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Abstract

Computational docking methods can provide structural models of protein–protein complexes, but 

protein backbone flexibility upon association often thwarts accurate predictions. In recent blind 

challenges, medium or high accuracy models were submitted in less than 20% of the ‘difficult’ 

targets (with significant backbone change or uncertainty). Here, we describe recent developments 

in protein–protein docking and highlight advances that tackle backbone flexibility. In molecular 

dynamics and Monte Carlo approaches, enhanced sampling techniques have reduced time-scale 

limitations. Internal coordinate formulations can now capture realistic motions of monomers and 

complexes using harmonic dynamics. And machine learning approaches adaptively guide docking 

trajectories or generate novel binding site predictions from deep neural networks trained on protein 

interfaces. These tools poise the field to break through the longstanding challenge of correctly 

predicting complex structures with significant conformational change.

Introduction

Protein–protein interactions are involved in nearly all of the biological processes in human 

health and disease. Understanding the dynamics of binding and the structure of protein 

complexes at the molecular level can be instrumental in delineating biological mechanisms 

and developing intervention strategies. Computational protein–protein docking provides a 

route to predict the three-dimensional structures of protein assemblies or complexes from 

known structures of individual monomeric proteins.

Docking methods are tested in the blind prediction challenge known as the Critical 

Assessment of PRediction of Interactions (CAPRI) [1], which in recent rounds pushed 

the field by including a wide array of target types such as transport proteins, higher order 

assemblies and host–virus interactions [2,3]. Out of the 28 protein–protein targets evaluated 

in CAPRI over the past four years [3,2], predictors achieved high quality structures for 11 

‘easy’ targets, defined as those with little backbone motion (unbound to bound Cα root 

mean square deviation (RMSDBU) of less than 1.5 Å [4]; Figure 1). The remaining 17 
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targets were categorized as ‘difficult’ (RMSDBU over 2.2 Å and/or poor monomer template 

availability). For these targets, predictors only achieved acceptable quality in 8 of 17 targets 

(47%) and high quality in only 2 (12%) [3,2]. Thus, the intrinsic flexibility of biomolecules 

still confounds the protein docking community at large.

In this review, we focus on the central docking challenge of capturing larger binding-induced 

conformational changes. We summarize progress by recent algorithms and frameworks, 

additionally augmented by growth in databases and computational power (CPU-based and 

GPU-based). These new methods have achieved greater accuracy on more challenging 

targets and additionally yielded insight into binding mechanisms. We first present progress 

in binding site identification and then docking methods including molecular dynamics (MD) 

and Monte Carlo (MC) approaches, normal modes, and machine learning. Together, these 

techniques have helped better explore broader regions of conformational space and more 

thoroughly evaluate the energy landscape to improve protein–protein docking.

Identifying putative binding sites: a global search

To reduce the complexity of the immense conformation space of flexible proteins, coarse-

grained models are frequently used to reduce the degrees of freedom (Figure 2). In the 

extreme, global docking approaches typically first treat protein partners as rigid bodies 

by restricting to six degrees of freedom (three rotational and three translational). A prime 

method to exhaustively sample the global 6D space is enumerating and scoring different 

rigid-body orientations on a dense grid. Approaches such as ClusPro [12] and ZDOCK 

[13] rely on the fast Fourier transform (FFT) correlation, which projects protein binding 

partners on a discretized three-dimensional grid. Conventional FFT approaches accelerate 

sampling only in the translational space and require new FFTs for every rotation. In 2015, 

Kazennov et al. developed fast manifold Fourier transforms (FMFT) to search arrangements 

of two rigid bodies in a 5D manifold (Figure 2) [14]. Relative to traditional FFT-based 

docking, FMFT accelerates calculations 10-fold [10••]. Another shape-based approach is 

geometric hashing, which indexes point sets or curves to match geometric features under 

arbitrary transformations like translations, rotations or even scaling [15]. Local 3D Zernike 

descriptor-based docking (LZerD), one of the top methods in CAPRI, projects 3D surfaces 

onto spheres to efficiently capture complementarity of protein surfaces [16]. Some rigid-

body approaches exploit data from chemical cross-linking experiments [17] or small-angle 

X-ray scattering (SAXS) [18] to further improve discrimination of generated structures. 

These approaches provide fast, global exploration of the energy landscape, and in recent 

CAPRI rounds [3,2], many predictors incorporated these approaches as the first step to 

identify putative binding patches, and they supplement with other refinement tools to capture 

backbone flexibility.

