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Summary.

Truncated survival data arise when the event time is observed only if it falls within a subject 

specific region. The conventional risk-set adjusted Kaplan–Meier estimator or Cox model can be 

used for estimation of the event time distribution or regression coefficient. However, the validity 

of these approaches relies on the assumption of quasi-independence between truncation and event 

times. One model that can be used for the estimation of the survival function under dependent 

truncation is a structural transformation model that relates a latent, quasi-independent truncation 

time to the observed dependent truncation time and the event time. The transformation model 

approach is appealing for its simple interpretation, computational simplicity and flexibility. In 

this paper, we extend the transformation model approach to the regression setting. We propose 

three methods based on this model, in addition to a piecewise transformation model that adds 

greater flexibility. We investigate the performance of the proposed models through simulation 

studies and apply them to a study on cognitive decline in Alzheimer’s disease from the National 

Alzheimer’s Coordinating Center. We have developed an R package, tranSurv, for implementation 

of our method.
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1. Introduction

Truncated time to event data arise in various fields of study, including biomedical sciences, 

public health, epidemiology, and astronomy. It is a type of biased sampling, in which the 
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event time is observed only if it falls within a certain interval. In a study of the National 

Alzheimer’s Coordinating Center (NACC), the primary goal was to assess the association 

between Apolipoprotein E (APOE) genotype, gender, and other features and the time from 

onset of cognitive decline to death. The time from onset of cognitive decline to death is 

left-truncated by the time from cognitive decline to NACC entry for the participants who 

experienced cognitive impairment prior to their NACC study entry. Since some subjects 

drop out during follow-up or are alive at the end of follow-up, the event time is also 

right-censored. Figure 1 illustrates these left-truncated and right-censored data. As another 

example, in an autopsy substudy of the NACC cohort, because a subject’s time of death 

has to be earlier than the time of data extraction, the time from NACC entry to death 

is right-truncated by the time from the NACC entry to data extraction. In the absence of 

censoring, right truncation turns into left truncation by reversing the time scale (Lagakos et 

al., 1988), such as our second NACC data example. In the presence of left truncation, most 

conventional methods used in survival analysis such as the Kaplan–Meier estimator, the 

Nelson–Aalen estimator and the proportional hazards model can be applied after adjustment 

of the risk sets. This approach requires quasi-independence (Tsai, 1990), i.e., independence 

between truncation and event times in the observable region. Recently, the validity of 

the risk-set based estimators was shown to depend on a weaker condition termed the 

factorization assumption (Vakulenko-Lagun et al., 2019). The risk-set based methods can 

lead to biased estimation and incorrect interpretation when these assumptions are not met.

Quasi-independence can be tested using the observed data (Vakulenko-Lagun et al., 2019). 

Standard tests that are powerful for detecting monotone dependence include the conditional 

Kendall’s tau test (Tsai, 1990) and the conditional Pearson’s product-moment correlation 

coefficient test (Chen et al., 1996). The conditional Kendall’s tau test has received 

more attention in the literature due to its simplicity and accessibility in the presence of 

right censoring. Modifications of conditional Kendall’s tau tests have been proposed to 

accommodate complicated truncation schemes (Martin and Betensky, 2005), improve power 

(Emura and Wang, 2010) and eliminate bias (Austin and Betensky, 2014). To accommodate 

non-monotone alternatives, Rodríguez-Girondo and de Uña-Álvarez (2012), de Uña-Álvarez 

(2012) and Rodríguez-Girondo and de Uña-Álvarez (2016) proposed bootstrap-based global 

and local conditional Kendall’s tau tests. Chiou et al. (2018) proposed flexible permutation 

tests that are powerful for general dependence structures. If the null of quasi-independence is 

rejected by these tests, or if the subject matter suggests dependent truncation, modifications 

must be made to incorporate the dependence.

When the event time distribution is of interest, a convenient approach is to apply a copula-

based model in which the association structure between the truncation and event time 

is specified parametrically, while leaving the marginal distributions unspecified (Lakhal-

Chaieb et al., 2006; Emura et al., 2011; Emura and Wang, 2012; Emura and Murotani, 

2015). Some guidelines for selecting an appropriate copula are provided in Beaudoin and 

Lakhal-Chaieb (2008). Correct specification of the copula is critical, as the performance of 

the approach relies upon it. As an alternative to the copula-based approach that avoids its 

strong modeling assumptions, Efron and Petrosian (1994) proposed a transformation model 

for estimation of a latent quasi-independent truncation variable that can be used in simple 

risk-set adjusted estimation in the absence of censoring. The transformation model approach 
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was extended to accommodate right censoring through restriction to the uncensored event 

times along with inverse probability weighting of the censoring distribution (Chiou et 

al., 2019). More recently, Vakulenko-Lagun et al. (in press) proposed inverse probability 

weighting methods to estimate the event time distribution when shared covariates induce the 

dependence between the truncation and event times.

When covariate effects are of interest, the Cox model is often used. All that is required is 

conditional independence between the truncation and event times conditional on covariates. 

In this paper we consider settings in which conditional independence does not hold. The 

literature on regression models under dependent truncation is sparse. Jones and Crowley 

(1992) accounted for dependent truncation by including the truncation time as an additional 

covariate in proportional hazards models. As a useful alternative, Emura and Wang (2016) 

proposed a semiparametric accelerated failure time model that is similar in flavor to that of 

Jones and Crowley (1992) in including the truncation time as an additional regressor. These 

approaches make strong assumptions on the nature of the dependence. Emura and Wang 

(2016) imposed an alternative requirement of quasi-independence between the residual 

lifetime and the residual truncation time, and derived rank-based estimating equations.

In this paper, we extend the transformation model of Efron and Petrosian (1994) and 

Chiou et al. (2019) to the regression setting in which conditional independence between 

truncation and event times given covariates does not hold. In the absence of censoring, 

we assume there exists a latent quasi-independent truncation time that is associated with 

the observed dependent truncation time and the observed event time through an unknown 

transformation parameter. The transformation model ensures that the truncation ordering is 

preserved. When the dependence between the truncation and event times is not induced by a 

covariate, the transformation parameter is chosen to minimize that dependence, as measured 

by conditional Kendall’s tau (Martin and Betensky, 2005). When the dependence between 

the truncation and event times is additionally induced by covariates, the transformation 

parameter is chosen to minimize the magnitude of the regression coefficients of functions 

of the truncation time. When censoring is present, we restrict the analysis to the uncensored 

observations and adjust for this biased selection via inverse probability weighting using 

the censoring distribution. We also propose goodness-of-fit diagnostic procedures similar 

to those in Chiou et al. (2019) to assess the adequacy of the transformation model. We 

have developed an R package, tranSurv (Chiou and Qian, 2021) for implementation of our 

methods.

In Section 2, we propose transformation approaches for uncensored data and develop 

goodness-of-fit assessments. Extensions to censored data and the requisite inverse weighting 

adjustment are described in Section 3. We investigate the finite sample performance of the 

proposed procedures through simulation studies in Section 4. The method is applied to 

datasets from Alzheimer’s disease studies in Section 5. We conclude with a discussion in 

Section 6.

