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Complex dynamics in a synchronized cell-free
genetic clock
Lukas Aufinger 1, Johann Brenner 1 & Friedrich C. Simmel 1✉

Complex dynamics such as period doubling and chaos occur in a wide variety of non-linear

dynamical systems. In the context of biological circadian clocks, such phenomena have been

previously found in computational models, but their experimental study in biological systems

has been challenging. Here, we present experimental evidence of period doubling in a forced

cell-free genetic oscillator operated in a microfluidic reactor, where the system is periodically

perturbed by modulating the concentration of one of the oscillator components. When the

external driving matches the intrinsic period, we experimentally find period doubling and

quadrupling in the oscillator dynamics. Our results closely match the predictions of a theo-

retical model, which also suggests conditions under which our system would display chaotic

dynamics. We show that detuning of the external and intrinsic period leads to more stable

entrainment, suggesting a simple design principle for synchronized synthetic and natural

genetic clocks.
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Across biological kingdoms, organisms including bacteria,
fungi, plants, insects, and humans, regulate their day-
night cycle with a circadian clock1,2. The ability to mea-

sure time is presumed to have concrete evolutionary advantages2.
In humans, malfunctions of the circadian clock are associated
with diseases such as sleep disorders3, or cancer4. At the mole-
cular level, circadian clocks are often comprised of coupled
genetic oscillators that are synchronized to external zeitgeber
signals5. Theoretical studies of various circadian oscillators pre-
dict that both forced6,7 and freely coupled systems8,9 exhibit non-
linear phenomena such as splitting, period-doubling, and chaos.
While there is experimental evidence for de-synchronization10

and splitting11, observation of period-doubling and chaos in
circadian clocks have remained elusive due to the experimental
challenges associated with long-term observations of such
systems9.

Experimental investigation of period-doubling and chaos in a
biological organism would require the accurate measurement of
amplitude over many oscillation periods in a potentially fluctu-
ating environment and in the presence of homeostatic regulation
processes. One strategy to circumvent these challenges is to study
minimal synthetic gene oscillators that can be operated in a
controlled and isolated context. Synthetic oscillators have been
previously implemented in bacteria12, mammalian cells13, and in
cell-free batch14,15 or continuous reactions16,17. Such systems
have been used to study synchronization between communicating
cells18,19 and among coupled oscillators20, but also the effects of
partitioning21 and gene expression noise22. Transient oscillations
have been found close to bifurcations23.

Engineered gene oscillators can provide molecular rhythms or
act as biochemical clocks in other contexts than their circadian
counterparts. For instance, the oscillation period of a synthetic
oscillator has been used as an accurate measure of bacterial
growth rate22,24. Cell-free gene oscillators have been utilized to
drive autonomous molecular devices25, control self-assembly
processes26 or spatio-temporal pattern formation19. Previously
established synthetic oscillators were operated without periodic
synchronization to an external signal, however, and thus provided
only an intrinsic measure of time, which lost synchrony with
‘universal time’ after a few periods27.

Here, we investigate the synchronization of a cell-free genetic
oscillator19,20 to an external zeitgeber signal using a microfluidic
reactor16 that was previously employed for rapid prototyping of
gene circuits28. We first verified that the dynamics of the free-
running oscillator are well described by a simple model com-
prised of only four ordinary differential equations (ODEs). We
then tested the effects of periodic forcing on the oscillator within
the model, and found that the system displays period doubling
bifurcations when varying the ratio of the input period to the
period of the free oscillator λ= Tin/T in the simulations.

Experimentally, we realized the external forcing by periodically
adding either a transcriptional repressor (TetR) or an inducer
(aTc), and recording experimental time traces for up to 48 h. For
input periods close to the intrinsic period of the oscillator (λ ≈ 1),
we indeed find evidence of period doubling and even quadrupling
in the forced system. Larger values of λ result in stable 1-cycles
‘entrained’ on the external zeitgeber. Further analysis, aided by
simulations, suggests that with increasing non-linearity in the
biochemical feedback loop, similar driven systems could display
increasingly complex dynamics, including chaos.

Results
ODE model of the oscillator circuit. As shown in Fig. 1a, our
oscillator circuit consists of two regulatory proteins. Sigma factor
σ28 activates the expression of TetR, which in turn represses the

expression of the activator, thereby forming a negative feedback
loop. In the experiment, the dynamics of the system is monitored
by co-expression of the fluorescent reporter proteins mVenus and
mTurquoise2 for the activator and repressor, respectively. To
synchronize the oscillator to an external clock signal, the system
can be perturbed by either adding purified TetR from the outside,
or by inactivating intrinsic TetR via induction with anhydrote-
tracycline (aTc). Already in this coarse-grained picture the system
is constituted of three coupled dynamical variables - activator,
inhibitor, and external signal -, which is one of the requirements
for a system to exhibit complex non-linear dynamics29.

To properly describe the dynamics of the genetic oscillator,
however, it is necessary to explicitly consider the dynamics of the
mRNA molecules (Fig. 1b), which effectively generates the time
delay that is required for sustained oscillations30. The dynamics
of the free oscillator is then described by the following set of four
ordinary differential equations,