Methods accounting backbone flexibility

Molecular dynamics—Molecular dynamics (MD) is one strategy that is often used 

after grid-search or template-based approaches for refinement (Figure 3) [19]. Unbiased, 

all-atom MD simulations can provide a high-resolution, time-resolved microscopic model 

of protein–protein interactions. MD calculates Newtonian trajectories using physics-based 

energy functions to simulate protein association and dissociation events. MD use for 
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protein docking has been limited because non-native local minima trap proteins, and 

dissociation is too slow [20]. Over the past decade, two new modifications to capture 

conformational changes are steered molecular dynamics (SMD) [21], which utilizes external 

force constraints, and Markov sampling, which breaks a long MD simulation into multiple 

short trajectories [22]. To accelerate dissociation of protein partners at suboptimal binding 

regions, Ostermeir et al. developed a Hamiltonian replica exchange MD protocol (H-REMD) 

for protein docking [23•]. In H-REMD, biasing potentials are based on the shortest distance 

between protein partner atoms (defined as ‘ambiguity restraints’). As the biasing potential 

and associated ambiguity restraints vary across replicas, associated protein partners in one 

replica are forced to dissociate in another. Pan et al. simulated long timescales in a global 

search space for a benchmark set of five targets on the special purpose machine Anton 

[24,25••].Their ‘tempered binding’ protocol updates energy function parameters throughout 

the simulation: a soft-core van der Waals intermolecular potential is scaled so that long-lived 

states are dissociated more frequently, improving the sampling efficiency [25••]. Further, 

Pan et al. found that proteins often follow a repeated dissociation and association pattern 

rather than probing continually along the surface for the native binding site. Siebenmorgen 

et al. similarly scaled atomic repulsions with the vdW radii [26••]. They varied the vdW 

attraction energy across replicas relative to the Lennard-Jones and electrostatic interactions 

(owing to increased ligand-receptor atom distance). Compared to conventional MD methods, 

their simulations sampled native-like states 30% more often; resulting in blind docking 

predictions within 5 Å of native for moderately flexible targets. MD-based docking on 

proteins that move more than 2.2 Å RMSD upon binding has not yet been reported.

Monte Carlo methods—In contrast to MD approaches that target flexibility with 

Newtonian dynamics; Monte Carlo (MC) methods sample by random moves often followed 

by minimization (MCM) [6]. MC allows a wide variety of conformational move types to 

sample diverse conformations. MC algorithms have emulated the kinetic binding models, 

namely key-lock, conformer selection (CS) and induced-fit (IF) mechanisms [6,32,33]. 

The CS model chooses protein backbones from a pre-generated ensemble, thus this 

approach has the advantage of docking one partner’s conformations at a time. However, 

CS docking can fail if the ensemble is devoid of native-like backbone conformations [34]. 

For targets with RMSDBU up to 2.5 Å, Zhang et al. generated ensembles of 40 structures 

for MC-based docking [33]. This ensemble docking approach incorporates the ATTRACT 

coarse-grained protein model (Figure 2) [7] in conjunction with replica-exchange (RE) to 

sample in backbone as well as rigid body space. Although the ensemble does not always 

include bound-like conformations of the proteins, their REMC-ensemble docking method 

obtains higher quality structures than MCM and REMC approaches. RosettaDock4.0 

[9••], a conformer selection based MCM approach, modulates backbone swaps with a 

strategy that modulates rates of sampling of each conformer to handle ensembles of 

100 structures for each protein partner (RosettaDock3.0 [32] docked from an ensemble 

of 10 structures). To diversify backbone conformations, the protocol generates monomer 

structures by three methods: Firstly, normal modes, secondly, backrub motions [35], and 

finally, all-atom backbone refinement [36]. Further, to discriminate between near-native and 

non-native structures, they developed a more accurate coarse-grained energy function with 

6-dimensional residue-pair data obtained from protein–protein interfaces in the Protein Data 
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Bank (Figure 2) [8]. Marze et al. report success on 49% of moderately flexible and 31% of 

flexible targets, the highest local-docking success rates yet reported [9••].

Sampling backbone conformations with normal modes—Since intrinsic 

fluctuations in proteins contribute to conformational change, some docking approaches 

utilize harmonic dynamics to capture protein backbone motions [37,38]. Normal modes of 

vibration represent internal motions of a protein based on a Hookean potential between close 

residues. Normal mode analysis (NMA) is incorporated in several docking approaches, and 

there have been recent innovations in the past few years. To mimic induced-fit, Schindler et 
al. developed iATTRACT [39] by moving interface residues in Cartesian coordinate space 

subject to NMA-generated harmonic potentials. iATTRACT served as a refinement stage 

and improved the fraction of native contacts predicted by 70%. For targets with unbound to 

bound interface RMSD over 4 Å, iATTRACT can achieve acceptable quality models [39]. 

Population-based methods such as particle swarm optimization (PSO) have also employed 

NMA. PSO is a heuristic approach that optimizes the multiple degrees of freedom using 

a set of multiple systems. The SwarmDock algorithm recently incorporated dynamic cross-

docking [40•] of multiple backbone conformations within its PSO routine. It obtains an 

ensemble of conformational states of individual protein partners by using elastic network 

normal mode calculations and samples with the five lowest frequency non-trivial modes. 

SwarmDock achieved medium or high quality structures even for difficult targets with 

i-RMSD between 2.2 and 6 Å along with a challenging prior CAPRI target (T136) [40•,3]. 

Extending the swarm intelligence methods, the LightDock algorithm uses a ‘glowworm’ 

swarm optimization to sample different backbone conformations in local regions of the 

protein surface with an anisotropic network model [41]. LightDock additionally uses multi-

scale modeling to combine all-atom and coarse grained scoring functions.