Qian et al. Page 3

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2022 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Transformation approach for uncensored data

We first consider regression analysis for time-to-event data in the absence of censoring. Let 

X denote the event time and T denote the left truncation time; X and T may be dependent 

and X is observed only if T ≤ X. If the event time X* is right truncated by T* as it is in the 

NACC autopsy data example described in Section 1, i.e., X* is observable only if X* ≤ T*, 

we can turn right truncation into left truncation by reversing the time scale (Lagakos et al., 

1988). Essentially, we let X = τt − X* and T = τt − T*, where τt is a pre-specified constant 

such as the maximum value of T* in the observable region. Then X* ≤ T* is equivalent to T 
≤ X, and thus X is left-truncated by T. Let Z denote a p × 1 covariate vector. The observed 

data then consist of n independent and identically distributed copies of {T, X, Z|X ≥ T}, i.e., 

{(ti, xi, zi|xi ≥ ti), i = 1,…, n}. We assume the Cox proportional hazards model for X given Z:

λ(x ∣ z) = λ0(x) exp β⊤z , (1)

where λ0(·) is the unspecified baseline hazard function and β is a p × 1 vector of 

regression coefficients. Under the quasi-independence assumption (Tsai, 1990) between 

the left truncation time T and event time X, a standard method to obtain the coefficient 

estimator, β , is to maximize the partial likelihood (Cox, 1975), with risk sets adjusted for left 

truncation:

∏
i = 1

n λ xi ∣ zi, xi > ti
∑tj ≤ xi ≤ xjλ xj ∣ zj, xj > tj

= ∏
i = 1

n exp β⊤zi
∑tj ≤ xi ≤ xjexp β⊤zj

.

The quasi-independence assumption is testable using conditional Kendall’s tau (Tsai, 1990; 

Martin and Betensky, 2005). When quasi-independence does not hold, alternative estimation 

procedures are required for estimating the regression coefficients under (1).

For estimation of the marginal distribution of X in the absence of covariates, Efron and 

Petrosian (1994) suggested a transformation approach to deal with the dependence between 

T and X. The transformation approach assumes that there exists a latent, quasi-independent 

left truncation time T′(a) for X in the absence of the dependence:

T ′(a) = T + aX
1 + a , (2)

where a is an unknown transformation parameter. This transformation model preserves the 

truncation ordering X > T as long as a > −1, though the between-subjects ordering of the 

truncation times may be different after the transformation. We assume the transformation 

model only over the observable region X > T, as required by the definition of quasi-

independence, which defines the transformation parameter.

The linear transformation model (2) may not hold on the whole support of X, but rather may 

hold within the segments of the support of X. Defining a sequence 0 = b0 < b1 < … < bK = 

sup(X) that divides the support of X into K segments, we consider a robust, piecewise linear 

transformation model with K transformation parameters ak, k = 1, …, K, each of which 
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is used to compute the latent independent truncation time corresponding to one of the K 
segments, i.e.,

T ′ ak = T + akX
1 + ak

I X ∈ bk − 1, bk , k = 1, …, K, (3)

where I(A) = 1 if the event A occurs and 0 otherwise. The number of segments K for the 

robust, piecewise linear transformation model (3) can be determined by the goodness of fit 

procedure proposed in Chiou et al. (2019), which we describe in detail in Section 2.3. In 

practice, we would like to keep the number of segments K as small as possible. We start with 

one breakpoint, and move up to two breakpoints if the goodness of fit hypothesis test rejects 

the one breakpoint, and so on. The breakpoints bk’s are chosen to divide the event times 

into K equally populated segments. We also recommend a scatter plot of X − T versus X to 

visualize the potential nonlinearity, as an aide for an alternative selection of breakpoints.

In the absence of covariates, a (or ak) can be estimated by inverting tests of quasi-

independence of T′(a) (or T′(ak)) and X (Chiou et al., 2019). However, it is not obvious 

how to estimate a in the presence of covariates, since either the truncation time, event 

time or both may depend on the covariates. In the following, we propose two approaches 

for estimation of the transformation parameter a and the regression coefficient β. The 

first employs an unadjusted transformation via a conditional Kendall’s tau, which assumes 

that Z is unrelated to the transformation parameter a. The second employs an adjusted 

transformation via a Cox model, which allows Z to impact the transformation parameter a.

2.1. Unadjusted transformation via conditional Kendall’s tau

Motivated by Efron and Petrosian (1994), we consider an estimation procedure 

that requires quasi-independence between T′(a) and X, without conditioning on Z. 

The conditional Kendall’s tau, denoted as τc, is commonly used to test the quasi-

independence assumption due to its simplicity and rank invariance property. Given 

random vectors X1, T1′ (a)  and X2, T2′ (a) , the conditional Kendall’s tau is defined as 

τc(a) = E sgn X1 − X2 T1′ (a) − T2′ (a) ∣ Ω12 , where sgn(u) = I(u > 0) − I(u < 0), I(·) is the 

indicator function, and Ω12 = max T1′ (a), T2′ (a) ≤ min X1, X2  is the event of comparable 

pairs. In the absence of censoring, Martin and Betensky (2005) proposed a consistent, 

U-statistic estimator of τc(a),

τc(a) = 1
M ∑

i = 1

n − 1
∑

j = i + 1

n
sgn xi − xj ti′(a) − tj′(a) I Ωij ,

where M = ∑i = 1
n − 1 ∑j = i + 1

n I Ωij . We propose to estimate the transformation parameter, a, 

as the solution to τc(a) = 0, and if this is not attainable, we take it to be the minimizer of 

τc(a) . Once a is estimated, the standard Cox proportional hazard model that requires quasi-

independence can be applied to T ′(a), X , in place of {T, X}, to estimate β. Specifically, we 

obtain β  by maximizing the modified partial likelihood
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∏
i = 1

n λ xi ∣ zi, xi > ti′(a)
∑tj′(a) ≤ xi ≤ xjλ xi ∣ zj, xj > tj′(a)

= ∏
i = 1

n exp β⊤zi
∑tj′(a) ≤ xi ≤ xjexp β⊤zj

.

We use the simple nonparametric bootstrap approach to estimate the variance of β . We refer 

to this approach based on the conditional Kendall’s tau as the CK approach.

2.2. Adjusted transformation via Cox model

Our second approach exploits the fact that for use of the Cox model, we require the weaker 

assumption of quasi-independence between T′(a) and X conditional on Z. We propose an 

estimation procedure that inverts the test for conditional quasi-independence proposed by 

Jones and Crowley (1992). Specifically, we consider a Cox model for X that adjusts for 

left-truncation by T′(a), and includes Z and T′(a) as covariates. Following the arguments 

in Jones and Crowley (1992), for a fixed a, the estimated regression coefficient T′(a) can 

be used to test for conditional quasi-independence between T′(a) and X given Z, while 

adjusting for left truncation of X by T′(a). Thus, we propose to estimate a as the value 

that minimizes the absolute value of the regression coefficient for T′(a). We refer to this 

covariate-adjusted approach as the Cox1 approach.

This approach is well-suited to a monotone dependence relationship between X and T. 

