has been developed to help researchers parse through antimicrobial peptide sequences and 

to try to identify candidates that might be useful against this recalcitrant and challenging 

organism.

Using LL-37, the human cathelicidin, as an example, AntiTBpred analysis suggests that this 

peptide either may or may not be an anti-tubercular peptide. Studies have shown that in vitro 
and in vivo, LL-37 is antibacterial for Mycobacterium tuberculosis (MTb) and can reduce 

bacilli counts in a mouse model [108]. Further studies have shown that LL-37 is required to 

control intracellular MTb replication [106–108]. The antimicrobial peptide HBD2 has also 

been shown to have antibacterial activity against MTb in vitro [109]. In the output example 

below, these two peptide sequences were analyzed using all 4 models within AntiTBPred. 

Only 1 of the 4 models correctly predicted (grey highlights) that HBD2 was antiTB, and it 

also predicted that LL-37 would be antiTB.

5.6. Antibiofilm peptide predictors and data

Biofilm formation by bacteria is a major contributor to colonization, persistence and 

difficulty in treatment of bacterial infections. Chronic, non-healing diabetic wounds on 

the lower extremities, lung infections in cystic fibrosis patients, hip-replacement and other 

orthopedic implants and chronic bladder infections all have bacterial biofilm as a major 

component of their etiology. In recent years, as our understanding of bacterial biofilms has 

increased [110–112], it has become clear that some antimicrobial peptides have the ability 

to either prevent the attachment and formation of biofilm or can induce the dispersal of 

bacterial biofilms [113–120]. Several databases and websites [11,35,121–123] have been 

developed to gather the information on antibiofilm peptides and to try to predict their 

activity (Table 8).

Although not strictly a peptide-focused resource for peptide researchers, a related 

tool aBiofilm (https://bioinfo.imtech.res.in/manojk/abiofilm/) [124] may be of interest to 

antibiofilm peptide researchers. This tool provides a database, an antibiofilm predictor and 

data-visualization tools.
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6. Antimicrobial prediction outcome comparison

6.1. Prediction comparison on the same platform

The prediction accuracy of AMPs can be determined by numerous factors, ranging from data 

sets, peptide sequence information encoding, to algorithms. Which data set to use depends 

on the aim of the prediction and personal knowledge. How to represent the peptide faithfully 

in a manner which is understandable by computers is a challenging task by itself. This is 

further complicated by numerous types of chemical modifications annotated in the APD3 

[11]. An optimized prediction requires a sufficient definition of both the types and numbers 

of peptide features. Such peptide features range from a dozen to hundreds. The algorithms or 

models may be used alone or in combination.

Data sets: A reliable data set is critical to obtain useful predictions. Machine-learning 

predictions normally use a balanced positive and negative data ratio of 1:1 to avoid a biased 

prediction toward the large data set. CAMP used a positive:negative ratio of 1:1.5 [18]. 

AmPEP tested numerous ratios and achieved a higher accuracy when a 1:3 ratio was utilized 

[62]. A too high ratio is undesired as the prediction will tilt toward negative sequences, 

thereby reducing the overall performance of machine learning in predicting AMPs. Meher 

and colleagues tested the effect of the size of positive peptides. They found that the more 

positive peptides, the better the prediction [61]. This makes sense because the prediction 

program is better trained with more positive examples (synthetic + natural AMPs). When 

more and more synthetic peptides are included, however, the prediction accuracy toward 

natural AMPs may drop. This is undesired when the goal is to scan the genomes to discover 

novel antibiotics.

Peptide features: A thorough description of the peptide sequence would require 

numerous features. The first prediction noticed the need of a more complete representation 

of peptide information. A higher accuracy was achieved when the peptide features from 

both the N and C-termini were considered [17]. Wang et al. [54] utilized 270 sequence 

features to represent each AMP. These include 20 standard amino acids (AAC) and 50 

pseudo-amino acid compositions (PseAAC) that describe the peptide sequence based on 

positional correlations between amino acids. Each PseAAC is also linked with five features: 

polarity, secondary structure, molecular volume, codon diversity, and electrostatic charge 

(50×5). However, each peptide feature may not play the same role in prediction. In pattern 

recognition, it is most important to identify the major features significant for peptide 

classification. CAMP started with 257 features and found 64 features were best for RF 

[18]. It is possible to further reduce the peptide features required for prediction. Bhadra et al. 

were able to reduce the features from 105 to 23 without a loss of prediction accuracy [62]. 

Tripathi and Tripathi utilized merely 15 peptide features to reach a comparable prediction 

accuracy, including the consideration of the sequence shuffling effect [70]. It appears that 

only a dozen of key peptide features are needed to achieve a comparable prediction accuracy.

Algorithms/models: Tripathi and Tripathi applied different algorithms (RF, J48, SVM, 

and Naïve Bayes) to peptide prediction based on the same data set. They found Random 

Forest is best [70]. Also, Yan et al. found that deep learning (CNN) performed similarly to 
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RF but better than SVM [71]. However, both SVM (8 studies) and RF (7 cases) are popular 

in Table 3. To reduce overfitting, there is also an attempt to utilize an ensemble approach 

by involving multiple models [78]. Lin and Xu [60] revealed a higher accuracy of the more 

recent multi-label prediction methods such as iAMP-2L and MLAMP (92.2% and 94.7%) 

than those programmed in the CAMP (SVM, RF, and DA at 57.8%−77.5% accuracy) [18]. It 

appears that the high accuracy reported for machine learning does not match the outcomes of 

real tests (below). There is a room to improve for all the existing programs.