While normal modes have typically been used on individual protein partners before docking, 

Oliwa and Shen introduced the complex NMA in docking to also sample molecular complex 

fluctuations [43]. By calculating modes of an encounter complex, this approach focuses on 

the binding region as it reduces the dimensionality of the search space [44]. One of the 

problems of NMA is that higher frequency modes often distort protein bonds. To overcome 

this limitation, Frezza and Lavery developed the internal coordinate NMA (iNMA) approach 

to move in the torsion angle space, that is, with fixed bond lengths and angles (Figure 

4) [45]. With a reduced protein model in an internal coordinate space, they captured 

larger conformational changes from eigenvectors of low-frequency modes [42•]. iNMA can 

generate structures within 3 Å of the bound state when starting from the unbound for 39% of 

single-domain and 45% of multi-domain proteins in their benchmark.

Machine learning methods—Although protein folding has been one prime focus of 

deep learning methods in biology (e.g. AlphaFold [46] and RaptorX [47]), in recent years, 

a few studies have explicitly addressed challenges relevant to protein docking [48]. Protein 

binding sites can be thought of as an information-rich molecular space that can be mined for 

elucidating protein interactions [49,50].

One approach is to use this information to create score functions for use with traditional 

docking approaches. For example, Geng et al. used graph representations to train a support 
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vector machine (SVM) on native and non-native protein complex structures to develop a 

scoring potential (GraphRank) to rank docked poses [51]. And iScore, composed of the 

GraphRank and HADDOCK [52] scores, achieved top performance in CAPRI scoring 

rounds (medium or high quality structures for nine out of 13 targets).

Other teams have used deep learning techniques to identify protein interfaces by 

extrapolating image recognition tools to protein structures. RaptorX-ComplexContact [50] 

uses a deep residual neural network trained on single-chain proteins to predict contacts 

between binding partners, achieving the top contact prediction scores in CASP [53]. Another 

approach is to characterize interaction environments. Townshend et al. created ‘voxels,’ 

that is, volumetric pixels with local atomic information for every protein surface residue, 

and with this 3D representation, they trained a deep 3D convolutional neural network 

(SASNet) on a curated database of bound protein complex structures [54]. Pittala et al. 
employed graph convolutions with the nodes representing the amino acid residues and edges 

connecting residues with a Cβ − Cβ distance under 10 Å [55]. They placed geometric and 

chemical features on both nodes and edges and used a graph neural network to predict 

epitopes and paratopes in antigen-antibody interfaces. In a unique approach by Gainza 

et al., a geometric deep learning model (MaSIF) used molecular interaction ‘fingerprints’ 

calculated using geometric and chemical features of protein surfaces [11••] (Figure 2). 

Their deep network was composed from geodesic convolutional layers, and they used it 

to predict binding sites, evaluate alternate docked interfaces, and assess likelihood of a 

given protein–protein interaction. Relative to conventional rigid docking methods on protein 

targets, MaSIF-search can perform ultra-fast scanning to identify true ‘binder’ with similar 

accuracy but significantly faster (4 CPU-minutes versus 45 hours for PatchDock and 93 days 

for ZDOCK to evaluate a benchmark of 100 bound protein complexes).

In a study to explore how neural networks might be used to generate structures with 

considerable backbone motion, Degiacomi trained an autoencoder with conformations from 

MD simulations, compressing the protein motion into a low-dimensional latent space [56•]. 

By training with simulations of both closed (bound) and apo conformations of a target 

protein, the autoencoder generated an intermediate closed-apo conformation at 0.8 Å RMSD 

[56•] from the native state. However, when the autoencoder was trained only with open 

conformations, the generator could only create structures far from the closed state (over 

4.2 Å), limiting the utility of this approach for blind docking. In an approach suitable for 

blind cases, Cao and Shen developed a Bayesian active learning (BAL) model to quantify 

uncertainty in protein structure quality, and then they extended their model to flexible 

protein docking [57•]. The Bayesian framework determines the posterior probability as it 

samples backbone conformations [43]. Flexibility is captured with low-frequency complex-

NMA modes, and in principle it can be extended to higher frequencies that capture loop and 

hinge motions. Compared to ZDOCK [13] and PSO, BAL improves the interface RMSD of 

the near-native predictions by 0.5 Å.

Conclusions

In conjunction with experimental data, docking has advanced a range of biological and 

health applications (e.g. Alzheimer’s disease [58], celiac disease [59], SARS-CoV-2 [60], to 
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name just a few). Over the past few years, docking success rates have improved on ‘difficult’ 

blind prediction targets, but rates need to be higher for docking to be a reliable stand-alone 

tool in all cases. Clearly, a diverse and impressive array of tools has steadily advanced 

toward reliably capturing large conformational changes in protein docking. Docking will be 

even more impactful when the field finally overcomes this challenge.