To accommodate non-monotone dependence structures, we consider including non-linear 

functions of T′(a) as covariates. Defining W{T′(a)} as a q × 1 covariate vector constructed 

from T′(a), we estimate a as the value that yields the minimum α , where

λ x ∣ W T ′(a) , Z = λ0(x) exp α⊤W T ′(a) + β⊤Z , (4)

α is a q × 1 vector of regression coefficients and ‖ · ‖ is the l2 norm of a vector. Given a, the 

observed data are {ti(a), xi, wi(a), zi|xi ≥ ti}, i = 1, …, n, where wi(a) = wi ti′(a) . We estimate 

a by maximizing the partial likelihood

∏
i = 1

n exp α⊤wi(a) + β⊤zi
∑tj′(a) ≤ xi ≤ xjexp α⊤wi(a) + β⊤zi

with respect to α and β for each a and selecting the value of a associated with the minimum 

α . We take the associated β  as the estimate for β. We refer to this covariate-adjusted 

approach as the Cox2 approach.

The Cox2 approach offers flexibility as the covariate functions, W{T′(a)}, may be selected 

to accommodate any plausible hazard function association structure between X and T. 

For example, W{T′(a)} = [T′(a), {T′(a)}2]⊤ accommodates a quadratic association. 

Discretization of T′(a) can be implemented to accommodate skewness in T′(a) and offers 

a more robust modeling approach. For example, W{T′(a)} could be indicator variables that 

indicate whether T′(a) falls into different percentile based intervals. In the following, we 
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consider W T ′(a) = TI′ (a), TII′ (a) ⊤, where TI′ (a) and TII′ (a) indicate the first and second 

tertiles of T′(a).

2.3. Goodness of fit assessments for the linear transformation model

We propose a two-step goodness-of-fit procedure. We first implement the procedure 

proposed in Chiou et al. (2019). Under the transformation model, it follows that 

X − T = − (1 + a)E T ′(a) + (1 + a)X − (1 + a) T ′(a) − E T ′(a) : = γ0 + γ1X + ϵ, which still 

holds for truncated data X ≥ T. Thus, we assess the model by regressing (X − T) on a 

piecewise linear function of X. If the linear transformation model in (2) holds, the piecewise 

model will not be favored over the linear model. If the piecewise linear model is favored, 

we proceed to fit separate transformation models for the corresponding pieces as proposed 

in (3). Estimates of the coefficients can be obtained nonparametrically by adjusting for left 

truncation of X − T by zero and under the assumption of a symmetric error distribution (e.g., 

Tsui et al., 1988; Karlsson, 2006). We demonstrate the goodness-of-fit procedure in Section 

5.

If the goodness-of-fit assessment in the first step does not reject the linear transformation 

model, we proceed with a second assessment. To test the adequacy of a particular method, 

we include the estimated T′(a) from that particular method as a covariate in the form, 

W T ′(a) = TI′ (a), TII′ (a) ⊤, in addition to other covariates, in (4), with adjustment for left 

truncation by T′(a). If the ℓ2 norm of the coefficient α in equation (4) is not small or 

the p-value for the regression coefficient W{T′(a)} is small, we conclude that residual 

dependence between the event time and transformed truncation time may persist even after 

the transformation. We can address this by including W{T′(a)} as a covariate in the model 

to accommodate the residual dependence, in the spirit of the Jones and Crowley approach 

that adjusts for T, and interpret the results accordingly.

3. Transformation approach for censored data

In the presence of right censoring, the event time X is not fully observed, and the 

transformation approach in Section 2 cannot be applied directly. Let C denote the censoring 

time measured from the same time origin as X. We assume that censoring may happen 

before the truncation, i.e., Pr(T ≤ C) < 1. Subjects are sampled only if Y ≥ T, where Y = 

min(X, C) is the observed event time. Conditional on Z, we assume that C is independent 

of (X, T). Other censoring models exist, and we refer to Qian and Betensky (2014) for a 

detailed discussion. Let Δ = I(X ≤ C) be the event indicator. Under left truncation and right 

censoring, the observed data consist of n independent and identically distributed copies of 

{Y, T, Δ, Z|Y ≥ T}, i.e., {(yi, ti, δi, zi|yi ≥ ti), i = 1, …, n}. Since the transformation model 

specifies the dependence structure between T and X, and not T and Y, it is not possible to 

apply the transformation model to (T, Y). Instead, we apply the model to the uncensored 

data and adjust for the accompanying selection bias using inverse probability of censoring 

weighting in the estimation.
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3.1. Unadjusted transformation via conditional Kendall’s tau

We extend the estimating procedure in Section 2.1 to censored data by inverting a weighted 

version of conditional Kendall’s tau test, which adjusts for the selection of uncensored 

observations by inverse probability weighting of censoring. This version of Kendall’s tau 

was proposed by Austin and Betensky (2014) and has the form τc′(a) = Uc(a)/UM(a), where

Uc(a) = n
2

−1
∑

i = 1

n − 1
∑

j = i + 1

n sgn yi − yj ti′(a) − tj′(a) I ηij(a)
SC yi SC yj / SC ti′(a) SC tj′(a)

,

UM(a) = n
2

−1
∑

i = 1

n − 1
∑

j = i + 1

n I ηij(a)
SC yi SC yj / SC ti′(a) SC(tj′(a)

,

ηij(a) = max ti′(a), tj′(a) ≤ min yi, yj ∩ δiδj = 1 , and SC(u) is the Kaplan–Meier estimator for 

SC(u) = Pr(C > u). Under the assumption that C is independent of (X, T), SC(u) can be 

obtained by adjusting for quasi-independent left truncation and independent right censoring. 

The estimator of the transformation parameter a is the minimizer of τc′(a) .

Upon successful estimation of a, we continue to use the properly weighted uncensored 

observations, along with the corresponding latent independent truncation times, to estimate 

β. Under the Cox proportional hazards model, the weighted partial likelihood is expressed as

∏
i = 1

n exp β⊤zi SC
−1 yi

∑tj′(a) ≤ yi ≤ yjδj exp β⊤zj SC
−1 yj

δi

, (5)

and β  can be obtained by maximizing it.

3.2. Adjusted transformation via Cox model

We continue to restrict to the uncensored event times when covariate-induced dependence 

between the truncation and event times is suspected. As in Section 3.1, we use SC
−1( ⋅ ) as the 

sampling weight to adjust for selection bias due to restriction to the uncensored events. The 

modified Cox proportional hazards model in (4) leads to the weighted partial likelihood

∏
i = 1

n exp α⊤wi(a) + β⊤zi Sc
−1 yi

∑tj′(a) ≤ yi ≤ yjδj exp α⊤wj(a) + β⊤zj Sc
−1 yj

δi

. (6)

As in Section 2.2, we estimate a as the value associated with the minimum α . The estimate 

of β is the value associated with the minimum of α  (i.e., at the estimated a).

Even if SC(·) is not identifiable on the whole support of C and only the conditional survival 

function SC(t)/SC(cmin) is identifiable for t > cmin = min(y1, ⋯, yn), the estimator τc′(a) and 
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the weighted partial likelihoods in equations (5) and (6) remain valid since the estimator 

or the likelihood expressions remain the same no matter whether SC(t) or SC(t)/SC(cmin) is 

used.