6.2. Testing the prediction outcomes by using peptides not included in the training set

How each program performs in AMP prediction can be put into practice. We tested the 

AntiBP program by using newly discovered natural AMPs, which were not included in the 

training set. Among the 17 peptides with known activity, 71% were predicted correctly [20]. 

Another test was conducted in 2015 using 10 new peptides (APD ID: 2399–2408) [51]. 

AntiBP SVM predicted 70% correctly, whereas the RF, SVM, ANN, and DA programs 

in CAMP [18] obtained 60–80% correctness. iAMP-2L [52] achieved a similar prediction 

of 80%. Bishop et al. [125] identified 568 novel peptides from alligator plasma. From 

45 predicted to be AMPs by CAMP [18], eight peptides were chemically synthesized 

and subjected to antibacterial assays. Five were experimentally proved to be antimicrobial 

(a prediction accuracy of 5/8 = 62.5%). Yan et al. [71] developed Deep-AmPEP30 

and predicted three antimicrobial sequences from the genome of Candida glabrata, and 

one peptide was proved active against Gram-positive bacterium Bacillus subtilis and 

Gram-negative Vibrio parahaemolyticus. These tests underscore the limitations of existing 

programs. Porto et al. [81] found that the machine-learning programs worked well only for 

peptides resembling the trained data set. However, they failed to predict sequence shuffled 

peptides [14], indicating an insufficient consideration of peptide sequence information.

6.3. Comparison with existing AMP knowledge

Every machine learning algorithms is essentially a black box. It is not surprising that there 

is no direct link between the computing outcome and AMP biology. AmPEP compared 

various descriptors that distinguish the AMPs from non-AMPs and identified charge as the 

most important descriptor [62]. The iAMPpred program [61] also found the importance 

of net charge followed by isoelectric point of the peptides in the training set. The 

iAMP-2L program reveals that amino acid composition accounts for 60% of the weightings 

[52]. Taken together, the AMP charge and composition are two major features for AMP 

differentiation. Overall, these machine learning findings agree with the research results of 

AMPs that cationicity and hydrophobicity are the two most important factors that determine 

peptide antimicrobial activity. Amino acid composition is important in determining peptide 

activity spectrum as well [9,126,127].

Some programs documented selected amino acids to be important predictors of AMPs. 

Based on the APD3 data set, the AMAP study [66] identified amino acids C, K, V, and 

phenylalanine (F) for AMP prediction, whereas aspartic acid (D), glutamic acid (E), L, Y, 

proline (P), R, and asparagine (N) are indicators for non-AMPs. Using a merged data set, 

iAMPpred identified amino acids K, P, C, and isoleucine (I) [61]. Wang [54] found C, P, 

R, W, and H based on both natural and patented AMPs in the CAMP database. In another 
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study, amino acids G, F, P, and W were identified [44] based on the DBAASP data set [33]. 

It is evident that there is a low level of consensus from different prediction studies. This may 

result from differences in the training data sets, algorithms, and the assessment of important 

features during prediction.

It may be useful to compare the above amino acids with the frequently occurring amino 

acids (~10%) discovered from analyses of the major classes of natural peptides in the APD3 

[10]. G, L, A, and K are frequently occurring (abundant) amino acids (~10% or more) in 

463 known helical AMPs. In contrast, amino acids C, G, and R are abundant in natural 

AMPs with a known β-sheet structure (87 in the APD3) (Figure 1A). For the “rich” families, 

His-rich AMPs are clearly rich in H and A, while Pro-rich AMPs are rich in P and R. Also, 

Trp-rich peptides are abundant in W and R (Figure 1B). When combined, we have G, L, A, 

K, C, R, H, P, R, and W. Most of the machine learning discovered amino acids correspond 

to the frequently occurring amino acids of AMPs discovered in the APD3 [13]. Machine 

learning also identified hydrophobic V, F, and I. While F and I are abundant in helical AMPs 

from fish and mammals, V is abundant in lactone and lactam types of bacteriocins [13]. It is 

puzzling why both L and A were not identified by any machine learning. Leucine is clearly 

rich in 121 amphibian temporins (Figure 1B) and important for peptide design [32]. Alanine 

is particularly high in amphibian AMPs from South America [13]. Increased conversations 

between AMP and bioinformtic people may improve the prediction outcomes in the future.

7. Beyond antimicrobial properties and proposed prediction integration 

toward future medicine

7.1. Antimicrobial peptide properties that contribute to AMP activity

As discussed above, the general properties of peptides that appear to be positively correlated 

with AMP activity have been identified from experience and usually include the following 

physico-chemical parameters: (1) peptide length, (2) amphipathicity, (3) hydrophobicity 

and (4) cationicity. However, the translation of these general principles into very specific 

physico-chemical rules by which certain sequences can be included or excluded or predicted 

to have antimicrobial activity or not has been the challenge of the last decades since their 

discovery. As discussed above, there are many detailed bioinformatic and computational 

approaches that seek to solve this problem of AMP prediction (Table 3).