Acknowledgements

This work was supported by the National Institutes of Health through grant R01-GM078221. We thank Marc 
Lensink for generously providing us with data from CAPRI and Sai Pooja Mahajan and Sudhanshu Shanker for 
helpful comments on the manuscript.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

• of special interest

•• of outstanding interest

1. Janin J, Henrick K, Moult J, Eyck LT, Sternberg MJ, Vajda S, Vakser I, Wodak SJ: CAPRI: a 
critical assessment of PRedicted interactions. Proteins: Struct Funct Genet 2003, 52:2–9 10.1002/
prot.10381. [PubMed: 12784359] 

2. Lensink MF, Nadzirin N, Velankar S, Wodak SJ: Modeling protein–protein, protein–peptide, 
and protein-oligosaccharide complexes: CAPRI 7th edition. Proteins: Struct Funct Bioinformatics 
2019:1–23 10.1002/prot.25870.

3. Lensink MF, Brysbaert G, Nadzirin N, Velankar S, Chaleil RA, Gerguri T, Bates PA, Laine E, 
Carbone A, Grudinin S, Kong R, Liu RR, Xu XM, Shi H, Chang S, Eisenstein M, Karczynska A, 
Czaplewski C, Lubecka E, Lipska A, Krupa P, Mozolewska M, Golon Ł, Samsonov S, Liwo A, 
Crivelli S, Pagès G, Karasikov M, Kadukova M, Yan Y, Huang SY, Rosell M, Rodríguez-Lumbreras 
LA, Romero-Durana M, Díaz-Bueno L, Fernandez-Recio J, Christoffer C, Terashi G, Shin WH, 
Aderinwale T, Maddhuri Venkata Subraman SR, Kihara D, Kozakov D, Vajda S, Porter K, Padhorny 
D, Desta I, Beglov D, Ignatov M, Kotelnikov S, Moal IH, Ritchie DW, Chauvot de Beauchêne I, 
Maigret B, Devignes MD, Ruiz Echartea ME, Barradas-Bautista D, Cao Z, Cavallo L, Oliva R, 
Cao Y, Shen Y, Baek M, Park T, Woo H, Seok C, Braitbard M, Bitton L, Scheidman-Duhovny D, 
Dapkūnas J, Olechnovič K, Venclovas Č, Kundrotas PJ, Belkin S, Chakravarty D, Badal VD, Vakser 
IA, Vreven T, Vangaveti S, Borrman T, Weng Z, Guest JD, Gowthaman R, Pierce BG, Xu X, Duan 
R, Qiu L, Hou J, Ryan Merideth B, Ma Z, Cheng J, Zou X, Koukos PI, Roel-Touris J, Ambrosetti 
F, Geng C, Schaarschmidt J, Trellet ME, Melquiond AS, Xue L, Jiménez-García B, van Noort CW, 
Honorato RV, Bonvin AM, Wodak SJ: Blind prediction of homo- and hetero-protein complexes: the 
CASP13-CAPRI experiment. Proteins: Struct Funct Bioinformatics 2019, 87:12001221 10.1002/
prot.25838.

4. Kundrotas PJ, Anishchenko I, Dauzhenka T, Kotthoff I, Mnevets D, Copeland MM, Vakser IA: 
Dockground: a comprehensive data resource for modeling of protein complexes. Protein Sci 2018, 
27:172–181 10.1002/pro.3295. [PubMed: 28891124] 

5. Liwo A, Baranowski M, Czaplewski C, Gołaś E, He Y, Jagieła D, Krupa P, Maciejczyk 
M, Makowski M, Mozolewska MA,Niadzvedtski A, Ołdziej S, Scheraga HA, Sieradzan AK, 
Slusarz R, Wirecki T, Yin Y, Zaborowski B: A unified coarse-grained model of biological 
macromolecules based on mean-field multipolemultipole interactions. J Mol Model 2014, 20:2306 
10.1007/s00894-014-2306-5. [PubMed: 25024008] 

6. Wang C, Bradley P, Baker D: Protein–protein docking with backbone flexibility. J Mol Biol 2007, 
373:503–519 10.1016/j.jmb.2007.07.050. [PubMed: 17825317] 

7. Zacharias M: ATTRACT: protein–protein docking in CAPRI using a reduced protein model. 
Proteins: Struct Funct Bioinformatics 2005, 60:252–256 10.1002/prot.20566.

Harmalkar and Gray Page 6

Curr Opin Struct Biol. Author manuscript; available in PMC 2022 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8. Fallas JA, Ueda G, Sheffler W, Nguyen V, McNamara DE, Sankaran B, Pereira JH, Parmeggiani F, 
Brunette TJ, Cascio D, Yeates TR, Zwart P, Baker D: Computational design of selfassembling cyclic 
protein homo-oligomers. Nat Chem 2017, 9:353–360 10.1038/nchem.2673. [PubMed: 28338692] 

9. Marze NA, Roy Burman SS, Sheffler W, Gray JJ: Efficient flexible backbone protein–protein 
docking for challenging targets. Bioinformatics 2018, 34:3461–3469 10.1093/bioinformatics/bty355 
[PubMed: 29718115] •• With a novel, six-dimension, coarse-grained score function and adaptive 
conformer selection, RosettaDock 4.0 succeeds in local docking on 49% of moderately exible and 
31% of exible targets, the highest reported todate.