_ra ¼ αa
1

1þ ðh=KhÞnh
� δ þ 1

τm;a

 !
� ra; ð1Þ

_a ¼ ra � kTL;a � δ � a; ð2Þ

_rh ¼ αh
1

1þ ðKa=aÞna
� δ þ 1

τm;h

 !
� rh; ð3Þ

_h ¼ rh � kTL;h � δ � h; ð4Þ
which has been used previously for the analysis of similar
systems15,19. The variables ra, a, rh and h denote the concentra-
tions of the activator and inhibitor mRNA and protein species,
respectively. To aid the following discussion, we conceptually
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Fig. 1 Genetic oscillator circuit and experimental setup. (a) Simple and (b)
detailed circuit diagram of the synthetic genetic oscillator consisting of a
negative feedback loop where σ28 acts as activator and TetR acts as
repressor. Our four-variable ODE model (Eqs. (1)–(4)) considers the
concentrations of the two proteins and their respective mRNAs. Protein
expression is monitored via co-expression of fluorescent reporters mVenus
and mTurquoise2, respectively. We can perturb the system either by
inactivating existing TetR by induction with aTc, or by adding purified TetR.
c A microfluidic ring reactor16 was used to maintain the reaction out-of-
equilibrium by periodically exchanging a fraction of the reactor volume with
fresh reagents. By switching between different input reagents, the reactions
can be exposed to an arbitrary series of inputs. d Transfer curves of the two
promoters determined by titrating the regulator protein in bulk. Fitted Hill
parameters with 68% confidence intervals are Kh= 2.2 ± 0.2 nM,
nh= 2.1 ± 0.3, Ka= 115 ± 6 nM, na= 3.4 ± 0.6. N.F.I. Normalized
Fluorescence Intensity.
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distinguish between system parameters that are essentially fixed
properties depending on molecular details, and control para-
meters that can be experimentally tuned relatively easily. With the
exception of τm, system parameters are designated with Latin
letters, while control parameters are written in Greek letters.

The transcription rates αa and αh can be tuned linearly by
adjusting the gene template concentrations16,31 and will therefore
be considered as control parameters. A third control parameter is
given by the dilution rate δ, which, as shown below, defines the
timescale of the system. Experimentally, the reaction is kept out
of equilibrium using a semi-continuously operated microfluidic
ring reactor16. As shown in Fig. 1c, the reactions are maintained
inside ring-like reaction chambers, whose volume is periodically
replaced with fresh reagents and DNA templates. The fraction
that is replaced during one dilution cycle, with a fixed time
interval tint, is called the ‘refresh ratio’ R (0 < R < 1) and can be
used to precisely tune the dilution rate according to (Supple-
mentary Information Section A)

δðRÞ ¼ � lnð1� RÞ
tint

: ð5Þ

It had been previously shown that a reactor operated in semi-
continuous mode can be used to emulate reactions in a
continuously operated flow reactor, provided that tint is
sufficiently small compared to the systems timescale16,28.

The system parameters are the mRNA lifetimes τm,a and τm,h,
and translation rates kTL,a and kTL,h, whose values have been
determined previously32, and the threshold constants Ka and Kh,
and Hill coefficients na and nh, which can be estimated from bulk
titrations (Fig. 1d). As a caveat, one has to consider that
parameters measured in isolation do not necessarily match their
apparent (effective) values in the coupled system33 - for instance,
we do not explicitly account for reactions such as the competition
between σ28 and σ70 for the RNAP core enzyme20,34.

To illustrate the effect of system and control parameters on the
dynamics of the free oscillator, we can consider the nullclines

( _ra ¼ 0, _rh ¼ 0, with _a ¼ 0, _h ¼ 0, and assuming δ≪ 1/τm)

a ¼ αa
δ
� kTL;a � τm;a

1þ ðh=KhÞnh
; ð6Þ

h ¼ αh
δ
� kTL;h � τm;h

1þ ðKa=aÞna
: ð7Þ

Hence, the system parameters describe the shape of the gene
transfer curves, whereas the control parameters define their scale.
As the stability of the fixed point at the intersection of the
nullclines depends on the local shape of the nullclines (cf. the
thorough linear stability analysis described in ref. 15), the control
parameters can be used as bifurcation parameters to tune the
qualitative behavior of the system, whereas the system parameters
define the relative sizes of regions in parameter space correspond-
ing to qualitatively different dynamics. For instance, increasing n
will increase the parameter range that supports sustained
oscillations. In the following, we assume that the system
parameters are uniform for the activator and inhibitor, i.e.,
α≔ αa= αh, n≔ na= nh, kTL≔ kTL,a= kTL,h, τm≔ τm,a= τm,h,
which is a standard approach to simplify the analysis while
preserving the main qualitative features12,35. We note that due to
these simplifications and the assumptions discussed above, we
allowed different values for n and α for the simulations of the free
and forced oscillator, respectively, to obtain a closer qualitative
agreement with our experimental data.

Operation of the free oscillator. To experimentally verify the
predictions of the model, we tested the free oscillator for a wide
range of dilution rates δ and transcription rates α (Fig. 2a). In
good qualitative agreement with the model, we find regimes that
display sustained, damped and strongly damped oscillations with
varying periods. For the simulations, we used α as a global fitting
parameter with a fixed ratio between samples. Reduction of α
leads to a transition from sustained to damped oscillations,
whereas δ mainly affects the period of the oscillations.
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Fig. 2 Dynamics and phase diagram of the free oscillator. a Experimental (full) and simulated (dashed) time traces of the free oscillator for different
refresh ratios R(δ) and DNA concentrations as indicated in b. b Simulated phase diagram of the free oscillator. Color overlay of different metrics as
indicated in the legend reveals regions of sustained, damped and overdamped oscillations. A∞, γ, and τeq are the normalized equilibrium amplitude, damping
ratio, and equilibration time constant for trajectories with less than one detectable maximum, respectively. Experimental data were mapped onto the
diagram using α as a fitting parameter proportional to the DNA concentration. System parameters: n= 3, Ka= 20 nM, Kh= 2 nM, kTL= 0.02 s−1,
τm ¼ 12min. DNA concentrations are 0.1–1 nM (α= 0.3–3 pMs−1) for the circuit plasmids and 2 nM for reporter plasmids.
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We also mapped the oscillator dynamics onto a simulated
phase diagram, as shown in Fig. 2b. To this end, we characterized
the time traces of numerically simulated oscillations by their

equilibrium amplitude A∞ and mean damping ratio γ ¼ yi
yiþ1

D E
calculated from successive maxima yi. Strongly damped oscilla-
tions with less than two maxima were characterized by the
exponential equilibration time τeq. This illustrates that higher
gene expression strength α and higher dilution rates δ favor
sustained oscillations.