4. Simulation studies

4.1. Dependence not induced by covariates

We generate the covariate, Z, from a standard normal distribution. Given Z, the event times 

were then generated from the Cox proportional hazards model

λ(x ∣ z) = λ0(x) exp(βz), (7)

with β = 1 and λ0(x) equal to a Weibull hazard function with shape 2 and scale 0.5. The 

latent quasi-independent truncation time T′(a) was generated from an independent gamma 

distribution with shape ϕ and rate 2. The dependent truncation time, T, was then constructed 

by inverting the linear transformation model: T = (1 + a)T′(a) − aX. We repeated this 

process until we obtained n = 200 or 500 observations that satisfied T ≤ Y = min(X, C), 

where the censoring time C was an independent exponential distribution with mean 1/r. The 

parameters (ϕ, a, r) were chosen to achieve a truncation proportion of 30%, two levels of 

post-truncation association measured by the conditional Kendall’s tau (Martin and Betensky, 

2005) between (T, X)|T ≤ Y of τ = 0.2, 0.35 and four levels of censoring after truncation 

of 0%, 15%, 30% and 50%. We repeated each setting 1000 times. Supplementary Table S1 

presents the values for (ϕ, a, r) under each scenario.

For each repetition, we applied the proposed methods from Section 3. For comparison, 

we fit a conventional Cox proportional hazards regression adjusting for quasi-independent 

left truncation (labeled “Cox QI”), as well as the same model with the truncation 

time T included as an additional covariate (Jones and Crowley, 1992) (labeled “JC”). 

Supplementary Table S2 presents the average bias for the transformation parameter 

estimates. The small bias indicates that our method is able to recover the latent truncation 

times T′(a). Table 1 summarizes the simulation results for the regression coefficient. In 

all scenarios, the proposed estimators are virtually unbiased, whereas the conventional Cox 

model and Jones and Crowley’s method display moderate to substantial bias that is related 

to the magnitude of the association between T and X, as measured by τ. As the censoring 

rate increases, the bias for these two comparison methods decreases. This is expected since 

right censoring dilutes the strength of dependence between truncation time and event time 

in the observable region (see also Chiou et al., 2019). In Table S3, where we increased 

the number of replications to 10,000, our proposed methods are virtually unbiased in all 

scenarios when the sample size n = 200. In contrast, the two comparison methods exhibit 

moderate to heavy bias. The empirical bias for our proposed methods generally decreases as 

the censoring rate increases to the 30% level. As the censoring rate increases to 50%, the 

empirical bias for our proposed methods increases slightly. This is because the censoring 

impacts our proposed methods through both the estimation of SC(·) and the estimation of 

transformation parameter a. As the censoring rate increases, the estimates of SC(·) and thus 

the inverse probability weight are improved, while the estimate of transformation parameter 

a that involves uncensored observations only may be less accurate.
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The right half of Supplementary Table S5 presents the results of tests of conditional 

independence between X and T given covariate Z. Conditional independence between T 
and X given Z is rejected for most of the simulated data sets, which explains why the 

conventional Cox proportional hazard model adjusting for independent truncation yields 

large bias for β . Jones and Crowley’s method is worse in terms of finite sample performance 

than the Cox proportional hazards model ignoring the dependence of the truncation times 

in this particular simulation scenario. The substantial bias in Jones and Crowley’s estimates 

arises because the simulation model is not consistent with Jones and Crowley’s model. 

Furthermore, Jones and Crowley’s approach does not adjust for the dependent truncation in 

its risk-set construction.

The average standard errors in Table 1 are obtained from a nonparametric bootstrap with 

500 bootstrap samples. They are close to the corresponding empirical standard errors, 

with better agreement for n = 500 than for n = 200. Furthermore, the proposed estimator 

yields empirical coverage probabilities that are generally close to the nominal level of 95%, 

suggesting that the normal approximation for β is appropriate. The coverage probabilities 

from the conventional Cox model and Jones and Crowley’s method are much lower than 

95%; this is expected given their biased estimation of β.

We also investigated the empirical powers of the proposed methods. With the true value of 

β = 1, we considered the 1-sided hypothesis test of H0 : β = 0.8 v.s. H1 : β > 0.8. The 

power analysis for the simulation setup in Section 4.1 is summarized in Table S4 in the 

supplementary materials. As seen in Table S4, the power of the three proposed methods does 

decrease somewhat as the censoring rate increases. The power of the Cox model assuming 

independent truncation is much lower than that of the proposed methods, especially under 

heavier dependent truncation. The Jones & Crowley method has even lower power than the 

Cox model assuming independent truncation. This is not surprising since both of the two 

comparison methods display negative biases in their estimates for β as seen in Table 1, with 

that of Jones & Crowley’s method being larger in magnitude (i.e., it is closer to or less than 

the null of 0.8). Furthermore, the power of the two comparison methods increases in general 

as the censoring rate increases. This is due to the decrease in negative bias under higher 

censoring rates. As expected, the power increases as the sample size increases.

4.2. Dependence induced by covariates

The dependence between truncation and event times might be induced, in part, by covariates. 

To study the performance of the proposed methods in this setting, we considered a scenario 

in which X and T′(a) are dependent unconditional on Z, but quasi-independent conditional 

on Z. Note that if this model held for X and T, the dependence could be fully addressed 

using a regression model that adjusted for Z. We again generated X from Model (7), but 

now took λ0(x) to be a Weibull hazard function with shape 5 and scale 1. Given the same 

Z, T′(a) was also generated from a Cox model, but with a Weibull baseline hazard function 

with shape ϕ and scale 1. Since X and T′(a) were generated using the same Z, they are 

correlated through Z. We used the transformation model T = (1 + a)T′(a) − aX to generate T 
and repeated this process until we obtained n = 200 or 500 observations that satisfied T ≤ Y 
= min(X, C), where the censoring time C is an independent Weibull distribution with shape 
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r and scale 1. The parameters (ϕ, a, r) were chosen to achieve 50% truncation proportion, 

two levels of post-truncation association measured by conditional Kendall’s tau between (T, 

X)|T ≤ Y of τ = 0.2, 0.35 and two levels of censoring after truncation at 0% and 15%. Each 

setting was repeated 1000 times. Supplementary Table S1 presents the values for (ϕ, a, r) 
under each scenario.

The average bias for the transformation parameter estimates and results for the regression 

coefficient are summarized in Supplementary Table S6 and Table 2, respectively. The 

CK estimator displays mild to moderate bias for both the transformation parameter and 

regression coefficient. This is expected because the CK estimator does not account for Z in 

estimating the parameter a, and thus will not be able to recover the true latent truncation 

time when the dependence between T′(a) and X is induced by covariate Z. However, the 

biases are not as severe as those from the conventional Cox model (Cox QI) that falsely 

assumes independent truncation or from Jones and Crowley’s method (JC) (Jones and 

Crowley, 1992).