10. Padhorny D, Kazennov A, Zerbe BS, Porter KA, Xia B, Mottarella SE, Kholodov Y, Ritchie 
DW, Vajda S, Kozakov D: Protein–protein docking by fast generalized Fourier transforms 
on 5D rotational manifolds. Proc Natl Acad Sci U S A 2016, 113:E4286–E4293 10.1073/
pnas.1603929113 [PubMed: 27412858] •• While traditional FFT algorithms transform over three 
translational degrees of freedom, the fast manifold Fourier transform algorithm encodes an 
additional two rotational dimensions using spherical functions and radial harmonics. The approach 
speeds up sampling by an order of magnitude.

11. Gainza P, Sverrisson F, Monti F, Rodolà E, Boscaini D, Bronstein MM, Correia BE: Deciphering 
interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat 
Methods 2020, 17:184–192 10.1038/s41592-019-0666-6 [PubMed: 31819266] •• A geometric 
deep learning model that computes molecular interaction ‘fingerprints’ — geometric and chemical 
features of protein surface patches — to rapidly identify binding sites (MaSIF-site, MaSIF-ligand) 
or scan proteininterfaces (MaSIF-search).

12. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S: The ClusPro 
web server for protein–protein docking. Nat Protoc 2017, 12:255–278 10.1038/nprot.2016.169. 
[PubMed: 28079879] 

13. Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z: ZDOCK server: interactive docking 
prediction of protein–protein complexes and symmetric multimers. Bioinformatics 2014, 30:1771–
1773 10.1093/bioinformatics/btu097. [PubMed: 24532726] 

14. Kazennov AM, Alekseenko AE, Kozakov D, Padhorny DN, Kholodov YA: Efficient search for the 
possible mutual arrangements of two rigid bodies with the use of the generalized five-dimensional 
Fourier transform. Math Models Comput Simul 2015, 7:315–322 10.1134/S2070048215040043.

15. Smith GR, Sternberg MJ: Prediction of protein–protein interactions by docking methods. Curr 
Opin Struct Biol 2002, 12:28–35 10.1016/S0959-440X(02)00285-3. [PubMed: 11839486] 

16. Venkatraman V, Yang YD, Sael L, Kihara D: Protein–protein docking using region-based 
3D Zernike descriptors. BMC Bioinformatics 2009, 10 10.1186/1471-2105-10407. [PubMed: 
19133123] 

17. Vreven T, Schweppe DK, Chavez JD, Weisbrod CR, Shibata S, Zheng C, Bruce JE, Weng Z: 
Integrating cross-linking experiments with ab initio protein–protein docking. J Mol Biol 2018, 
430:1814–1828 10.1016/j.jmb.2018.04.010. [PubMed: 29665372] 

18. Ignatov M, Kazennov A, Kozakov D: ClusPro FMFT-SAXS: ultra-fast filtering using small-
angle X-ray scattering data in protein docking. J Mol Biol 2018, 430:2249–2255 10.1016/
j.jmb.2018.03.010. [PubMed: 29626538] 

19. Christoffer C, Terashi G, Shin WH, Aderinwale T, Maddhuri Venkata Subramaniya SR, Peterson 
L, Verburgt J, Kihara D: Performance and enhancement of the LZerD protein assembly pipeline in 
CAPRI 38–46. Proteins: Struct Funct Bioinformatics 2019:1–14 10.1002/prot.25850.

20. Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP, Bank JA, Jumper 
JM, Salmon JK, Shan Y, Wriggers W: Atomic-level characterization of the structural dynamics of 
proteins. Science 2010, 330:341–346 10.1126/science.1187409. [PubMed: 20947758] 

21. Kro l M, Chaleil RAG, Tournier AL, Bates PA: Implicit flexibility in protein docking: 
cross-docking and local refinement. Proteins 2007, 69:750–757 10.1002/prot.21698. [PubMed: 
17671977] 

22. Plattner N, Doerr S, De Fabritiis G, Noé F: Complete protein– protein association kinetics in 
atomic detail revealed by molecular dynamics simulations and Markov modelling. Nat Chem 
2017, 9:1005–1011 10.1038/nchem.2785. [PubMed: 28937668] 

23. Ostermeir K, Zacharias M: Accelerated flexible protein-ligand docking using Hamiltonian replica 
exchange with a repulsive biasing potential. PLOS ONE 2017, 12 10.1371/journal.pone.0172072 

Harmalkar and Gray Page 7

Curr Opin Struct Biol. Author manuscript; available in PMC 2022 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Hamiltonian replica exchange (H-REMD) modifies parts of the force field across different 
replicas. In this paper, a repulsive potential between receptor and ligand surface residues promotes 
transient dissociation on switching replicas, accelerating exploration of the protein surface to 
identify possible binding sites.