Intrinsic timescale of the oscillator. We next investigated the
dependence of the period T of the free oscillator on the model
parameters using a simple form of sensitivity analysis (Fig. 3a). To
this end, we tested the change of the period ΔT in response to a 30%
change in each of the parameters individually9. In agreement with
our naive expectation, the dilution rate δ is found to be the domi-
nant control parameter determining the period of the oscillator T.
The only other relevant parameters are the Hill coefficients na and
nh, and the mRNA lifetime τm, which are fixed system parameters.

We then estimated the oscillator periods from experimental
data using the first maximum of the auto-correlation function
(ACF). An alternative method that involves fitting of a damped
cosine function to the data resulted in essentially the same values
for the periods (Supplementary Fig. 1)36. Figure 3b shows an
example ACF corresponding to sample 4 in Fig. 2a. The
experimental data agrees well with the predictions from our
ODE model for different δ, as shown in Fig. 3c. The discrepancies
at lower dilution rates are likely a result of the low number of
complete cycles in the experimental time traces due to the long
periods. This leads to an overestimation of the experimental
periods, as the system initially has to approach the limit cycle. In
contrast, an analytical solution (Eq. (24) in ref. 35), appears to
more strongly underestimate the periods at lower dilution rate,
probably as a result of the assumption that time traces are
sinusoidal. Phenomenologically, we find that the ODE model

predictions and the experimental data can be well approximated
by the simple equation

TðδÞ � Cπ
δ

; ð8Þ

where C has a value close to 1. Importantly, this allows us to
define the systems timescale based on the dilution rate δ.

External forcing of the genetic oscillator. Next, we investigated
whether we can force the oscillator to adapt to a certain period by
externally supplying a periodic input signal. To this end, we
replaced either the cell extract or the buffer supplied in every k-th
dilution step with extract or buffer supplemented with TetR or
aTc, to repress or activate the expression of σ28, respectively
(Fig. 4). This generates a periodic input signal with a period
Tin= k ⋅ tint and amplitude Ain, that rises instantly and decays
exponentially with rate δ, as monitored with a fluorescent refer-
ence signal (mScarlet-I).

The amplitude of the input signal must be chosen such that it
triggers a sufficiently strong response by the oscillator, but is also
diluted to levels well below the induction threshold sufficiently
fast. For instance, an input signal with amplitude 1 will drop to
(1− R)k= 0.01 after k= 16 dilution steps with a refresh ratio
R= 0.25. Hence, in practice there is a minimum input period,
typically ≈2 h, below which effective forcing becomes challenging
due to the low attainable dynamic range of the input signal.

As shown in Fig. 4, the forced oscillators quickly adapt to Tin
within ≈1–2 cycles for both methods of external driving. While
the amplitude is enhanced for positively forced oscillations, it
decreases for negatively forced oscillations. The phase of the σ28

signal at t= 20 h is shifted by π relative to the input signal for
positive forcing, while the signal is in phase with the external
input for negative forcing. In both cases the system displays
regular 1-cycle oscillations.

As described below, the forced oscillator system can exhibit
more complex dynamics, which can be described with a single
dimensionless bifurcation parameter

λ ¼ Tin

T
� δ � Tin

π
¼ ln ð1� RÞ�k

π
; ð9Þ

which is obtained as the ratio of input period and intrinsic period
given in Eqs. (5) and (8) (with C= 1), respectively. Note that

ca

b

0 5 10 15 20
Time (h)

0AC
F

-1
-0.5

0.5
1

0.5 1 1.5
Dilution Rate�� (1/h)

0

2

4

6

8

10

12

Pe
rio

d 
T 

(h
)

mean +/- SD
data
�/�
ODE model
analytical

�h �a kTL Ka�m Kh na nh �-0.4

0.4

0

0.8
	T

 (h
) 30% decrease

30% increase

Fig. 3 The period of the free oscillator is determined by the dilution rate.
a A sensitivity analysis was performed by analyzing the change in the
period ΔT in response to a 30% change in individual model parameters9.
b Example of an auto-correlation function (ACF) that was used to estimate
experimental periods for both reporters, corresponding to sample 4 in
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of the dilution rate T(δ). The experimentally measured periods are
compared to predictions by our ODE model, an analytical solution by Hori
et al.35, both with an mRNA lifetime of 12min32, and with the
phenomenological T(δ)= Cπ/δ with C≈ 1. While the predictions are in good
agreement with the data at higher dilution rates, the measured periods are
systematically higher at lower dilution rates. Data shows means ± SD of
N= 2, or N= 4 technical replicates, as indicated by individual data points
(jittered). As time traces with periods > 6 h only contain 2-3 maxima, we
additionally accounted for a systematic measurement uncertainty that
scales inversely with the number of maxima. System parameters are as in
Fig. 2, with α= 3 pMs−1.

a

b

0 4 8 12 16 20 24
Time (h)

0

200

400

600

R
ep

or
te

r (
nM

) 0
1

IN
 (x

)

0 5 10 15 20 24
Time (h)

0

100

200

300

R
ep

or
te

r (
nM

) 0
50

IN
 (n

M
)

aTc

TetR

TetR �28

TetR �28

Fig. 4 Dynamics of the forced oscillator. Here, we either added (a)
1 ×= 214 nM aTc every 4 h (λ= 1.43), or (b) 50 nM TetR every 5 h
(λ= 1.48). Once added, the input signals are removed by the dilution with
fresh reagent (without input), which results in an exponential decay of the
input signal. The oscillator responds by increasing, or decreasing the
production of σ28, respectively, and synchronizes to the input period.
Colored triangles indicate the time points of input addition.
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ln ð1� RÞ�k is the logarithm of the total dilution after one input
period.