7.2. Important antimicrobial peptide properties in addition to AMP activity

Additional properties of peptides will contribute to them being “successful” antimicrobial 

peptides besides AMP activity. These properties, beyond antimicrobial peptide activity, 

include: toxicity towards host cells, ability to penetrate microbial or eukaryotic membranes, 

susceptibility to host proteases and “stickiness”, the propensity to be bound to albumin 

or other high-abundance proteins in the host, among others. Host-cell toxicity can include 

hemolytic activity and cytotoxicity, or it can be observed in vivo through toxicity trials. Cell 

permeability of the peptide can be a critical factor if the target of the AMP is an intracellular 

bacteria for example. “Stickiness” to high-abundance host proteins or high susceptibility to 

host proteases can affect the in vivo availability of the peptide and its half-life, aspects of 

pharmacodynamics (PD) and pharmacokinetics (PK) that have significant implication for 
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future clinical success. Unfortunately, the PK/PD data for AMPs are sparse, since most of 

the peptides have not been advanced to that level [6]. Some of the major parameters for 

consideration and possible inclusion in a computational approach are listed in Table 9. Many 

tools for computing these properties are available online, for example in R (Peptides, https://

rdrr.io/cran/Peptides/man/), ExPASy (expasy.org), and the calculation tool of the APD3 [11].

LL-37 is a widely studied human cathelicidin peptide encoded by the single CAMP gene. 

It is stored in and released from neutrophils and expressed in other types of human cells 

as well. Depending on the cells and physiological conditions, the precursor of human 

cathelicidin may be cleaved into different mature peptides. This peptide has been found to 

be antibacterial against many pathogens, including resistant strains, persisters and biofilms. 

It belongs to the classic amphipathic helical family with a short tail at the C-terminus 

(PDB: 2K6O) [7]. In Table 9A, the major physicochemical properties of LL-37 are shown 

as computed by one of the many websites described below. This peptide is short (37 aa), 

amphipathic (>1), cationic (net charge +6), has a high pI (>10) and has a low molecular 

weight (under 5 kDa). ExPASy ProtParam tool provides instability index (23.34) and 

aliphatic index 89.46. The APD website calculates GRAVY (−0.724), Boman index (2.99 

kcal/mol), and Wimley-White whole residue hydrophobicity (12.83) for LL-37. As a well-

studied peptide, we will use LL-37 as an example in our discussion of the online tools 

described below.

7.3. Host-cell toxicity and hemolysis

Host-cell cytotoxicity and hemolysis are critical to the clinical potential of any antimicrobial 

peptide. Thus, we propose that this issue needs to be considered early, right after 

identification of desired antimicrobial activity of any peptide as a potential strong 

counter-selection criterion. Although sequence features such as multiple lysines and high 

hydrophobicity are known to contribute to host-cell cytotoxicity, it appears to remain 

challenging to “design-out” host-directed toxicity of active peptides while retaining the 

desired antimicrobial activity of the sequence. The combined AMP selection and counter-

selection procedure leads to a short list of AMPs with high therapeutic indexes for 

experimental validation.

There are multiple online programs available for the computational prediction of toxicity 

and hemolysis of antimicrobial peptides. For example, Gupta et al have published a method 

of in silico toxicity prediction for peptides [128,129]. This site is called ToxinPred and 

has two algorithms available, ToxinPred SVM-SwissProt, ToxinPred QM-di-SwissProt. 

To illustrate the use of this website, we submitted the sequence of LL-37, the human 

cathelicidin, to compare the prediction versus in-laboratory data (Table 9A, B). It can be 

seen that experimentally, the cytotoxicity of LL-37 is dose-dependent, and increases with 

increasing concentration of peptide (Table 9B). However, this subtlety of concentration of 

peptide is not captured by the predictors, which just predict one result for some unknown 

concentration of peptide. Thus, just like a stopped clock is correct twice a day, the predictor 

is correct at some concentrations of LL-37 and is incorrect at higher concentrations. This 

concentration-dependence of the real-life data needs to be integrated with computational 
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predictors in the future, perhaps by including the concentrations at which the results are 

included in the dataset as an “antibacterial” or “non-cytotoxic” peptide.

Hemolytic activity is the ability of a peptide to lyse red blood cells. This assay is normally 

performed with a washed 2% solution of red blood cells, following a standard protocol 

[135,136]. Many different red blood cell types can be used, depending on the intent of 

the experiment, such as sheep [135–137], horse [138], chicken [139] or mouse [140,141], 

which may be more sensitive to peptide hemolysis than human red blood cells [141]. 

Often it is desirable to use de-identified human blood to test hemolytic activity, which can 

be obtained from companies like BioIVT and used in these assays [141]. Computational 

predictors of hemolytic activity can be used to compute an estimate of hemolytic activity. 

For example, HemoPred [142], HemoPI/Hemolytik [143] and HAPPENN [144] are some 

of the websites currently available (Table 10). HemoPred utilizes a random forest classifier 

based on amino acid sequence, dipeptide composition and physicochemical parameters 

[142]. HemoPI is based on comparing a dataset of highly hemolytic peptides to a random 

dataset of peptides from SwissProt [143]. Finally, HAPPENN tool employs neural networks 

based on classification of known peptides as hemolytic and non-hemolytic to predict the 

hemolytic activity from a new peptide’s primary sequence [144].