24. Shaw DE, Grossman JP, Bank JA, Batson B, Butts JA, Chao JC, Deneroff MM, Dror RO, Even 
A, Fenton CH, Forte A, Gagliardo J,Gill G, Greskamp B, Ho CR, Ierardi DJ, Iserovich L, Kuskin 
JS, Larson RH, Layman T, Lee L, Lerer AK, Li C, Killebrew D, Mackenzie KM, Mok SY, 
Moraes MA, Mueller R, Nociolo LJ, Peticolas JL, Quan T, Ramot D, Salmon JK, Scarpazza DP, 
Schafer UB, Siddique N, Snyder CW, Spengler J, Tang PTP, Theobald M, Toma H, Towles B, 
Vitale B, Wang SC, Young C: Anton 2: raising the bar for performance and programmability 
in a special-purpose molecular dynamics supercomputer. SC’14: Proceedings of the International 
Conference for High Performance Computing, Networking, Storage and Analysis 2014:41–53 
10.1109/SC.2014.9.

25. Pan AC, Jacobson D, Yatsenko K, Sritharan D, Weinreich TM, Shaw DE: Atomic-level 
characterization of protein–protein association. Proc Natl Acad Sci U S A 2019, 116:4244–4249 
10.1073/pnas.1815431116 [PubMed: 30760596] •• With long timescale MD simulations using a 
‘tempered binding’ protocol that scales a soft-core energy across replicas to promote dissociation 
of long-lived states, this work found that protein binding occurs through repeated association-
dissociation events rather than prolonged in-contact exploration.

26. Siebenmorgen T, Engelhard M, Zacharias M: Prediction of protein–protein complexes using 
replica exchange with repulsive scaling. J Comput Chem 2020:1436–1447 10.1002/jcc.26187 
[PubMed: 32149420] •• Using a novel replica exchange scheme with variable van der Waals 
radii for interface residue atoms, the RS-REMD approach promotes dissociation in some replicas, 
which improves sampling for both global searches and refinement.

27. Liu P, Kim B, Friesner RA, Berne BJ: Replica exchange with solute tempering: a method 
for sampling biological systems in explicit water. Proc Natl Acad Sci 2005, 102:13749–13754 
10.1073/pnas.0506346102. [PubMed: 16172406] 

28. Zhang Z, Lange OF: Replica exchange improves sampling in low-resolution docking stage of 
RosettaDock. PLOS ONE 2013, 8:e72096 10.1371/journal.pone.0072096.

29. Kästner J: Umbrella sampling. Wiley Interdisc Rev: Comput Mol Sci 2011, 1:932–942 10.1002/
wcms.66.

30. Limongelli V, Bonomi M, Parrinello M: Funnel metadynamics as accurate binding free-energy 
method. Proc Natl Acad Sci U S A 2013, 110:6358–6363 10.1073/pnas.1303186110. [PubMed: 
23553839] 

31. Basciu A, Malloci G, Pietrucci F, Bonvin AMJJ, Vargiu AV: Hololike and druggable protein 
conformations from enhanced sampling of binding pocket volume and shape. J Chem Inform 
Model 2019, 59:1515–1528 10.1021/acs.jcim.8b00730.

32. Chaudhury S, Gray JJ: Conformer selection and induced fit in flexible backbone protein–
protein docking using computational and NMR ensembles. J Mol Biol 2008, 381: 10.1016/
j.jmb.2008.05.042. [PubMed: 19041878] 

33. Zhang Z, Ehmann U, Zacharias M: Monte Carlo replica-exchange based ensemble docking 
of protein conformations. Proteins: Struct Funct Bioinformatics 2017, 85:924–937 10.1002/
prot.25262.

34. Kuroda D, Gray JJ: Pushing the backbone in protein–protein docking. Structure 2016, 24:1821–
1829 10.1016/j.str.2016.06.025. [PubMed: 27568930] 

35. Smith CA, Kortemme T: Backrub-like backbone simulation recapitulates natural protein 
conformational variability and improves mutant side-chain prediction. J Mol Biol 2008, 380:742–
756 10.1016/j.jmb.2008.05.023. [PubMed: 18547585] 

36. Tyka MD, Keedy Da, Andre I, Dimaio F, Song Y, Richardson DC, Richardsonb JS, Baker D: 
Alternate states of proteins revealed by detailed energy landscape mapping. J Mol Biol 2011, 
405:607–618. [PubMed: 21073878] 

37. Zacharias M, Sklenar H: Harmonic modes as variables to approximately account for receptor 
flexibility in ligand-receptor docking simulations: application to DNA minor groove ligand 
complex. J Comput Chem 1999, 20:287–300.

Harmalkar and Gray Page 8

Curr Opin Struct Biol. Author manuscript; available in PMC 2022 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



38. Zacharias M: Accounting for conformational changes during protein–protein docking. Curr Opin 
Struct Biol 2010, 20:180–186 10.1016/j.sbi.2010.02.001. [PubMed: 20194014] 

39. Schindler CEM, de Vries SJ, Zacharias M: iATTRACT: simultaneous global and local interface 
optimization for protein–protein docking refinement. Proteins: Struct Funct Bioinformatics 2015, 
83:248–258 10.1002/prot.24728.

40. Torchala M, Gerguri T, Chaleil RAG, Gordon P, Russell F, Keshani M, Bates PA: Enhanced 
sampling of protein conformational states for dynamic cross-docking within the protein–protein 
docking server SwarmDock. Proteins: Struct Funct Bioinformatics 2020, 88:962–972 10.1002/
prot.25851 • A hybrid conformational-selection/induced-_t approach for dynamic cross-docking 
in SwarmDock, a particle swarm optimization algorithm. Ensembles are pre-generated with NMA 
and undergo cross-docking while sampling alter-nate protein conformations using low frequency 
normal modes.