Period doubling. In the following, we focus our analysis on the
negatively forced oscillator that uses TetR as the periodically
varying external input. When simulating the forced oscillator for
different natural periods T and input periods Tin, we found that
under certain conditions the resulting oscillations displayed a
sequence of maxima with varying height that repeated every two
or four maxima. Such a period doubling phenomenon commonly
appears in non-linear systems of coupled or forced oscillators29

and is a well studied route towards chaos37. Even though being
investigated in great theoretical detail, period doubling has not
been experimentally demonstrated in the context of synthetic
biochemical oscillators so far9. Two of the experimental chal-
lenges in this context are that to record an m-cycle, the oscillator
has to run reliably for t > Tin ⋅ 2 ⋅m= 32 h (for Tin= 4 h and
m= 4), and that for increasing m the bifurcation parameter λ has
to be tuned with an exponentially increasing accuracy38.

As shown in Fig. 5a, we indeed find experimental evidence of
period doubling in our system (here for λ= 1.20). After the
typical large first maximum that occurs during the initial
transient, the forced oscillator approaches a 4-cycle and stays
there for two full revolutions. In the experiment, period doubling
is more evident in the TetR dynamics than in the σ28 dynamics.
After about 36 h the system appears to ‘drop back’ to a regular
1-cycle. As 36 h is close to the longest time span for which such a
reactor was reportedly operated28, this behavior is likely a sign of
fatigue, which is also consistent with an observed drop of the
refresh ratio towards the end of the recording. Recording time
traces that are long enough to provide unequivocal evidence for
period quadrupling and 4-cycles turned out to be a major
experimental challenge. However, shorter experimental traces
obtained with our system consistently showed evidence for period
doubling and 2-cycles (Supplementary Fig. 2).

We computed an ‘instantaneous refresh ratio’ Rt= 1− It+1/It
(Fig. 5b) using the reference time traces It for all time points t

where It > 0.3 ⋅ Imax. For t≳ 36 h, Rt drops by about 1%, leading to
a decrease in δ and a corresponding change in λ. Note that the
instantaneous refresh ratio also slightly deviates from the nominal
refresh ratio (here 20%) that was defined by calibration prior to
the experiment. We hence use the more accurate instantaneous
refresh ratio to calculate the control parameter λ. Similarly, a loss
in activity of the supplied reagents would lead to a decrease in α
over time, resulting in a stronger damping of the free oscillations.

Period doubling can further be visualized with a phase portrait
(Fig. 5c), which highlights that the trajectories return to their
starting point in phase space after completion of four revolutions.
Finally, we can generate a maximum return map (Fig. 5d) by
plotting the amplitude of each maximum against that of its
predecessor. Again it can be observed that, within experimental
variability, the system visits four distinct points in the map until it
returns to its original location.

Bifurcation diagram. In order to gain a more complete overview
of the dynamical repertoire of our biochemical oscillator, we
simulated a bifurcation diagram (Fig. 6a), for which we plotted
the heights of the maxima against the parameter λ. Because
successive bifurcations occur within exponentially decreasing
intervals38, we adjusted λ(R) as smoothly as possible. Following
Eq. (9), we fixed the input period to Tin= 4 h, as it can only be
adjusted in increments of tint ≥ 15min, and instead varied the
natural period T by adjusting the refresh ratio R, which can be
varied, in principle, continuously.
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The bifurcation analysis reveals that for low λ the system
displays 1-cycles, then undergoes two period doublings to show a
4-cycle around λ= 1.2, followed by period ‘halvings’ and again
1-cycles at high values of λ. Qualitatively, the experimentally
recorded phase space trajectories (Fig. 6b, Supplementary Figs. 2
and 3) match the corresponding simulated trajectories for the
same λ values (Fig. 6c) remarkably well . One interesting feature is
that for λ= 1.05 both experiment and simulation display a
2-cycle that is degenerate in the dynamics of TetR, i.e., the second
maximum is not visible, but the period is doubled.

Chaotic dynamics in the oscillator model. We were finally
interested whether our system could, in principle, exhibit even
more complex dynamics than a 4-cycle. We therefore simulated a
two-dimensional bifurcation diagram, for which we varied both
the Hill coefficient n and λ (Fig. 7a). The system dynamics can
then be classified by means of the rotation number m, which
equals the number of periods the system undergoes before
returning to the starting point. For a chaotic trajectory, m=∞,
but for practical reasons we classify trajectories as chaotic if
m > 32. As shown in Fig. 7a, the oscillator model indeed permits
chaotic solutions. Notably, chaotic regimes are interrupted by
windows of mostly period 3, which is a commonly observed
phenomenon29. The existence of m= 3-cycles actually implies the
existence of chaotic trajectories39, examples of which are shown
in Fig. 7b, c). Our simulations predict a similar behavior for the
oscillator when forced using aTc as an input signal (Supple-
mentary Fig. 4). Overall, this analysis reveals that higher order
period doublings and chaotic behavior become increasingly pre-
valent for increasing non-linearity, corresponding to increasing
Hill coefficients in the oscillator model.

Discussion
Inspired by the entrainment of biological circadian clocks by
environmental zeitgeber cues, we have here experimentally inves-
tigated the response of a single-loop cell-free genetic oscillator to
externally applied periodic perturbations. To this end, we utilized a

microfluidic reactor system which allowed precisely controlled
addition of components to the oscillator and dilution at regular
intervals. The period of the free-running oscillator is dominated by
the reactor’s dilution rate δ, which defines a timescale T � π

δ.
External forcing of the oscillator is achieved by periodically sup-
plying transcription factors or inducers with an input period Tin.
The dynamic behavior of the forced oscillator is then determined
by a single bifurcation parameter λ, which is defined as the ratio of
the input period and the intrinsic timescale, i.e., λ= Tin/T. Sup-
ported by simulations, we experimentally found non-trivial beha-
vior such as 2- and 4-cycles, which is indicative of period doubling.
Complex dynamics was observed for λ close to 1, whereas higher
values of λ= 1.48 lead to stable entrainment of the genetic oscil-
lator to the zeitgeber timescale.

To our knowledge, period doubling has not been found in
experiments with biological circadian clocks so far, but has been
repeatedly predicted by theoretical models. Both from a biological
point of view as well as for potential applications of synthetic
biochemical clocks it might be desirable to actually prevent
complex behavior resulting from coupled oscillator dynamics,
which can be achieved in various ways. One possibility is to
simply tune the free-running period away from the zeitgeber
period, and thus avoid λ ≈ 1.

