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a b s t r a c t 

T1- and T2-weighted (T1w and T2w) images are essential for tissue classification and anatomical localization in 

Magnetic Resonance Imaging (MRI) analyses. However, these anatomical data can be challenging to acquire in 

non-sedated neonatal cohorts, which are prone to high amplitude movement and display lower tissue contrast 

than adults. As a result, one of these modalities may be missing or of such poor quality that they cannot be used 

for accurate image processing, resulting in subject loss. While recent literature attempts to overcome these issues 

in adult populations using synthetic imaging approaches, evaluation of the efficacy of these methods in pediatric 

populations and the impact of these techniques in conventional MR analyses has not been performed. In this work, 

we present two novel methods to generate pseudo-T2w images: the first is based in deep learning and expands 

upon previous models to 3D imaging without the requirement of paired data, the second is based in nonlin- 

ear multi-atlas registration providing a computationally lightweight alternative. We demonstrate the anatomical 

accuracy of pseudo-T2w images and their efficacy in existing MR processing pipelines in two independent neona- 

tal cohorts. Critically, we show that implementing these pseudo-T2w methods in resting-state functional MRI 

analyses produces virtually identical functional connectivity results when compared to those resulting from T2w 

images, confirming their utility in infant MRI studies for salvaging otherwise lost subject data. 
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. Introduction 

Neonatal and infant neuroimaging is growing in popularity and

apidly expanding its utility in characterizing typical and atypical

rain development ( Smyser and Neil, 2015 ; Grayson and Fair, 2017 ;

raham et al., 2021 ). Across these investigations, high-quality T1- and

2-weighted (T1w and T2w) structural data have proven critical for

enerating the accurate segmentations necessary for attaining robust
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olumetric and surface-based measures, as well as precise localiza-

ion and mapping of functional magnetic resonance imaging (fMRI)

ata ( Hüppi et al., 1998 ; Mahapatra et al., 2012 ; Dubois et al., 2014 ;

avalia et al., 2017 ; Reuter et al., 2015 ). However, non-sedated imaging

essions in neonates are frequently limited in duration, interrupted by

rousals, and susceptible to large amplitude movements. Subsequently,

hese critical structural data are periodically either corrupted or not ac-

uired ( Barkovich et al., 2019 ; Malamateniou et al., 2013 ). Often, the

nly substitute for obtaining these required data is rescheduling and re-
arch 2022 
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canning, which is costly and challenging due to the rapid pace of mat-

ration during this stage of development. These burdens often result in

igh rates of participant loss for population-based studies. 

Recent advances in synthetic medical imaging afford a ready solution

o recapture missing structural scans with methods typically falling into

ne of two categories: deep learning or registration-based. Deep learning

ethods use relatively large datasets of paired images to learn a non-

inear mapping of voxel-to-voxel intensities and synthesize one imag-

ng modality from another. Various iterations of convolutional neural

etworks (CNNs) in the form of U-Nets ( Ronneberger et al., 2015 ) and

enerative adversarial networks (GANs) ( Goodfellow et al., 2014 ) have

roven effective in cross-modality image estimation. These methods are

ommonly applied in the generation of synthetic positron emission to-

ography (PET) ( Li et al., 2014 ; Pan et al., 2018 , 2019 ; Lin et al., 2021 )

nd computed tomography (CT) ( Nie et al., 2017 ; Zhao et al., 2018 ;

hang et al., 2018 ) images from MRI data. Recently, several studies have

xplored the utility of these networks in longitudinal MRI prediction

 Xia et al., 2019 ; Ravi et al., 2019 ) and T1w-to-T2w image translation

 Dar et al., 2019 ; Welander et al., 2018 ), however, methods in these

tudies have been limited to 2-dimensional (2D) image estimations due

o computational complexity. Importantly, the latest research on deep

enerative methods in MRI suggest that 3-dimensional (3D) models are

omputationally tractable and have successfully demonstrated T1w-to-

MRI translation in adults ( Abramian and Eklund, 2019 ), as well as pre-

icting future MRI from infant scans ( Peng et al., 2020 ), however, these

D methods have not yet been applied in neonatal populations nor in

he context of T1w-to-T2w translation. 