On the other hand, the Cox adjusted transformation approaches, Cox1 and Cox2, which 

estimate a through a Cox model that uses T′(a) as the truncation variable and adjusts for Z, 

yield virtually unbiased estimates for both the transformation parameter and the regression 

coefficient under all scenarios. Also, the truncation rate does not appear to have much 

impact on the performance of the proposed Cox adjusted transformation approaches in terms 

of empirical bias, as seen by comparing results in Tables 1 and 2, in which the truncation 

rates are 30% and 50%, respectively. More important than the truncation rate is the strength 

of dependence between X and T.

For all three proposed methods, the average standard errors obtained from the bootstrap 

approach with 500 bootstrap samples are reasonably close to the empirical standard errors. 

However, the empirical coverage probabilities of the regression coefficients are closer to 

the anticipated level of 95% for the two adjusted transformation approaches than for the 

conditional Kendall’s tau estimator. Since the Cox adjusted approaches perform well in 

scenarios with and without the covariate induced dependence in X and T′(a), our results 

suggest that they are more robust than the conditional Kendall’s tau estimator and should be 

preferred.

4.3. Sensitivity analysis to model misspecification

The performance of the proposed estimator when the linear transformation model does not 

hold is also of interest. In one such case, we generated X and T under a Clayton copula 

(Clayton, 1978) with parameter θ. The Kendall’s tau between X and T equals θ/(θ + 2). 

The marginal distributions of X and T are derived from equation (7). Specifically, we took 

λ0(x) to be the Weibull hazard function with shape 2 and scale 0.75 for generation of X, 

and λ0(t) to be the Weibull hazard function with shape ϕ and scale 1.0 for the generation of 

T. We used two levels of post-truncation dependence as measured by conditional Kendall’s 

tau values of 0.2 and 0.35. We generated censoring times from an independent Weibull 

distribution with shape r and scale 1. The process was repeated until we obtained n = 

200 or 500 observations that satisfied T ≤ Y = min(X, C). The parameters, p and r, were 

chosen to maintain 40% and 60% truncation proportion at two levels of censoring 0% and 
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15%, respectively. The values of parameters (ϕ, θ, r) are listed in Supplementary Table S1. 

We generated 1000 such datasets. Figure 2 displays scatter plots of X − T versus X with 

no censoring, for randomly generated samples of 500 observations with X > T. The post-

truncation conditional Kendall’s tau is 0.2 (left panel) or 0.35 (right panel). Our proposed 

goodness-of-fit test in Section 2.3 is not suitable in detection of model misspecification here 

as linearity between X − T and X holds approximately in the observable region.

Table 3 lists the values of the minimized parameter averaged across simulations for each 

of the three proposed methods, i.e., conditional Kendall’s tau under CK estimator, the 

coefficient α in equation (4) under Cox1, and the ℓ2 norm of α in equation (4) under Cox2. 

We also tested the existence of the residual quasi-dependence for each of the three proposed 

methods. We considered a Cox proportional hazard model adjusting for independent left 

truncation T′(a), and included the first and second tertiles of T′(a), i.e., TI′ (a) and TII′ (a), 
as covariates in addition to other covariates Z. If conditional independence between X 
and T′(a) given Z holds, then the regression coefficients of TI′ (a) and TII′ (a) will be zero. 

We use a global likelihood ratio test with two degrees of freedom to assess whether the 

regression coefficients of TI′ (a) and TII′ (a) are significantly different from zero. We reported 

the power of the test in Table 3. When τ = 0.35 and there is no censoring, the ℓ2 norm 

of α under Cox2 is 0.391 (or 0.482) for n = 200 (or 500), which suggests that residual 

dependence between the failure time and transformed truncation time may still exist after 

the transformation. When τ = 0.35, censoring is 0% and n = 500, the power of the test 

for residual quasi-dependence is 100%, 100% and 92.5% for the CK estimator, Cox1, and 

Cox2, respectively, which explains why these methods yield large bias in this simulation 

scenario (Table 4). In addition, we checked if the transformation parameter a is close to 

−1, in which case the transformation model would not be appropriate. It turns out that 

transformation model is not appropriate only for a small fraction of simulated datasets. The 

simulation results in Table 3 suggest the importance of goodness-of-fit assessment for the 

linear transformation model as proposed in Section 2.3, especially when the strength of 

correlation between X and T is strong.

Table 4 summarizes the average biases for the regression coefficient from the proposed 

estimators. The proposed estimators yield mild bias in some cases due to the 

misspecification of the dependent structure. In general, the stronger the association between 

X and T is, the larger the bias. Among the three proposed estimators, the adjusted 

transformation via Cox model estimators generally have relatively smaller biases than 

the CK estimator, suggesting that the adjusted transformation estimators are more robust 

to model misspecification than the CK estimator. The standard errors obtained from the 

nonparametric bootstrap approach with 500 bootstrap samples yield reasonable estimates 

when comparing to their empirical counterparts. When the conditional Kendall’s tau in 

Clayton copula is 0.35, the biases for all three proposed estimators decrease as censoring 

rate increases. This is because the misspecified dependence structure is diluted by the 

censoring, as there are fewer pairs of uncensored (X, T) available for the transformation 

model estimation procedure. When the association between X and T is moderate, i.e., τ 
= 0.2, the biases from the proposed estimators are smaller than that of the conventional 

Cox model that falsely assumes quasi-independence and than that of the Jones & Crowley 
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method; with the bias for Jones & Crowley’s method being smaller than that of the 

conventional Cox model ignoring dependent truncation. As the strength of the dependence 

becomes stronger, the biases of the proposed estimators can be slightly larger than those 

from the conventional Cox model, but still smaller than those from Jones & Crowley’s 

method. This is not surprising, given the detectable lack of fit of the transformation model 

to this copula scenario under heavy dependence (Table 3). The larger bias from Jones and 

Crowley’s approach compared to that of the proposed methods when τ = 0.35 suggests that 

the Jones and Crowley model adjusts for less of the dependence deriving from the copula 

model than does the transformation model.

As a second example of model misspecification, we applied our proposed methods and the 

two comparison methods to 1000 randomly generated datasets from a Jones and Crowley’s 

model λ(x|z) = λ0(x) exp(αt + βz) with conditional Kendall’s tau 0.20 and n = 200. We 

found that Jones and Crowley’s approach yields unbiased estimate for β = 1, while the 

estimate for β from Cox proportional hazards regression adjusting for quasi-independent 

left truncation has significant bias. The proposed methods also do not perform well because 

this simulation scenario does not satisfy the transformation model. We are able to identify 

this through our goodness of fit tests. Specifically, the global likelihood ratio test as used in 

Table 3 rejected the conditional independence between X and T′(a) for the proposed CK, 

Cox1 and Cox2 approaches 100%, 99.9% and 97.3% times out of the 1000 replications, 

respectively.

Although these are just two examples of misspecified models, they illustrate the usefulness 

of the tools that are available for goodness of fit, and teach us that we should be more 

concerned about deviations from the model in the presence of light censoring versus heavy 

censoring.