In a theoretical study by Kurosawa and Goldbeter, a tendency
towards complex dynamics for λ ≈ 1 was found in a model of the
Neurospora clock for strong forcing amplitudes7. However, this
behavior was not found in a model of the Drosophila circadian
clock by the same authors. The authors attribute this to differences
in the forcing mechanisms, which in Neurospora alters expression
rates, whereas in Drosophila alters degradation rates. Also, the
authors argue that the complexity observed for λ ≈ 1 may explain
why the free-running periods of simpler circadian clocks such as
those from Neurospora (21.5 h, λ= 1.1240) or Phaseolus (28 h,
λ= 0.8641) differ substantially from a 24 h period.

On the other hand, the free-running circadian periods of more
complex organisms such as Drosophila or mammals tend to be
much closer to 24 h, e.g., 24: 11 h ± 0: 08 h (±SD) (λ= 1.01) in
humans42, which are potentially more prone to show complex
dynamics. It has been argued that this can be avoided with more
robust clock architectures utilizing additional feedback loops, and
more robust forcing mechanisms such as protein sequestration
instead of Hill-type repression43.

We further notice from our simulated bifurcation diagram Fig. 6a
that as λ increases, the system initially undergoes two period dou-
blings, but then instead of producing chaos, continues with period
halvings that eventually lead to stable 1-cycles. Similar period-
halvings have been found in the study of ‘single-humped’
1-dimensional maps44, which are used as simple ecological models,
when the recursion map was modified with a constant ‘immigration’
term that prevented the population from ever falling below a certain
floor level. In the context of our biochemical oscillator, such a term
would correspond to leaky/basal gene expression, potentially having
a similar effect on the reversal of period-doubling transitions.

Another potentially important difference between this work
and natural circadian clocks is that our system - due to the large
volumes and molecule numbers involved - can be considered
deterministic, whereas natural (cell-scale) systems may exhibit
stochastic reaction dynamics45. Molecular noise may be another
candidate mechanism to stabilize the dynamics and prevent
period doubling or chaos. However, a theoretical study has sug-
gested that at moderate stochasticity, a system that is chaotic in
the determistic regime exhibits a behavior that is distinct from
that of a regular stochastic oscillator46.

While in biological systems, biochemical rhythms are subject to
evolutionary optimization, in synthetic biological systems robust
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Fig. 7 Simulations predict chaotic dynamics. a Two-dimensional
bifurcation diagram showing the rotation number m for varying n and λ.
With increasing n, the dynamics become increasingly more complex, over a
broader range of λ. b Chaotic trajectory (endogenous TetR) and c phase
portrait of the corresponding strange attractor for n= 8, λ= 1.5542.
Parameter values, except n, are the same as in Fig. 6.
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behavior can be achieved by appropriately tuning system para-
meters such as the shape of the gene transfer curves33. Such
engineering may be supported by in silico modeling, e.g., using
evolutionary algorithms that intrinsically generate robust
solutions47, combined with high-throughput microfluidic reactors
that enable comprehensive parameter screens48.

In summary, we have shown that a synthetic cell-free gene
circuit operated in a microfluidic reactor can be used to physically
emulate the entrainment of a genetic oscillator with an external
zeitgeber signal, which allowed the experimental realization of
periodic doubling bifurcations, which had been previously only
observed in numerical models of such systems. Given the key
differences highlighted above, it would be interesting to study
specific biological network architectures to investigate whether
period doubling could also be triggered in more complex natural
circadian clocks, e.g., as a side effect of pharmacological
treatments49,50, or whether there are mechanisms that can pre-
vent it. Apart from the fundamental interest in oscillatory bio-
chemical systems, synthetic biochemical clocks may be of use in a
wide range of applications that require intrinsic time measure-
ments for the autonomous orchestration of downstream pro-
cesses. In order to improve the accuracy of such oscillators and
synchronize them to an external clock, coupling to a zeitgeber
signal will be required. Our study demonstrates how the choice of
system and control parameters can be used to tune the dynamics
of such systems to become robust - or complex.

Methods
Microfluidic chip fabrication. The microfluidic reactor used in this study was
fabricated with multilayer photo- and soft-lithography methods51. The structures
on the control layer master were patterned from 40 μm SU8-3050 (micro resist
technology). To reduce the minimal refresh ratio per feed R0 (≥0.3% vs. ≥2%), we
increased the volume of the ring reactors ≈10-fold using a 2-layer design (50 μm
SU8-3050 and 20 μm AZ 40XT (MicroChemicals)) for the flow layer master,
similar to ref. 16. The structures on the flow layer master were enlarged by 1.8% to
correct for shrinking of the PDMS relative to the control layer. All masters were
treated with trichloro(1H,1H,2H,2H-perfluorooctyl)silane (Merck, #448931-10G)
in a weak vacuum for at least 2 h.

The PDMS device was fabricated by first casting an appropriate amount of
PMDS, mixed at a 5:1 ratio with crosslinker, onto the flow layer master. The
control layer was prepared by spin-coating PDMS (20:1) onto the master to a
height of 50 μm. After relaxation for 45 min, the molds were baked at 80 ∘C for
20 min, or 25 min, respectively. The flow layer was removed from the master,
trimmed, and aligned on the control layer using a stereomicroscope. After thermal
bonding at 80 ∘C for 90 min, devices were trimmed and holes for control and flow
lines were punched using catheter punches (Syneo, #CR0320245N21R4). Finally,
devices were cleaned with Scotch tape and plasma-bonded onto a clean glass slide.