In contrast, registration-based methods offer a solution that does not

equire a large training dataset, but instead only a small “bank" of tem-

late subjects. This method operates by registering images from tem-

lates to an individual subject image of interest. The registrations are

hen applied to the target modality of the template subjects. The regis-

ered images from the target modality of the template subjects are then

ombined based on morphological similarity to create a synthetic ver-

ion of the subject’s target modality. This method has previously been

xplored in the synthesis of CT maps for PET attenuation correction from

RI data ( Burgos et al., 2014 ; Schreibmann et al., 2010 ). Advances in

onlinear registration algorithms ( Klein et al., 2009 ; Avants et al., 2009 ;

otiras et al., 2013 ; Ou et al., 2011 ) and joint fusion ( Wang et al., 2013 ;

rtaechevarria et al., 2009 ) have greatly improved image-to-image map-

ing in brain MRI. As a result, this method has become a popular tool

or generating MRI segmentations. However, despite these advances, the

tility of this class of algorithms has not yet been explored in the context

f T1w-to-T2w translation. 

While existing studies using these approaches have predominantly

ncluded adult participants, infant and pediatric populations may bene-

t most from application of these techniques to address the challenges

nherent to studying this age group ( Barkovich et al., 2019 ). Based on the

uccessful application of 3D GANs for MR image synthesis ( Zhang et al.,

018 ; Abramian and Eklund, 2019 ) and pediatric image prediction

 Peng et al., 2020 ), as well as the generation of neonatal atlases using

ulti-template registration in Alexander et al. (2017) , we hypothesized

hat these two image synthesis approaches could be successfully imple-

ented to perform neonatal T1w-to-T2w translation. In this work, we

xplore the application of both methods through development of two in-

ovative approaches for synthesizing T2w images from T1w images in

eonates. We chose to synthesize images in this direction because on-

oing white matter myelination during this critical developmental win-

ow results in an inversion of tissue contrast in neonates ( Dubois et al.,

014 ) resulting in T2w images demonstrating higher contrast between

erebral tissue types ( Gui et al., 2012 ), a consideration vital for reliable

utomated MR image processing ( Hüppi et al., 1998 ; Mahapatra, 2012 ;

ubois et al., 2014 ; Savalia et al., 2017 ; Reuter et al., 2015 ). First, we

xtend the 2D CycleGAN proposed by Zhu et al. (2017) and validated by

elander et al. (2018) to 3D volumetric images without the restrictions

f paired training data nor the stitching together of 2D slices following
2 
mage synthesis, heretoafter referred to as “3DGAN-T2w ”. Additionally,

e propose a registration-based method for synthesis that utilizes state-

f-the-art symmetric diffeomorphic image registration ( Avants et al.,

009 ) to calculate highly accurate nonlinear transformations and joint

usion ( Wang et al., 2013 ) to perform image synthesis using a training

ataset of paired image sets, heretoafter referred to as “Kaplan-T2w ”.

e then demonstrate the efficacy of these image translation methods

n two independent neonatal cohorts. Finally, we establish the efficacy

f utilizing synthetic images for application of resting-state functional

RI (rs-fMRI) processing by demonstrating connectivity estimates are

ighly comparable between data processed with original and synthetic

2w data. 

. Methods 

.1. Samples 

.1.1. Early life adversity biological embedding (eLABE) 

MRI data from 127 neonates (postmenstrual age = 41.1 ± 1.5 weeks,

emale N = 59, white N = 42) with high-quality (i.e., little to no mo-

ion) T1w and T2w images participating in the early life adversity and

iological embedding study were used in this analysis. Of the 127 to-

al neonates, MR data from 107 neonates were used as reference and

raining data for the pseudo-T2w generation methods (see Supplemental

nformation (SI) “3D-CycleGAN Additional Analyses ” for training data

uantity comparison), and 20 neonates were used for primary analyses.

his study was approved by the Washington University Human Studies

ommittees and informed consent was obtained from the parents of all

articipants. 

Participants were scanned within the first month of life during

atural sleep without the use of sedating medications on a Siemens

T Prisma scanner with a 64-channel head coil. T1w (TR = 2400 ms,

E = 2.22 ms, 0.8 mm isotropic), T2w (TR = 4500 ms, TE = 563 ms, 0.8 mm

sotropic), spin echo fieldmaps (SEFM) (TR = 8000 ms, TE = 66 ms, 2 mm

sotropic, MB = 1), and rs-fMRI data (TR = 800 ms, TE = 37 ms, 2 mm

sotropic, MB = 8) were collected. rs-fMRI data were collected in both

nterior → posterior (AP) and posterior → anterior (PA) phase encod-

ng directions. Each BOLD run consisted of 420 frames (5.6 min), with

 minimum of 2 runs (11.2 min) and maximum of 7 runs (39.2 min)

ollected per scanning session. 