5. Applications to Alzheimer’s disease studies

First, we applied the proposed methods to a National Alzheimer’s Coordinating Center 

(NACC) autopsy sample, in which the event time of interest is subject to right truncation 

(Section 5.1). Next, we illustrated the proposed methods through a NACC cohort, in which 

the event time of interest is left-truncated and right-censored (Section 5.2).

5.1. An NACC autopsy sample subject to right truncation

The NACC database contains numerous clinical, neuropsychological and demographic 

variables on thousands of participants from Alzheimer’s disease research centers across the 

United States (Beekly et al., 2007). Participants undergo a baseline visit and approximately 

annual follow-up visits in which a Uniform Data Set is completed, including demographic, 

standard motor, behavioral, functional and neuropsychological assessments. Participants also 

have the opportunity to donate their brain upon death for research purposes, which include a 

neuropathological evaluation. We focus on the 2005–2014 autopsy sample from the NACC 

database, which consists of 1402 subjects satisfying: no primary neuropathological diagnosis 

other than Alzheimer’s disease neuropathological changes at autopsy, no impairment due 

to alcohol use, depression, medical use, or medical illness, available Braak stage for 

neurofibrillary degeneration and density of neocortical neuritic plaques, age of death ≥ 50 
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years. The 215 patients with missing information in either APOE genotype or education 

were removed from the analysis.

It is of interest to analyze the time from NACC entry to death (in years), and in particular, its 

association with age at entry (in years), years of education, sex and APOE e4 genotype. This 

time is right-truncated by the time from NACC entry to data extraction. The untruncated 

population here are NACC participants who had or will have an autopsy. Among those who 

ultimately have an autopsy, we lose those with longer survival times. To accommodate right 

truncation, we reverse the time scale following the procedure outlined in the beginning of 

Section 2 to yield left truncation. We rejected the null hypothesis of quasi-independence 

(τc = 0.090, p-value p < 0.001), though the magnitude of the association is notably small. 

Furthermore, based on the global likelihood ratio test described in the Supplementary 

Material, we rejected the conditional independence between time to death and time to data 

extraction given covariates (p < 0.001).

We implemented our proposed methods and the conventional Cox model that falsely 

assumes quasi-independence. We carried out the procedures described in Section 2.3 to 

assess the goodness-of-fit of the linear transformation model. Specifically, the piecewise 

truncated regression yields chi-squared p-values of 0.064 and < 0.001 for one and two 

breakpoints, respectively. This suggests that the linear transformation model may be 

inadequate for this data. Therefore, we divided the full data into three equally populated 

segments: X ∈ (0, 2.734), X ∈ [2.734, 5.468) and X ∈ [5.468, ∞) and applied the 

transformation model separately to each of the three subsets.

It is also possible that there remained residual dependence even after application of the 

transformation model. We assessed this by including T′(a) from each of three proposed 

methods in the form W{T′(a)} = (W1, W2)⊤ in equation (4), in addition to the other 

covariates (i.e., gender, age, education and APOE genotype). W1 and W2 are 0–1 variables 

with W1 = 1 if T′(a) falls under the first tertile and W2 = 1 if T′(a) falls between the 

first and the second tertiles. For the CK approach, the regression coefficients of W1 and 

W2 are α1 = − 0.014 (p = 0.84) and α2 = 0.254 (p < 0.001 , and the ℓ2 norm of α = α1, α1
⊤

is α = 0.255. For the Cox1 approach, α1 = − 0.223 (p < 0.001) and α2 = 0.326 (p < 0.001), 
and α = 0.395. For the Cox2 approach, α1 = 0.068 (p = 0.35) and α2 = 0.133 (p = 0.066), 
with α = 0.150. These results suggest that there is residual dependence based on the CK 

and Cox1 approaches. There is possible residual dependence for the Cox2 approach, with 

relative small values of α and moderate to large p-values.

We implemented our proposed methods and the conventional Cox model that falsely 

assumes quasi-independence; results are presented in Table 5. We calculated standard errors 

using the simple bootstrap with 500 samples. Since the analysis was carried out in the 

reverse time scale, a positive regression coefficient is associated with a lower risk of death. 

Interestingly, the results are remarkably similar across the four different models: the Cox 

model assuming independent truncation and the three proposed transformation regression 

models. This is likely due to the low level of dependence between truncation and event times 

(τ = 0.09). It is also possible that the linear transformation model does not fully capture the 
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dependence between truncation and event times, and thus does not appreciably impact the 

estimates.

5.2. An NACC cohort subject to left truncation and right censoring

In another NACC study, the primary aim was to assess how APOE genotype, gender, and 

other baseline variables are associated with the time from onset of cognitive decline to 

death. The NACC cohort includes both incident and prevalent cases of cognitive decline. 

Enrollment in our sample began in September 2005, and follow-up ended in February 

2017. The prevalent cases, who entered NACC with a diagnosis of cognitive decline, must 

be treated as left-truncated for analysis of time from onset of cognitive decline to death, 

as they had to live long enough to enter NACC. The untruncated population here are 

individuals who had onset of cognitive decline. We lose those who did not live long enough 

to enter NACC, i.e., those with shorter survival times. As some subjects dropped out during 

follow-up or were alive at the end of follow-up, the event time was also subject to right 

censoring. Of the 7436 participants, 3192 died by the end of the study. Quasi-independence 

between the truncation time and the failure time is rejected with the conditional Kendall’s 

tau test (τc = 0.229, p < 0.001). Covariates of interest include participant’s age of onset of 

cognitive decline (average 72 years), gender (51.1% male), education level (average 15.1 

years), APOE e4 genotype (47.3% with e4 allele), the existence of maternal (34.3%) and 

paternal (17.8%) history of cognitive decline.

We applied our goodness-of-fit assessment using piecewise truncated regression and found 

that one and two breakpoints were preferred over the fully linear model (both p-values < 

0.001). Because of this, we divided the full data into three segments formed by the two 

breakpoints: X ∈ (0, 6.778), X ∈ [6.778, 13.472) and X ∈ [13.472, ∞). The transformation 

model was then applied separately to each of the three subsets. After obtaining Sc( ⋅ ), we 

estimated the transformation parameters, the latent truncation times T′(a), and the regression 

coefficients β based on the pseudo likelihood in equations (5) and (6). The values of the 

minimized objective functions for the three proposed methods are τ(a) = − 0.0098 for the 

CK approach, α = 1.7 × 10−6 for the Cox1 approach, and α = 0.040 for the Cox2 approach. 

These are all close to zero, indicating that we have obtained solutions.

We next assessed whether there is any residual dependence between the event time and 

transformed truncation time under the piecewise truncated regression models in Table 6. For 

the CK approach, the regression coefficients of W1 and W2 are α1 = 1.326 (p‐value p < 0.001)
and α2 = 1.426 (p = 0.002), and α = 1.947. For the Cox1 approach, α1 = − 0.092 (p = 0.20)
and α2 = 0.436 (p < 0.001), with α = 0.446. These results suggest that residual dependence 

may still exist after the transformation based on the CK or Cox 1 approaches. For the 

Cox2 approach, α1 = − 0.036 (p = 0.75) and α2 = − 0.018 (p = 0.88), which suggests that 

transformation model based on the Cox2 approach successfully removes the dependent 

truncation.