Cell-free gene expression reactions. Homemade E. coli cell extract was prepared
from Rosetta 2(DE3) by sonication based on standard protocols52,53. The final
reaction contained 50 mM Hepes pH 8, 1.5 mM ATP (Roth, #HN35.3) and GTP
(Roth, #K056.4), 0.9 mM CTP (Roth, #K057.4) and UTP (Roth, #K055.3),
0.2 mg mL−1 tRNA (Merck, #10109541001), 26 mM coenzyme A (Merck, #C3144-
10MG), 0.33 mM NAD+ (Merck, #481911), 0.75 mM cAMP (Merck, #A9501-1G),
68 μM folinic acid (Merck, #47612-250MG), 1 mM spermidine (Merck, #S2626-
1G), and 30 mM 3-PGA (Merck, #P8877-1G), as an energy source. The final
concentrations of screened components were534 mM Mg-glutamate (Merck,
#49605-250G), 60 mM K-glutamate (Merck, #49601-100G), 1.5 mM of each amino
acid except leucine (Biozym, #BR1401801), 1.25 mM leucine, 2.5% (w/v) PEG-8000
(Merck, #89510-250G-F), and 0 mM DTT. A final concentration of 2 mM TCEP
(Roth, #HN95.1) was added to the buffer solution immediately prior to the
experiment to allow storage of buffer reservoirs at ambient temperature54.

DNA templates were assembled from various sources (Biobricks, IDT gBlocks,
σ28 was PCR amplified directly from the genome of E. coli strain MG1655) using a
standardized Golden Gate Assembly scheme31 and cloned into DH5α or DH5αZ1,
when using TetR repressible promoters. Plasmids for expression were prepared
using a Midiprep kit (Qiagen, #27104) and concentrations were estimated by UV-
Vis spectroscopy. DNA sequences are available as Supplementary Data 1.

Added proteins (TetR, mTurquoise2, mVenus, mScarlet-I) were purified using
standard His-tag Ni-NTA affinity chromatography. Briefly, the gene of interest was
cloned into a 6xHis-pSB1A3-pT7 expression vector and expressed in BL21star(DE3).
A 500mL culture was harvested, lysed via sonication and purified using HisTrap HP
columns (GE, #17-5247-1). The fractions were analyzed with SDS-PAGE, pooled and
concentrations were estimated by UV-Vis spectroscopy.

Reactions were prepared in separate tubes for extract and buffer and combined
on chip in a 1:1 ratio, usually consuming 45 μL of each reagent solution per 24 h.
Additional proteins were added to the extract, whereas DNA or other components
were added to the buffer.

Experimental setup and operation. The experimental setup used to control the
microfluidic device and image acquisition was custom built around an Olympus
IX81 inverted epifluorescence microscope equipped with a motorized stage,
fluorescence light engine (Lumencor SOLA SE II 365), camera (Andor iXon3
DU888), and filters (CFP: 438-25/458/483-32, YFP: 500-20/515/535-30, RFP: 559-
34/588/609-34, GFP: 472-30/495/520-34). The reaction temperature was kept at
29 ∘C using a cage incubator (Okolab).

Extract reservoirs were kept at 4 ∘C with a custom built cooling unit fit for two
1.5 mL Eppendorf tubes. Flow line pressures were regulated to 300 mbar using a
pressure controller (Elveflow OB1). Control lines were operated with 1.5–2.5 bar
using a custom built valve controller based on 24 solenoid valves (Festo, #MH1)
and an Arduino Mega. Feed, mix and acquisition cycles during time lapse were
automated with a custom LabVIEW program, which allowed execution of arbitrary
input programs. All chips were calibrated to determine R0 for each reactor with
25 μM fluorescein in PBS prior to the experiment.

Data analysis. Microscope images were analyzed with custom MATLAB scripts. First,
an ROI and background ROI were manually selected for each ring and the back-
ground subtracted average intensity I–B was normalized against the corresponding
measurement from the R0 calibration I0–B0. Using similarly generated 1-point
reference measurements Iref–Bref (1 μM of reporter protein in cell extract) and
I0,ref–B0,ref (25 μM fluorescein in PBS), we obtain a reporter concentration c, which
is comparable across experiments

c ¼ I � B
I0 � B0

� I0;ref � B0;ref

Iref � Bref
� 1 μM: ð10Þ

The period of free-running oscillations was determined from the first maximum
of the auto-correlation function (ACF), that was computed using xcorr and
interpolated with a spline fit. As shown in Supplementary Fig. S1, we also tested to
fit the ACF with a decaying cosine function and excluded the initial transient
oscillation, which gave similar results36.

The rotation number m was determined by heuristically developed custom
routine. First, simulations were performed for varying parameters and the maxima
M(t) of the simulated endogenous TetR signal, equilibrated for 500 dilution cycles
(125 h), were detected using findpeaks. As the signals may contain degenerate
maxima (Fig. 6) that, however, contribute to m, we interpolated their position if
two consecutive maxima were spaced more than 20 dilution cycles (5 h). We then
calculated the difference between the values of the maxima and the same array
shifted by k cycles ΔM(k). The rotation number is then calculated as the difference
of the indexes k for which ΔM(k) is smaller than a threshold of 0.1.

Modeling. Simulations were performed in MATLAB using ode23s to solve the ODE
model during the interval of one dilution cycle tint ¼ 15 min. After each cycle, the
initial conditions of the consecutive cycle ci+1 were set with the final concentrations
of the previous cycle ci as ci+1= ci ⋅ (1− R)+ cin, where R is the refresh ratio and
the input period cin=Ain, if imod k ¼ 0, and cin= 0, otherwise. To approximate
the experimental procedure, we sample the solutions at the final time point of each
interval. Further, we added two equations analogous to Eqs. (2) and (4) to mimic
the expression of fluorescence signals.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the conclusions drawn in this paper are derived from data shown either in the main
text or in the Supplementary Information. The data generated in this study and the
scripts used to evaluate the data have been deposited in the Zenodo repository (https://
doi.org/10.5281/zenodo.6401811). Data and scripts are available for download both at
Zenodo and at Github (https://github.com/lauflulu/PeriodDoubling).

Code availability
Matlab code used for the simulations and plotting of the data is available on Github
(https://github.com/lauflulu/PeriodDoubling) and Zenodo (https://doi.org/10.5281/
zenodo.6401811).