As an exercise, we ran the sequence of the LL-37 peptide through the various hemolysis 

predictors (Table 11) and compared the results to published laboratory generated data 

regarding hemolytic activity (Table 12).

From the literature, the following hemolysis data was obtained for the LL-37 peptide (Table 

12), as an example. This is not a comprehensive meta-analysis, but shows data from several 

papers that contained data over a wide range of peptide concentrations and hemolytic 

results [145–151]. Of course, there is no indication from these computational predictors of 

dose-dependence of the effect, although “the dose makes the poison” in most cases with 

antimicrobial peptides, including LL-37. The prediction results vary from absolutely one end 

of the hemolytic activity spectrum to the other – one analysis result says “Not Hemolytic”, 

one result is “Somewhat hemolytic” and one result is “Hemolytic”. This small analysis 

suggests that there is significant room for improvement in the accuracy of these predictors 

compared to actual experimental data generated in the laboratory (Table 12 and Figure 3).

7.4. Bacterial Cell-penetrating Peptides:

Another factor that may need to be considered in computational prediction of AMP activity 

is the characteristic of cell-penetration of the pathogen itself: bacteria, membrane-virus, 

fungal cell, etc. While the main mechanism of action of AMPs is clearly membrane 

targeting and disruption, there are multiple, well-defined examples of intra-bacterial targets 

of AMPs that may contribute to their physiological effect, especially at Sub-MIC levels 

in vivo. These can include targeting bacterial enzymes critical for bacterial survival, or 

direct interference of the AMP with the bacterial DNA. One example of the association 

of AMPs with critical bacterial enzymes is the identification of Acyl Carrier Protein as 

a target of LL-37, the human cathelicidin protein. This association was first determined 

biochemically by binding the bacterial proteins to immobilized peptide and identifying 

high-affinity binding proteins [152]. Another example of intra-bacterial targets of AMPs is 
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the association of LL-37 directly with bacterial DNA within the cell, leading to mutations of 

critical genes [153,154]. This work includes a compelling visualization of the AMP inside 

the live Pseudomonas bacteria, associated with the DNA. This property of AMPs to enter 

the bacteria to exert some direct, non-membrane acting effect could be computationally 

assessed using cell-penetrating peptide (CCP) analysis, such as is done for other well-known 

CPPs [155]. Unlike AMPs, CPPs for bacterial pathogens should have the property of being 

non-killing but membrane-penetrating, and comparison of these sets of peptide sequences 

may reveal some interesting differences. It might be possible to use the CPP algorithm to 

counter-select for peptides that do not have this property if a membrane-targeting peptide 

was desired to possibly achieve bactericidal activity.

7.5. Inclusion of additional parameters in drug development

It would be useful if these computational predictors could be used in a combinatorial fashion 

to achieve the goals of the researcher in designing new AMPs, such as was designed in the 

database filtering technology approach [156, 157]. For example, perhaps one seeks a short, 

helical antimicrobial peptide that has activity against gram-negative bacteria and especially 

has anti-biofilm activity and low hemolytic activity. It would be useful to have separate 

analytical tools linked together to generate the desired output. With the ever increasing 

number of modules available in R, and web-based prediction and analysis tools, this analysis 

could be done from small scale to high-throughput sequence analysis to design novel 

peptides. If the computational predictors could be made more accurate, this could be useful 

in drug-development projects upstream of in vitro screening programs for example, to 

increase hit efficacy. The inclusion of pre-screening for hemolysis and cytotoxicity would be 

very useful to reduce the number of hits that have poor in vivo performance characteristics. 

In addition, high throughput peptide sequencing could enable the generation of high quality 

training sets and negative data sets.

8. Current achievements and future directions

8.1. Achievements

In summary, antimicrobial peptide prediction is in essence a peptide classification problem. 

Different supervised learning algorithms have been trained to predict AMPs (Table 3). The 

major achievements include the following:

• Construction of AMP databases that facilitated machine learning prediction. The 

APD database, initially online in 2003 and updated regularly, provides a platform 

for understanding the structure and activity relationship of natural AMPs.

• Generation of hypothetically negative data sets based on UniProt.

• Successful encoding peptide features for machine learning prediction.

• Programming of various machine-learning algorithms with more or less similar 

prediction outcomes.

• Execution of both single and multi-label predictions as well as ensemble 

predictions of AMPs.
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• Consideration of the impact of the peptide sequence in addition to amino acid 

composition.

• Consideration of post-translational modifications and 3D structure of AMPs.

• Species-specific prediction of AMPs.

8.2. Future directions

Machine learning prediction of AMPs remains a challenging task. The success rate is 

modest and not yet perfect because numerous factors are in play. We anticipate that the 

quality of AMP prediction will improve with the development of the following aspects:

• More complete positive data set for AMPs from continued peptide search 

and database update. There are two types of positive data. First, a continued 

expansion of natural AMPs in the APD will increase the accuracy of identifying 

natural AMP sequences. Second, data merging from different databases are 

anticipated to continue and a large data set with more and more synthetic 
peptides may improve the prediction of artificial sequences.