The results from these analyses are presented in Table 6, where the standard errors were 

obtained from 500 bootstrap samples. Older age of onset of cognitive decline is associated 
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with a higher risk of death, as suggested by the Cox2 approach (β = 0.047, p < 0.001). The 

Cox model assuming independent truncation produced a significant association between 

risk of death and paternal history of cognitive decline, gender and education, however, the 

Cox2 estimates of these associations are quite different in magnitude and sign, and are 

not significant. As shown in the simulations, when there is even moderate censoring, there 

may be a loss of power. The Cox2 approach suggests that maternal history of cognitive 

decline is associated with an increased risk of death (β = 0.252, p = 0.007), and APOE e4 

genotype is associated with a decreased risk of death (β = − 0.248, p = 0.026). It is possible 

that people with APOE e4 were aware of their family history of cognitive decline and thus 

received diagnoses of cognitive decline earlier in the course of their disease progression, 

making APOE e4 appear protective. These findings differ in magnitude and direction from 

those from the independent truncation Cox model, emphasizing the importance of properly 

accounting for dependent truncation.

6. Discussion

We have proposed a transformation model based regression approaches when the truncation 

and event times are dependent. Instead of making strong assumptions on the distribution of 

truncation time or event time, we assumed that there is a latent quasi-independent truncation 

time that satisfies the transformation model of Efron and Petrosian (1994). Two general 

approaches were proposed to estimate the transformation parameter depending on whether 

or not covariates induce the dependence between truncation and event times: one based on 

the conditional Kendall’s tau and one based on the Cox model. Through simulations, we 

found that the two proposed approaches have good finite sample performance, and the Cox 

model based approach (Cox2) that accounts for covariate induced dependence is more robust 

than the conditional Kendall’s tau approach (CK). In practice, when there is moderate to 

strong correlation between the event time and the truncation time, it is important to carry 

out the goodness-of-fit assessment for the linear transformation model as proposed in our 

paper and illustrated in our simulation studies and NACC data applications. Our approaches 

use the uncensored event times and adjust for the selection bias through inverse probability 

weighting by the censoring distribution. The proposed methods allow great flexibility in 

the sense that the mechanism can be easily adopted into other regression models. As the 

proposed method deals only with time-invariant covariates, it will be interesting to extend 

it to allow for exogenous time-dependent covariates. Another interesting extension is to 

consider alternative transformation models (Chiou et al., 2019).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Illustration of left-truncated and right-censored data; X: event time of interest, T: left 

truncation time, C: right censoring time; black circle: initial time, white circle: calendar 

time of enrollment to the study, black square: calendar time of the occurring of event of 

interest. The gray segments are time intervals that are not observed. The event time of 

subject 3 is left truncated and unobservable since the event of interest happens before study 

enrollment. The event times of subjects 1, 2, and 4 are left truncated since the event of 

interest has not happened by the time of study enrollment. The event times of subjects 2 and 

4 are right-censored. The event time of subject 5 is left truncated since the initial time of the 

event is later than the end of study.
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Fig. 2. 
Scatter plots of X − T vs. X given X > T. The plot on the left has post-truncation conditional 

Kendall’s tau of 0.2, and that on the right has conditional Kendall’s tau of 0.35.

Qian et al. Page 20

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2022 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Qian et al. Page 21

Table 1.

Simulation results under dependence not induced by covariates
†

n = 200 n = 500

cens τ Method bias ESE ASE CP bias ESE ASE CP

0% 0.2 Cox QI −0.079 0.104 0.102 87.0 −0.083 0.061 0.063 76.2

JC −0.114 0.109 0.107 81.3 −0.119 0.064 0.066 58.3

CK 0.006 0.106 0.103 95.7 0.002 0.062 0.063 96.0

Cox1 0.004 0.108 0.105 95.4 0.001 0.064 0.065 95.6

Cox2 0.007 0.109 0.113 96.3 0.003 0.064 0.066 95.6

0.35 Cox QI −0.278 0.097 0.097 23.3 −0.282 0.057 0.059 0.7

JC −0.427 0.109 0.108 4.9 −0.434 0.065 0.066 0.0

CK 0.006 0.106 0.103 95.7 0.002 0.062 0.063 96.1

Cox1 0.004 0.108 0.105 95.4 0.001 0.064 0.065 95.5

Cox2 0.006 0.114 0.121 96.9 0.003 0.064 0.067 95.5

15% 0.2 Cox QI −0.068 0.107 0.105 89.3 −0.077 0.063 0.064 79.4

JC −0.101 0.112 0.110 84.8 −0.111 0.065 0.067 64.2

CK 0.010 0.110 0.108 95.6 0.001 0.065 0.066 96.4

Cox1 0.007 0.113 0.110 95.3 0.000 0.065 0.067 96.3

Cox2 0.011 0.112 0.118 96.2 0.002 0.065 0.068 96.5

0.35 Cox QI −0.221 0.101 0.101 42.9 −0.229 0.060 0.061 6.3

JC −0.364 0.112 0.112 14.2 −0.375 0.067 0.067 0.1

CK 0.007 0.109 0.107 96.0 0.000 0.065 0.065 96.0

Cox1 0.004 0.111 0.108 95.6 −0.001 0.067 0.067 96.1

Cox2 0.009 0.112 0.120 96.9 0.001 0.066 0.067 96.4

30% 0.2 Cox QI −0.060 0.105 0.107 91.6 −0.061 0.068 0.067 82.8

JC −0.084 0.109 0.113 85.4 −0.093 0.068 0.068 71.4

CK −0.002 0.112 0.114 95.5 −0.001 0.071 0.071 95.4

Cox1 −0.005 0.114 0.116 95.4 −0.002 0.071 0.072 95.3

Cox2 −0.003 0.114 0.117 95.5 −0.001 0.071 0.072 96.1

0.35 Cox QI −0.188 0.097 0.109 56.9 −0.188 0.065 0.068 20.4

JC −0.324 0.113 0.117 20.2 −0.326 0.070 0.070 8.0

CK −0.004 0.110 0.115 95.6 −0.002 0.071 0.071 95.6

Cox1 −0.007 0.111 0.117 96.1 −0.003 0.071 0.072 96.1

Cox2 −0.003 0.111 0.117 96.2 −0.002 0.071 0.072 95.7

50% 0.2 Cox QI −0.046 0.107 0.110 92.5 −0.048 0.070 0.067 87.3

JC −0.065 0.109 0.115 90.2 −0.069 0.072 0.070 80.3

CK −0.007 0.120 0.119 93.6 −0.005 0.075 0.073 93.2

Cox1 −0.011 0.121 0.121 94.1 −0.007 0.076 0.074 93.8

Cox2 −0.004 0.121 0.125 94.0 −0.004 0.076 0.074 93.8

0.35 Cox QI −0.133 0.107 0.108 73.2 −0.137 0.066 0.066 45.2

JC −0.243 0.117 0.119 45.4 −0.248 0.072 0.072 7.8

CK −0.089 0.117 0.119 94.9 −0.006 0.074 0.073 94.0
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n = 200 n = 500

cens τ Method bias ESE ASE CP bias ESE ASE CP

Cox1 −0.013 0.120 0.121 94.7 −0.008 0.075 0.074 94.1

Cox2 −0.008 0.118 0.127 95.4 −0.005 0.074 0.074 94.2

†τ, the post-truncation conditional Kendall’s tau; bias, empirical bias; ESE, empirical standard error; ASE, average of bootstrap standard error 
with size 500; CP, coverage (%) of 95% Wald confidence interval; JC, Jones & Crowley’s method; CK, unadjusted transformation via conditional 
Kendall’s tau; Cox1, adjusted transformation via Cox model with continuous T′(a); Cox2, adjusted transformation via Cox model with the first and 
second tertiles of T′(a).
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Table 2.