Received: 21 December 2021; Accepted: 4 May 2022;

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30478-2 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2852 | https://doi.org/10.1038/s41467-022-30478-2 |www.nature.com/naturecommunications 7

https://doi.org/10.5281/zenodo.6401811
https://doi.org/10.5281/zenodo.6401811
https://github.com/lauflulu/PeriodDoubling
https://github.com/lauflulu/PeriodDoubling
https://doi.org/10.5281/zenodo.6401811
https://doi.org/10.5281/zenodo.6401811
www.nature.com/naturecommunications
www.nature.com/naturecommunications


References
1. Lakin-Thomas, P. L. Circadian rhythms: new functions for old clock genes.

Trends Genet. 16, 135–142 (2000).
2. Dodd, A. N. et al. Plant circadian clocks increase photosynthesis, growth,

survival, and competitive advantage. Science 309, 630–633 (2005).
3. Vanselow, K. et al. Differential effects of PER2 phosphorylation: molecular

basis for the human familial advanced sleep phase syndrome (FASPS). Genes
Dev. 20, 2660–2672 (2006).

4. Fu, L. & Lee, C. C. The circadian clock: pacemaker and tumour suppressor.
Nat. Rev. Cancer 3, 350–361 (2003).

5. Takahashi, J. S. Transcriptional architecture of the mammalian circadian
clock. Nat. Rev. Genet. 18, 164–179 (2017).

6. Leloup, J.-C. & Goldbeter, A. Chaos and birhythmicity in a model for
circadian oscillations of the PER and TIM proteins in drosophila. J. Theor.
Biol. 198, 445–459 (1999).

7. Kurosawa, G. & Goldbeter, A. Amplitude of circadian oscillations entrained by
24-h light–dark cycles. J. Theor. Biol. 242, 478–488 (2006).

8. Gonze, D., Leloup, J.-C. & Goldbeter, A. Theoretical models for circadian
rhythms in Neurospora and Drosophila. C. R. Acad. Sci. Se. III Sci. Vie 323,
57–67 (2000).

9. van Soest, I., del Olmo, M., Schmal, C. & Herzel, H. Nonlinear phenomena in
models of the circadian clock. J. R. Soc. Interf. 17, 20200556 (2020).

10. Wever, R. A. Light effects on human circadian rhythms: a review of recent
Andechs experiments. J. Biol. Rhythms 4, 49–73 (1989).

11. Daan, S. & Berde, C. Two coupled oscillators: simulations of the circadian
pacemaker in mammalian activity rhythms. J. Theor. Biol. 70, 297–313
(1978).

12. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional
regulators. Nature 403, 335–338 (2000).

13. Tigges, M., Marquez-Lago, T. T., Stelling, J. & Fussenegger, M. A tunable
synthetic mammalian oscillator. Nature 457, 309–312 (2009).

14. Montagne, K., Plasson, R., Sakai, Y., Fujii, T. & Rondelez, Y. Programming an
in vitro DNA oscillator using a molecular networking strategy. Mol. Syst. Biol.
7, 466–466 (2011).

15. Kim, J. & Winfree, E. Synthetic in vitro transcriptional oscillators. Mol. Syst.
Biol. 7, 465–465 (2011).

16. Niederholtmeyer, H., Stepanova, V. & Maerkl, S. J. Implementation of cell-free
biological networks at steady state. Proc. Natl. Acad. Sci. USA 110,
15985–15990 (2013).

17. Karzbrun, E., Tayar, A. M., Noireaux, V. & Bar-Ziv, R. H. Programmable on-
chip DNA compartments as artificial cells. Science 345, 829 (2014).

18. Danino, T., Mondragón-Palomino, O., Tsimring, L. & Hasty, J. A synchronized
quorum of genetic clocks. Nature 463, 326–330 (2010).

19. Tayar, A. M., Karzbrun, E., Noireaux, V. & Bar-Ziv, R. H. Synchrony and
pattern formation of coupled genetic oscillators on a chip of artificial cells.
Proc. Natl. Acad. Sci. USA 114, 11609–11614 (2017).

20. Yelleswarapu, M. et al. Sigma factor-mediated tuning of bacterial cell-free
synthetic genetic oscillators. ACS Synth. Biol. 7, 2879–2887 (2018).

21. Weitz, M. et al. Diversity in the dynamical behaviour of a compartmentalized
programmable biochemical oscillator. Nat. Chem. 6, 295–302 (2014).

22. Potvin-Trottier, L., Lord, N. D., Vinnicombe, G. & Paulsson, J. Synchronous
long-term oscillations in a synthetic gene circuit. Nature 538, 514–517 (2016).

23. Genot, A. J. et al. High-resolution mapping of bifurcations in nonlinear
biochemical circuits. Nat. Chem. 8, 760–767 (2016).

24. Riglar, D. T. et al. Bacterial variability in the mammalian gut captured by a
single-cell synthetic oscillator. Nat. Commun. 10, 4665 (2019).

25. Franco, E. et al. Timing molecular motion and production with a synthetic
transcriptional clock. Proc. Natl. Acad. Sci. USA 108, E784–E793 (2011).

26. Green, L. N. et al. Autonomous dynamic control of DNA nanostructure self-
assembly. Nat. Chem. 11, 510–520 (2019).

27. Henningsen, J. et al. Single cell characterization of a synthetic bacterial clock
with a hybrid feedback loop containing dCas9-sgRNA. ACS Synth. Biol. 9,
3377–3387 (2020).

28. Niederholtmeyer, H. et al. Rapid cell-free forward engineering of novel genetic
ring oscillators. eLife 4, e09771 (2015).

29. Strogatz, S. H. Nonlinear dynamics and chaos: with applications to physics,
biology, chemistry, and engineering 2nd edn, (Westview Press, Boulder,
2015).