• Experimentally validated negative data sets for AMPs. Our ongoing collection of 

such peptides will reduce false positives in ML predictions.

• Ranking peptide activity data based on the same scale (e.g., MIC, diffusion 

distance, and E-test). This is a challenging task due to limited activity analysis 

under various lab conditions. A recommended guide for antimicrobial assays of 

AMPs may be helpful.

• Increased use of information about the target organism in classification and 

analysis of AMPs (e.g., Target is a Gram-positive vs Gram-negative bacteria, or a 

specific pathogen).

• Continued improvement of peptide encoding for rapid and accurate computing 

identification.

• Increased use of peptide information on chemical modifications and their 

relationship with activity.

• Increased high-quality 3D structures and their applications in AMP prediction. 

This is yet another challenging task as currently only ~13% AMPs are known to 

have 3D structures in the APD3 and high quality structures are not easy to obtain 

[11].

• Development of more powerful machine learning/artificial intelligence 

algorithms to better handle sequence and structural diversity and data imbalance 

of AMPs. Combined use of various ML models (i.e., ensemble) may improve 

predictions.

• Increased communication between AMP investigators and machine learning/AI 

scientists.
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• Establishment of a pipeline of predictions of peptide properties required as a 

medicine by considering antimicrobial activity, cell toxicity in vitro and in vivo, 

and peptide bioavailability for efficacy in vivo.

Besides AMP prediction, another goal of the APD database is to help design novel peptides 

to combat antibiotic-resistant pathogens [9]. Different methods have been demonstrated 

[32]. The frequently occurring amino acids, such as glycine, leucine, and lysine, are 

sufficient in designing peptides with antibacterial activity comparable to human cathelicidin 

LL-37 [10,13]. Interestingly, a substitution of leucine in the database designed peptide 

DFTamP1 with isoleucine or valine led to activity or solubility decrease [156], underscoring 

the significance of nature’s choice of leucine as a frequently occurring amino acid in AMPs 

[10]. Also, there is an inverse correlation between peptide length and leucine content of 

over 1000 amphibian peptides in the APD [160]. Our screening of representative peptides 

from the APD led to the identification of different sets of AMPs against methicillin-resistant 

Staphylococcus aureus (MRSA) and HIV-1 [161,162]. The grammar approach emphasizes 

the unique sequences in the database and their combinations [14]. The database filtering 

technology (DFT) is an ab initio approach, thereby providing another avenue [156]. The 

database derived parameters are useful to make peptide mimics [163] or to design even 

short peptides to decrease the production cost [6]. Our expansion of the DFT from in 
silico filtering to in vitro and in vivo filtering establishes a pipeline for peptide discovery 

[157]. This idea can be harnessed to establish a pipeline of machine learning predictions to 

accelerate peptide discovery. When quantitative MIC values are used to train ML algorithm, 

it becomes possible to rank the peptide activity to identify most potent sequences [164]. 

Likewise, a subsequent counterselection can be conducted by ranking peptide toxicity to 

host cells (Table 10) so that less toxic peptides can be selected for experimental validation. 

Ultimately, one may be able to generate an expert system that automatically designs and 

produces personalized antimicrobials with designed activity spectrum and molecular target 

for patients to treat a particular pathogen-caused infection. The multiple functions of AMPs 

annotated in the APD3 imply other potential applications as well.
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Fig. 1. 
Important amino acids derived from amino acid composition profiles of classic classes 

of antimicrobial peptides [3]: (A) α-helical and β-sheet families and (B) amino acid-rich 

families, including Trp-rich, His-rich, Pro-rich, and Leu-rich AMPs. Data obtained in the 

APD [13] in Dec 2020.

Wang et al. Page 27

Methods Mol Biol. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Information-content based five methods for prediction of antimicrobial peptides [20].
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Fig. 3: 
Percent hemolysis results with different amounts of LL-37 peptide against human red blood 

cells. The data from Table 11 were plotted. The best-fit line is y=0.2142x + 8.0017. The 

shaded grey area represents a 95% confidence interval.
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Table 1.

Amino acid properties, frequency and peptide count in the antimicrobial peptide database (APD)

Single letter Full name Molecular weight Class
a Peptide count Count% (2020) Frequency in 3257 AMPs

I Isoleucine 113.16 phobic 2511 0.77 5.9%

V Valine 99.13 phobic 2492 0.76 5.69%

L Leucine 113.16 phobic 2835 0.87 8.26%

F Phenyl alanine 147.18 phobic 2240 0.69 4.09%

C Cysteine 103.14 phobic 1721 0.53 6.81%

M Methionine 131.2 phobic 959 0.29 1.27%

A Alanine 71.08 phobic 2511 0.77 7.68%

W Tryptophan 186.21 phobic 1185 0.36 1.65%

G Glycine 57.05 special 2950 0.91 11.51%

P Proline 97.12 special 1958 0.60 4.67%

T Threonine 101.11 polar 2053 0.63 4.48%

S Serine 87.08 polar 2483 0.76 6.07%

Y Tyrosine 163.18 polar 1266 0.39 2.49%

Q Glutamine 128.13 polar 1352 0.42 2.59%

N Asparagine 114.1 polar 1968 0.60 3.86%

E Glutamate acid 129.12 acidic 1465 0.45 2.68%

D Aspartic acid 115.09 acidic 1463 0.45 2.7%

H Histidine 137.14 basic 1231 0.38 2.17%

K Lysine 128.17 basic 2782 0.85 9.51%

R Arginine 156.19 basic 1843 0.57 5.88%

a
phobic=hydrophobic. In the APD, the hydrophobic content (Pho) is the ratio between the total hydrophobic amino acids and total amino acids in a 

peptide sequence [9]. Visited January 2021.
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Table 2.