Simulation results under dependence induced by covariates
†

n = 200 n = 500

τ Method bias ESE ASE CP bias ESE ASE CP

censoring = 0%

0.2 Cox QI −0.081 0.092 0.097 88.2 −0.083 0.059 0.059 71.5

JC −0.111 0.097 0.102 82.5 −0.114 0.061 0.062 56.2

CK 0.112 0.097 0.102 85.2 0.107 0.062 0.062 63.1

Cox1 0.005 0.111 0.114 96.1 0.002 0.069 0.069 95.2

Cox2 0.008 0.130 0.141 96.4 0.007 0.076 0.086 95.9

0.35 Cox QI −0.294 0.091 0.095 16.3 −0.298 0.057 0.058 0.2

JC −0.449 0.101 0.105 2.4 −0.450 0.063 0.063 0.0

CK 0.076 0.093 0.096 90.8 0.070 0.058 0.058 81.1

Cox1 0.008 0.098 0.102 96.1 0.003 0.062 0.062 96.4

Cox2 0.015 0.114 0.122 96.8 0.007 0.065 0.071 95.1

censoring = 15%

0.2 Cox QI −0.147 0.100 0.103 71.4 −0.152 0.064 0.063 35.4

JC −0.189 0.105 0.109 61.1 −0.195 0.067 0.066 19.6

CK 0.126 0.133 0.140 87.0 0.124 0.080 0.082 70.2

Cox1 −0.016 0.169 0.177 95.3 −0.013 0.106 0.101 95.2

Cox2 −0.017 0.166 0.176 96.2 0.001 0.111 0.129 95.8

0.35 Cox QI −0.201 0.097 0.097 47.9 −0.199 0.060 0.060 12.1

JC −0.340 0.108 0.107 14.4 −0.334 0.065 0.065 0.2

CK 0.053 0.106 0.107 93.8 0.056 0.069 0.066 88.7

Cox1 −0.013 0.115 0.113 95.4 −0.010 0.074 0.071 94.5

Cox2 0.000 0.117 0.128 96.6 −0.005 0.076 0.077 95.1

†τ, the post-truncation conditional Kendall’s tau; bias, empirical bias; ESE, empirical standard error; ASE, average of bootstrap standard error 
with size 500; CP, coverage (%) of 95% Wald confidence interval; JC, Jones & Crowley’s method; CK, unadjusted transformation via conditional 
Kendall’s tau; Cox1, adjusted transformation via Cox model with continuous T′(a); Cox2, adjusted transformation via Cox model with the first and 
second tertiles of T′(a).
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Table 3.

Summary of statistics for goodness-of-fit assessment under the misspecified model
†

n = 200 n = 500

τ cen CK Cox1 Cox2 CK Cox1 Cox2

value of minimized parameter

0.2 0% −0.019 <0.001 0.136 −0.006 <0.001 0.128

15% 0.078 <0.001 0.171 −0.008 <0.001 0.137

0.35 0% −0.044 <0.001 0.391 −0.009 <0.001 0.482

15% −0.018 <0.001 0.234 −0.011 <0.001 0.269

proportion of test with p-val < 0.05

0.2 0% 49.6 15.5 10.4 96.2 42.8 12.2

15% 81.7 66.7 19.3 94.1 76.9 21.2

0.35 0% 99.0 84.3 43.7 100.0 100.0 92.5

15% 93.4 79.5 32.2 99.6 94.6 73.0

proportion of transformation parameter a < −0.95

0.2 0% 0 0 0 0 0 0

15% 0 0.2 0.1 0 0.1 0

0.35 0% 0 0 2.7 0 0 1.0

15% 0 0.3 0.3 0 0 0

†
CK, unadjusted transformation via conditional Kendall’s tau; Cox1, adjusted transformation via Cox model with continuous T′(a); Cox2, adjusted 

transformation via Cox model with the first and second tertiles of T′(a).
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Table 4.

Summary of simulation under the misspecified model
†

n = 200 n = 500

τ Method bias ESE ASE CP bias ESE ASE CP

censoring = 0%

0.2 Cox QI −0.095 0.095 0.095 83.5 −0.100 0.054 0.058 62.4

JC −0.046 0.106 0.105 93.6 −0.056 0.059 0.064 88.9

CK −0.020 0.097 0.097 94.6 −0.027 0.056 0.060 94.9

Cox1 0.007 0.104 0.104 95.8 0.001 0.061 0.064 96.0

Cox2 0.024 0.117 0.124 95.5 0.022 0.062 0.071 97.1

0.35 Cox QI 0.151 0.115 0.114 77.1 0.143 0.075 0.071 51.0

JC 0.500 0.185 0.171 22.2 0.441 0.118 0.107 6.0

CK 0.237 0.130 0.127 56.4 0.226 0.083 0.080 22.3

Cox1 0.193 0.138 0.134 82.9 0.193 0.087 0.084 57.9

Cox2 0.187 0.195 0.195 85.4 0.164 0.155 0.146 78.8

censoring = 15%

0.2 Cox QI −0.109 0.108 0.109 82.2 −0.125 0.068 0.066 54.4

JC −0.050 0.120 0.122 93.9 −0.080 0.075 0.073 81.1

CK −0.062 0.145 0.142 92.6 −0.072 0.089 0.086 86.7

Cox1 −0.036 0.155 0.152 94.6 −0.044 0.095 0.093 91.9

Cox2 −0.031 0.178 0.190 95.4 −0.029 0.097 0.106 95.6

0.35 Cox QI 0.027 0.129 0.131 95.1 0.015 0.079 0.079 95.0

JC 0.197 0.163 0.166 82.6 0.158 0.100 0.099 67.2

CK 0.080 0.170 0.169 94.7 0.070 0.104 0.104 91.1

Cox1 0.090 0.180 0.178 93.8 0.084 0.110 0.109 92.5

Cox2 0.099 0.207 0.214 95.8 0.111 0.130 0.136 91.2

†τ, the post-truncation conditional Kendall’s tau; bias, empirical bias; ESE, empirical standard error; ASE, average of bootstrap standard error 
with size 500; CP, coverage (%) of 95% Wald confidence interval; JC, Jones & Crowley’s method; CK, unadjusted transformation via conditional 
Kendall’s tau; Cox1, adjusted transformation via Cox model with continuous T′(a); Cox2, adjusted transformation via Cox model with the first and 
second tertiles of T′(a).
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