41. Jimènez-García B, Roel-Touris J, Romero-Durana M, Vidal M, Jimènez-Gonzalez D, Fernandez-
Recio J: LightDock: a new multi-scale approach to protein–protein docking. Bioinformatics 2018, 
34:49–55 10.1093/bioinformatics/btx555. [PubMed: 28968719] 

42. Frezza E, Lavery R: Internal coordinate normal mode analysis: a strategy to predict protein 
conformational transitions. J Phys Chem B 2019, 123:1294–1301 10.1021/acs.jpcb.8b11913 
[PubMed: 30665293] • This work employs NMA in the internal coordinate space with a reduced 
protein model to capture large conformational changes of proteins with a faster compute time and 
no distortion of protein bonds.

43. Oliwa T, Shen Y: cNMA: a framework of encounter complex-based normal mode analysis to 
model conformational changes in protein interactions. Bioinformatics 2015, 31:i151i160 10.1093/
bioinformatics/btv252.

44. Chen H, Sun Y, Shen Y: Predicting protein conformational changes for unbound and homology 
docking: learning from intrinsic and induced flexibility. Proteins: Struct Funct Bioinformatics 
2017, 85:544–556 10.1002/prot.25212.

45. Frezza E, Lavery R: Internal normal mode analysis (iNMA) applied to protein conformational 
flexibility. J Chem Theory Comput 2015, 11:5503–5512 10.1021/acs.jctc.5b00724. [PubMed: 
26574338] 

46. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Žídek A, Nelson AW, 
Bridgland A, Penedones H, Petersen S, Simonyan K, Crossan S, Kohli P, Jones DT, Silver D, 
Kavukcuoglu K, Hassabis D: Improved protein structure prediction using potentials from deep 
learning. Nature 2020, 577:706–710 10.1038/s41586-019-1923-7. [PubMed: 31942072] 

47. Wang S, Sun S, Li Z, Zhang R, Xu J: Accurate de novo prediction of protein contact map by 
ultra-deep learning model. PLOS Comput Biol 2017, 13:1–34 10.1371/journal.pcbi.1005324.

48. Gao W, Mahajan SP, Sulam J, Gray JJ: Deep Learning in Protein Structural Modeling and Design. 
2020arXiv:2007.08383.

49. Fout A, Byrd J, Shariat B, Ben-Hur A: Protein interface prediction using graph convolutional 
networks. Advances in Neural Information Processing Systems 2017-December (NIPS) 
2017:6531–6540.

50. Zeng H, Wang S, Zhou T, Zhao F, Li X, Wu Q, Xu J: ComplexContact: a web server for 
inter-protein contact prediction using deep learning. Nucleic Acids Res 2018, 46: W432–W437 
10.1093/nar/gky420. [PubMed: 29790960] 

51. Geng C, Jung Y, Renaud N, Honavar V, Bonvin AMJJ, Xue LC: iScore: a novel graph kernel-based 
function for scoring protein–protein docking models. Bioinformatics 2019, 36:112121 10.1093/
bioinformatics/btz496.

52. Dominguez C, Boelens R, Bonvin AM: HADDOCK: a protein–protein docking approach based 
on biochemical or biophysical information. J Am Chem Soc 2003, 125:1731–1737 10.1021/
ja026939x. [PubMed: 12580598] 

53. Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J: Critical assessment of methods 
of protein structure prediction (CASP)-Round XIII. Proteins 2019, 87:1011–1020 10.1002/
prot.25823. [PubMed: 31589781] 

54. Townshend R, Bedi R, Suriana P, Dror R: End-to-end learning on 3D protein structure for interface 
prediction. Advances in Neural Information Processing Systems 32 2019:15642–15651.

Harmalkar and Gray Page 9

Curr Opin Struct Biol. Author manuscript; available in PMC 2022 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



55. Pittala S, Bailey-Kellogg C: Learning context-aware structural representations to predict antigen 
and antibody binding interfaces. Bioinformatics (Oxford, England) 2020, 36:3996–4003 10.1093/
bioinformatics/btaa263.

56. Degiacomi MT: Coupling molecular dynamics and deep learning to mine protein conformational 
space. Structure 2019, 27:1034–1040 10.1016/j.str.2019.03.018 e3 [PubMed: 31031199] • This 
paper describes a unique method of generating plausible motions of a protein using a generative 
neural network (autoencoder). When trained with conformations from an MD simulation, the 
autoencoder can quickly generate interpolated structures.

57. Cao Y, Shen Y: Bayesian active learning for optimization and uncertainty quantification in 
protein docking. J Chem Theory Comput 2020, 16:5334–5347 10.1021/acs.jctc.0c00476 [PubMed: 
32558561] • With a framework to quantify uncertainty in docked models, the Bayesian approach 
uses a posterior distribution to guide sampling to likely lowenergy conformations.