Web accessible databases dedicated to antimicrobial peptides
a

Databases & 
Prediction 
algorithms

Link Notes Citing 
References

APD3 http://aps.unmc.edu/AP/main.php Antimicrobial peptide database, with 
curated, experimentally verified 
antimicrobial peptides from bacteria, 
archaea, protists, fungi, plants, and animals

[11]

CAMPR3 http://www.camp3.bicnirrh.res.in/ Collection of Anti-microbial peptides [18]

DBAASP v3 https://dbaasp.org Database of antimicrobial activity and 
structure of peptides

[33]

Defensins 
knowledgebase

http://defensins.bii.a-star.edu.sg/ Antimicrobial peptides from the defensin 
family

[34]

BaAMPs http://www.baamps.it/ Database of biofilm-active antimicrobial 
peptides

[35]

BACTIBASE http://bactibase.hammamilab.org/about.php Bacterocin type naturally occurring 
antimicrobial peptides.

[36]

DADP http://split4.pmfst.hr/dadp/ Database of anuran (frog or toad) defense 
peptides

[37]

DRAMP http://dramp.cpu-bioinfor.org Database of AMPs including clinical trial 
data on peptides.

[38]

Peptaibol http://peptaibol.cryst.bbk.ac.uk/introduction.htm Database of Peptaibols, mainly antifungal 
peptides.

[39]

LAMP http://biotechlab.fudan.edu.cn/database/lamp/
index.php

AMPs taken from other databases [40]

YADAMP http://www.yadamp.unisa.it/default.aspx Yet another database of antimicrobial 
peptides

[41]

PhytAMP http://phytamp.pfba-lab-tun.org/main.php A database dedicated to plant AMPs [42]

InverPep https://ciencias.medellin.unal.edu.co/
gruposdeinvestigacion/
prospeccionydisenobiomoleculas/InverPep/public/
home_en

AMPs from invertebrates from other 
databases

[43]

HIPdb http://crdd.osdd.net/servers/hipdb Manually curated database of 
experimentally validated HIV inhibitory 
peptides

[44]

Thiobase https://db-mml.sjtu.edu.cn/THIOBASE/ Sulfur-rich, highly modified heterocyclic 
peptide antibiotics

[45]

EnzyBase http://biotechlab.fudan.edu.cn/database/EnzyBase/
home.php

lysins, bacteriocins, autolysins, and 
lysozymes

[46]

ParaPep http://crdd.osdd.net/raghava/parapep/ Antiparasitic peptides [47]

dbAMP Not accessible AMPs [48]

AntiTbPdb https://webs.iiitd.edu.in/raghava/antitbpdb/ Anti-TB peptides [49]

a
Adapted and updated based on the APD Links [13,20].
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Table 3.

Machine learning prediction of antimicrobial peptides

Tool name URL Algorithms Features Year Ref

AntiBP http://crdd.osdd.net/raghava/antibp2 SVM,QM,ANN Single label 2007 [17]

CAMP http://www.bicnirrh.res.in/antimicrobial SVM, RF, DA Single label 2010 [18, 53]

http://amp.biosino.org/ BLASTP, NNA Single label 2011 [54]

AMPA http://tcoffee.crg.cat/apps/ampa AMP region scan 2012 [55]

ANFIS ANFIS Single label 2012 [56]

Peptide Locator http://bioware.ucd.ie/ BRNN Single label 2013 [57]

iAMP-2L http://www.jci-bioinfo.cn/iAMP-2L FKNN Two-level, Multi-label 2013 [52]

DBAASP https://dbaasp.org/prediction/general thresholds 2014 [33]

SVM-LZ NG (BioMed Research International) SVM Single label 2015 [58]

ADAM http://bioinformatics.cs.ntou.edu.tw/ADAM/ SVM, HMM Single label 2015 [59]

MLAMP http://www.jci-bioinfo.cn/MLAMP RF – ML-SMOTE Multi-label 2016 [60]

iAMPpred http://cabgrid.res.in:8080/amppred/ SVM Single label 2017 [61]

AmPEP http://cbbio.cis.umac.mo/software/AmPEP/ RF Single label 2018 [62]

AMP scanner www.ampscanner.com DNN Single label, Large scale 2018 [63]

AntiMPmod https://webs.iiitd.edu.in/raghava/antimpmod/ SVM Single label, PTM/3D 2018 [64]

dbAMP http://csb.cse.yzu.edu.tw/dbAMP/ RF Single label 2019 [65]

AMAP http://faculty.pieas.edu.pk/fayyaz/
software.html#AMAP

SVM, XGBoost Multi-label 2019 [66]

NA IDQD Single label 2019 [67]