30. Novák, B. & Tyson, J. J. Design principles of biochemical oscillators. Nat. Rev.
Mol. Cell Biol. 9, 981–991 (2008).

31. Sun, Z. Z., Yeung, E., Hayes, C. A., Noireaux, V. & Murray, R. M. Linear DNA
for rapid prototyping of synthetic biological circuits in an Escherichia coli
based TX-TL cell-free system. ACS Synth. Biol. 3, 387–397 (2014).

32. Karzbrun, E., Shin, J., Bar-Ziv, R. H. & Noireaux, V. Coarse-grained
dynamics of protein synthesis in a cell-free system. Phys. Rev. Lett. 106,
048104 (2011).

33. Brophy, J. A. N. & Voigt, C. A. Principles of genetic circuit design. Nat. Meth.
11, 508–520 (2014).

34. Shin, J. & Noireaux, V. An E. coli cell-free expression toolbox: application
to synthetic gene circuits and artificial cells. ACS Synth. Biol. 1, 29–41
(2012).

35. Hori, Y., Takada, M. & Hara, S. Biochemical oscillations in delayed negative
cyclic feedback: existence and profiles. Automatica 49, 2581–2590 (2013).

36. Cao, Y., Wang, H., Ouyang, Q. & Tu, Y. The free energy cost of accurate
biochemical oscillations. Nat. Phys. 11, 772–778 (2015).

37. Swinney, H. L. Observations of order and chaos in nonlinear systems. Physica
D 7, 3–15 (1983).

38. Feigenbaum, M. J. Quantitative universality for a class of nonlinear
transformations. J. Stat. Phys. 19, 25–52 (1978).

39. Li, T.-Y. & Yorke, J. A. Period three implies chaos. Am. Math. Mon. 82,
985–992 (1975).

40. Garceau, N. Y., Liu, Y., Loros, J. J. & Dunlap, J. C. Alternative initiation of
translation and time-specific phosphorylation yield multiple forms of the
essential clock protein FREQUENCY. Cell 89, 469–476 (1997).

41. Bünning, E. & Moser, I. Influence of valinomycin on circadian leaf movements
of phaseolus. Proc. Natl. Acad. Sci. USA 69, 2732–2733 (1972).

42. Czeisler, C. A. et al. Stability, precision, and near-24-hour period of the human
circadian pacemaker. Science 284, 2177–2181 (1999).

43. Kim, J. K. Protein sequestration versus Hill-type repression in circadian clock
models. IET Syst. Biol. 10, 125–135 (2016).

44. Stone, L. Period-doubling reversals and chaos in simple ecological models.
Nature 365, 617–620 (1993).

45. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene
expression in a single cell. Science 297, 1183–1186 (2002).

46. Gonze, D. & Goldbeter, A. Circadian rhythms and molecular noise. Chaos 16,
026110 (2006).

47. Wilke, C. O., Wang, J. L., Ofria, C., Lenski, R. E. & Adami, C. Evolution of
digital organisms at high mutation rates leads to survival of the flattest. Nature
412, 331–333 (2001).

48. Swank, Z. & Maerkl, S. J. CFPU: a cell-free processing unit for high-throughput,
automated in vitro circuit characterization in steady-state conditions. BioDesign
Res. 2021, 2968181 (2021).

49. Meng, Q.-J. et al. Entrainment of disrupted circadian behavior through
inhibition of casein kinase 1 (CK1) enzymes. Proc. Natl. Acad. Sci. 107,
15240–15245 (2010).

50. Kim, D. W. et al. Systems approach reveals photosensitivity and PER2 level
as determinants of clock-modulator efficacy. Mol. Syst. Biol. 15, e8838
(2019).

51. van der Linden, A. J. et al. A multilayer microfluidic platform for the conduction
of prolonged cell-free gene expression. J. Vis. Exp. 152, e59655 (2019).

52. Sun, Z. Z. et al. Protocols for implementing an Escherichia coli based TX-TL
cell-free expression system for synthetic biology. J. Vis. Exp. 79, e50762
(2013).

53. Falgenhauer, E. et al. Evaluation of an E. coli cell extract prepared by lysozyme-
assisted sonication via gene expression, phage assembly and proteomics.
ChemBioChem 22, 2805–2813 (2021).

54. Lavickova, B., Laohakunakorn, N. & Maerkl, S. J. A partially self-regenerating
synthetic cell. Nat. Commun. 11, 6340 (2020).

Acknowledgements
We would like to thank Zoe Swank, Sebastian Maerkl, and Nadanai Laohakunakorn
for sharing their valuable time and knowledge on setup, device manufacturing, and
operation of the microfluidic reactor. Further, we wish to thank Elisabeth Falgen-
hauer and Aurore Dupin for their advice on cell extract production, purification of
TetR, mTurquoise2, and mVenus, and providing several gene fragments, and Mat-
thaeus Schwarz-Schilling for early discussions on synthetic genetic oscillators. This
project was funded by the European Research Council (project AEDNA, grant
agreement no. 694410).

Author contributions
L.A. and F.C.S. designed the research. L.A. and J.B. built the setup. L.A. performed
experiments, simulations, and analyzed data. L.A. and F.C.S. interpreted the results and
wrote the paper.

Funding
This project was funded by the European Research Council (project AEDNA, granta-
greement no. 694410). Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30478-2

8 NATURE COMMUNICATIONS |         (2022) 13:2852 | https://doi.org/10.1038/s41467-022-30478-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-30478-2.

Correspondence and requests for materials should be addressed to Friedrich C. Simmel.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30478-2 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2852 | https://doi.org/10.1038/s41467-022-30478-2 |www.nature.com/naturecommunications 9

https://doi.org/10.1038/s41467-022-30478-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Complex dynamics in a synchronized cell-free genetic clock
	Results
	ODE model of the oscillator circuit
	Operation of the free oscillator
	Intrinsic timescale of the oscillator
	External forcing of the genetic oscillator
	Period doubling
	Bifurcation diagram
	Chaotic dynamics in the oscillator model

	Discussion
	Methods
	Microfluidic chip fabrication
	Cell-free gene expression reactions
	Experimental setup and operation
	Data analysis
	Modeling

	Reporting summary
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