58. Frost CV, Zacharias M: From monomer to fibril: Abeta-amyloid binding to Aducanumab antibody 
studied by molecular dynamics simulation. Proteins: Struct Funct Bioinformatics 2020:1–15 
10.1002/prot.25978.

59. Høydahl LS, Richter L, Frick R, Snir O, Gunnarsen KS, Landsverk OJB, Iversen R, Jeliazkov 
JR, Gray JJ, Bergseng E, Foss S, Qiao S-WW, Lundin KEA, Jahnsen J, Jahnsen FL, Sandlie I, 
Sollid LM, Løset GÅ : Plasma cells are the most abundant gluten peptide mhc-expressing cells 
in inflamed intestinal tissues from patients with celiac disease. Gastroenterology 2019, 156:1428–
1439 10.1053/j.gastro.2018.12.013e10. [PubMed: 30593798] 

60. Cleri F, Lensink M, Blossey R: DNA aptamers block the receptor binding domain at the spike 
protein of SARS-CoV-2. chemRxiv 2020 10.26434/chemrxiv.12696173.v1.

Harmalkar and Gray Page 10

Curr Opin Struct Biol. Author manuscript; available in PMC 2022 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Performance of protein docking approaches on blind targets in CAPRI Rounds 38–46 [3,2]. 

Distribution of DockQ scores for the best model submitted by each predictor group (points) 

for each individual target (x-axis). DockQ measures a combination of intermolecular 

residue-residue contacts, interface RMSD, and ligand RMSD on a scale of 0 (incorrect) 

to 1 (matching the experimental structure) [2]. Targets are labelled by their CAPRI target 

number and, when needed, interface number (after the decimal). The targets are classified 

into rigid (easy) targets (high-homology monomer templates and under 1.5 Å unbound–

bound backbone motion, and flexible targets (poor template availability and/or over 1.5 Å 

RMSDBU). DockQ scores are color-coded by CAPRI model quality ranking: blue, high; 

green, medium; yellow, acceptable; gray, incorrect. Data graciously provided by Lensink et 
al. [3,2].
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Figure 2. 
Reducing the degrees of freedom in protein docking. 1. Coarse-grained models: from left 

to right: some approaches use all-atom representations (except solvent). The UNRES (united 

residue) model [5] represents the side chains as variable size ellipsoids attached to the Cα 
atom by peptide linkages and backbone N, C and O atoms are accounted with peptide-bond 

centers. CABS (Cα, Cβ and side chains) model adds a Cβ atom and approximates rest of 

the side chain by a single sphere. The Rosetta centroid model [6] uses a CEN atom to 

represent the side chain while the backbone stays intact. The ATTRACT reduced protein 

model comprises of 2–3 atoms per residue with only Cα in the backbone and 1–2 atoms in 

the side chain [7]. Knowledge-based model derived from residue pair transforms of protein 

motifs from bound complexes in the PDB [8,9••]. 2. Fast manifold Fourier transforms 
(FMFT): the 5D FMFT method implicitly matches protein shapes over three translations 

and two rotations in Fourier space (adapted from Padhorny et al. [10••]). 3. MaSIF identifies 

binding sites using interface ‘fingerprints’ in a geometric deep learning model [11••].
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Figure 3. 
Enhanced sampling approaches in protein docking. 1. Temperature replica exchange: 

MD/MC approaches utilize temperature as the variable parameter across replicas [27,28]. 

The smoothening of the relatively rugged energy landscape enables sampling of distinct 

energy basins. 2. Umbrella Sampling methods [29] split the reaction coordinate 

between an unbound and bound state into multiple windows. This enables biasing 

molecular dynamics trajectories along the reaction coordinate driving the system from one 

thermodynamic state to another. 3. Hamiltonian replica change approaches introduce a 
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biasing potential which can be either time-dependent, contact-dependent [23•] or geometry 

dependent [26••]. Scaling methods: Top: use of contact-dependent ambiguity constraints 

between protein partners. The weighted distance of the closest contacts of the partners 

defines bias potentials; Bottom: Bias based on increase in the effective pairwise vdW radii 

(an illustration to indicate the variable vdW radii across replicas for hamiltonian-based 

tempering); Hamiltonian REMD: the exchange trajectories with the biasing harmonic 

potential (red) and the range of potentials used across all the replicas in the system. 4. 

Conformational flooding/Metadynamics utilize an exhaustive search within a local scope 

by introducing a funnel-shaped constraint potential [30]. Short metadynamics simulations 

have been equipped to obtain backbone conformations for ensemble-docking [31].
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Figure 4. 
Internal coordinates NMA captures larger conformational change. (a) Schematic of the 

bound homodimer (PDB ID: 2EIA) and unbound monomer (1EIA) forms of equine 

infectious anemia virus (EIAV) capsid protein p26 (RMSDBU of the binding domain is 

5.2 Å). (b) Model generated by internal coordinate NMA at maximum amplitude (yellow) 

retains realistic bond lengths and angles. (c) iNMA with the optimal mode magnitudes 

yields a structure within 3 Å RMSD of the bound form. Panels (b) and (c) adapted from 

Frezza and Lavery [42•].
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