AMPfun http://fdblab.csie.ncu.edu.tw/AMPfun/index.html CART Multi-label 2020 [68]

AMP0 http://ampzero.pythonanywhere.com ZSL, FSL Single label, Species-
specific

2020 [69]

MIV-RF NA RF Single label, Sequence 2020 [70]

Deep-AmPEP30 https://cbbio.cis.um.edu.mo/AxPEP CNN Genome search 2020 [71]

ACEP https://github.com/Fuhaoyi/ACEP DNN high-throughput 
predictions

2020 [72]

IAMPE http://cbb1.ut.ac.ir/ KNN, SVM, RF Single label 2020 [73]

Macrel https://big-data-biology.org/software/macrel. RF Genome search 2020 [74]

https://github.com/mtyoumans/lstm_peptides LSTM RNN Single label 2020 [75]

ampir https://github.com/legana/ampir SVM Genome wide 2020 [76]

amPEPpy https://github.com/tlawrence3/amPEPpy RF Genome wide 2020 [77]

Ensemble-
AMPPred

Ensemble model Single label 2021 [78]
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Table 4:

Prediction algorithm websites for antiviral peptides (AVPs).

Prediction algorithms Link Notes Ref

AVPPred http://crdd.osdd.net/servers/avppred/ Webserver for collecting and detecting effective AVPs [97]

AVPdb http://crdd.osdd.net/servers/avpdb A database of experimentally validated anti-viral peptides. [98]

FIRM-AVP https://msc-viz.emsl.pnnl.gov/AVPR “Feature-Informed Reduced Machine Learning for Antiviral Peptide 
Prediction”

[99]

Methods Mol Biol. Author manuscript; available in PMC 2023 January 01.

http://crdd.osdd.net/servers/avppred/
http://crdd.osdd.net/servers/avpdb
https://msc-viz.emsl.pnnl.gov/AVPR


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 34

Table 5:

Prediction algorithm websites for antifungal peptides (AFPs).

Database Link Notes Ref

PlantAFP http://bioinformatics.cimap.res.in/sharma/PlantAFP/  Plant derived peptides [100]

AntiFP https://webs.iiitd.edu.in/raghava/antifp/algo.php [101]
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Table 6:

Prediction algorithm websites for other specific and unique kinds of peptides.

Databases & Prediction algorithms Link Notes Ref

AIPred www.thegleelab.org/AIPpred Anti-Inflammatory Peptides [102]

PIP-EL www.thegleelab.org/PIP-EL Pro-inflammatory peptide [103]

AntiTBpred http://webs.iiitd.edu.in/raghava/antitbpred/ Antitubercular Peptides [104]
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Table 7:

AntiTBpred output for the activity of LL-37 against tuberculosis.

Prediction Method ID Score Prediction ID Score Prediction

AntiTB_MD SVM ensemble LL37 0.78 Anti-TB peptide HBD2 −0.30 Non Anti-TB peptide

AntiTB_RD SVM ensemble LL37 −0.25 Non Anti-TB peptide HBD2 −0.202 Non Anti-TB peptide

AntiTB_MD Hybrid method LL37 −0.25 Non Anti-TB peptide HBD2 0.053 Non Anti-TB peptide

AntiTB_RD Hybrid method * LL37 0.317 Anti-TB peptide HBD2 0.673 Anti-TB peptide
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Table 8:

Prediction algorithm websites for Antibiofilm peptides.

Databases & 
Prediction 
algorithms

Link Notes Ref

BaAMPs http://www.baamps.it/ Database of biofilm-active antimicrobial peptides [35]

dPABBs http://ab-openlab.csir.res.in/abp/antibiofilm/ Predictor of antibiofilm activity of peptides, and 
generates possible peptide variants and predicts their 
antibiofilm activity.

[121]

BIPEP http://cbb1.ut.ac.ir/BIPClassifier/Index Uses NMR and physicochemical descriptors [122]

BioFIN http://metagenomics.iiserb.ac.in/biofin/ and http://
metabiosys.iiserb.ac.in/biofin/

[123]
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Table 9:

Hemolytic prediction of activity for LL-37 human cathelicidin peptide.

Table 9(A): Predicted Toxicity of LL-37 on ToxinPred (validated via ExPASy ProParam tool).

Peptide Sequence SVM 
score Prediction Hydro-

phobicity Hydropathicity Amphi-
pathicity

Hydro-
philicity

Net 
charge pI Mol wt

LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES −1.58 Non-toxin −0.34 −0.72 1.06 0.62 +6.0 10.61 4493.32

Table 9(B): Experimental cytotoxicity activity of human cathelicidin LL-37

Peptide Cell Line Assay Result Ref

LL-37 A549 MTT Not cytotoxic up to 50 μg/mL [130]

Scrambled LL-37 A549 MTT Not cytotoxic up to 50 μg/mL [130]

LL-37 A431 squamous cell 
carcinoma cells

MTT Cytotoxic at 20 μg/mL. Not toxic at 5 μg/mL. [131]

LL-37 pMSC MTT No toxicity up to 10 μg/mL. [132]

LL-37 MA-104 MTT, Neutral red Statistically significant cytotoxicity (>10%) observed 
20–50 μg/mL.

[133]

LL-37 Thermally wounded human 
skin equivalents (HSE)

MTT No cytotoxicity at up to 200 μg/model [134]
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Table 10:

Hemolytic predictor websites

Name Link Reference

HemoPred http://codes.bio/hemopred/ [142]

HemoPI/Hemolytik https://webs.iiitd.edu.in/raghava/hemopi/index.php or http://crdd.osdd.net/raghava/hemopi/ [143]

HAPPENN https://research.timmons.eu/happenn [144]
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Table 11:

Hemolytic prediction of activity for LL-37 human cathelicidin peptide

Test sequence: LL-37: LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES

Prediction results

Program used Predicted result Notes

HemoPred Hemolytic

HemoPI PROB 
score

0.34 (SVM (HemoPI-1) based
0.72 (SVM (HemoPI-2) based) (Hemolytic)
0.88 SVM (HemoPI-3) based) (Hemolytic)

Note from website: PROB score is the normalized SVM score and 
ranges between 0 and 1, i.e. 1 very likely to be hemolytic, 0 very 
unlikely to be hemolytic.

HAPPENN PROB 
score

0.089 (Not Hemolytic) Note from website: PROB score is the normalized sigmoid score and 
ranges between 0 and 1. 0 is predicted to be most likely non-hemolytic, 
1 is predicted to be most likely hemolytic.
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Table 12:

Summary of reported percent hemolysis results with different amounts of LL-37 peptide against human red 

blood cells

Hemolysis of human red blood cells Reference

8% hemolysis at 20 μM [147]

~30% hemolysis at 20 μM [150]

4.47% hemolysis at 38.8 μM [149]

~10% hemolysis at 60 μM [146]

9% hemolysis at 100 μM [151]

~60% hemolysis at 100 μM [145]

~50% hemolysis at 200 μM [148]
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Table 13:

Peptide parameters for integrated prediction

Parameter of 
Interaction

Commonly used parameters Comments

Antibacterial 
activity

MIC > 8 μg/mL is often considered “active” 
performed under CLSI guidelines using CA-
MHB and designated concentrations of peptide. 
The peptide is defined as inactive in the APD 
with MIC > 100 μg/mL or μM.

Different methods and conditions for antimicrobial activity make it 
difficult to compare peptide activity.
Doesn’t account for peptide binding to serum proteins or being 
cleaved by serum factors in vivo.
PK/PD data are lacking for AMPs and they are not addressed by this 
metric.

Host cell 
cytotoxicity

Cytotoxicity at 100 μg/mL or less; TC50 should 
be < 10–20% at the MIC, depending on the assay 
used.

The relationship of this value in vitro with in vivo/whole body 
toxicity has not been established. Often the level of LL-37 is taken 
as a benchmark, since it is native to the human body.

Hemolysis Hemolysis at 100 μg/ml or HC50 should be < 10–
20% at MIC.

The relationship of this value to in vivo/whole body toxicity has not 
been measured. Often the level of LL-37 is taken as a benchmark, 
since it is native to the human body.

Host cell 
permeability

An important parameter if the target 
microorganism has an intracellular step to its 
infectious life-cycle.

Assays to measure intracellular replication of bacteria in the 
presence of extracellular peptide are useful to assess this parameter 
[116].

Pathogen cell 
permeability

An important parameter if the target of the 
peptide at sub-MIC concentrations might be an 
intracellular component of the bacteria, such as 
target enzymes or DNA.

Assays to measure intracellular bacterial targets such as enzymes or 
DNA in the presence of extracellular peptide are useful to assess 
this parameter [152–154].

Stickiness to other 
proteins (Boman 
index)

“This function computes the potential protein 
interaction index proposed by Boman [3] based 
in the amino acid sequence of a protein. The 
index is equal to the sum of the solubility values 
for all residues in a sequence, it might give an 
overall estimate of the potential of a peptide to 
bind to membranes or other proteins as receptors, 
to normalize it is divided by the number of 
residues. A protein have high binding potential 
if the index value is higher than 2.48.”

Initially called protein-binding potential [3], Boman index was 
renamed and programmed in the APD for every peptide [9]. It is 
also available in the calculation and prediction interface of the APD 
for any other peptides. This parameter is also programmed in R at 
https://rdrr.io/cran/Peptides/man/boman.html.

Propensity for 
host protease 
cleavage

Protease cleavage will reduce the activity and 
half-life of the peptide.

Can be predicted using Expasy server PeptideCutter. https://
web.expasy.org/peptide_cutter/

Other Negative 
Effects

Refs Comments

Carcinogenic 
effect

none No reports were found on the carcinogenic effect of antimicrobial 
peptides. Work is being done to use AMPs to fight cancer [158–
159].

Antigenicity none It is very difficult to raise antibodies against antimicrobial peptides. 
This is accomplished if at all by coupling KLH to the peptide. To 
our knowledge, there have been no reports of spontaneous antibody 
production against naturally produced AMP, which is too small.

Cell penetrating 
properties

[155] Cell penetrating properties of peptides are probably a negative 
property on net, especially in seeking a bactericidal mechanism. 
Website are available to select for CPPs; this could be a counter-
selection or down-selection step in an AMP design protocol unless 
this property is used to target intracellular pathogens.
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