.1.2. Environmental influences on child health outcomes (ECHO) 

The ECHO Program is a nationwide study conducting observational

tudies of pediatric cohorts including participants of different races, gen-

ers, ages, and backgrounds to better understand the effects of environ-

ental influences on child health and development. Informed consent

as obtained from the parents of all participants. 

MRI data from 10 infants (age = 41.2 ± 1.9 weeks, female N = 5,

hite N = 8) with high-quality (i.e., little/no motion) T1w and T2w im-

ges acquired at the University of Pittsburgh as part of the ECHO Study

ere included in supplemental analyses as a replication cohort. These

articipants were scanned during natural sleep without the use of se-

ating medications on a 3T Siemens Prisma scanner with a 64-channel

ead coil. The following sequences were acquired for each participant:

1w (TR = 2400 ms, TE = 2.22 ms, 0.8 mm isotropic), T2w (TR = 3200 ms,

E = 563 ms, 0.8 mm isotropic), and up to four 5 min rs-fMRI scans

TR = 800 ms, TE = 37 ms, 2 mm isotropic, MB = 8). rs-fMRI data were

ollected in the AP phase encoding direction only. 

.2. Data analysis 

.2.1. Pseudo-T2w method 1: 3DGAN-T2w 

The deep learning model for creating a 3DGAN-T2w consists of mul-

iple CNNs trained simultaneously with the goal of learning a non-linear

apping between T1w and T2w images. The networks consist of two

mage generators and two image discriminators. One of the generators
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Fig. 1. 3DGAN-T2w Generation Network Architecture . Missing T2w images can 

be generated directly by simply inputting the full volumetric T1w image into 

this network. The generator consists of an “encoding stage ” (blue) and a “de- 

coding state ” (green). k refers to the number of kernels and s refers to the stride 

of the convolutions at each layer. The encoding stage is made up of 6 3D convo- 

lutional layers that take the full resolution input (140 × 168 × 144) and output a 

latent representation that has been downsampled by half after the fourth layer. 

Each convolutional layer is followed by a ReLU activation. The decoding stage 

upsamples the latent representation back to the size of the original input using 

2 transpose convolutions, and finally estimates the T2w using convolution with 

a 1 × 1 × 1 kernel and a hyperbolic tangent ( “tanh ”) activation function. This 

network was trained using the CycleGAN procedure outlined in the SI section 

“3D-CycleGAN Additional Analyses ”. 
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a  
ttempts to estimate T2w images from T1w images and is depicted in

ig. 1 , while the corresponding discriminator distinguishes real from

ynthesized T2w images. Similarly, the remaining networks are trained

ith the goal of creating pseudo-T1w from T2w images. The networks

re trained simultaneously using two separate loss functions: adversar-

al loss and cycle-consistency loss. In adversarial loss, the discrimina-

or attempts to classify the resulting pseudo-T2w and real images, and

he weights are updated based on the mean squared error between the

iscriminator’s prediction and true label of the image. This loss is mini-

ized for the discriminator network to improve the ability to detect syn-

hetic images, but the loss is maximized for the generator network to cre-
3 
te more realistic synthetic images. As one network’s performance im-

roves, the other must necessarily improve as well. In cycle-consistency

oss, the pseudo-T1w generator attempts to estimate the T1w from the

esultant pseudo-T2w. In theory, the pseudo-T1w image should be iden-

ical to the original T1w image, so the mean absolute error between

hese two is used to further update the generator. The full CycleGAN

raining architecture is depicted in Supplementary Fig. 1. 

The original 2D model on which this architecture was based, while

seful and efficient in comparing different types of GANs, yields band-

ng artifacts in 3D medical images since synthetic images are generated

lice-by-slice. To resolve this issue, the model was extended to 3D so that

t can be trained on full volumetric data. This extra dimension comes at

he cost of substantially increasing the memory requirements of the net-

ork and therefore must be trained using a GPU with at least 32 GB

f VRAM. To accommodate training, it was necessary to remove some

f the deeper layers as well as the number of filters at each layer, with

raining finishing in roughly one week. The generator network in this

ork was trained using paired T1w and T2w images from 107 eLABE

eonates and is visualized in Fig. 1 . 

.2.2. Pseudo-T2w method 2: Kaplan-T2w 

Generating a Kaplan-T2w requires a set of high-quality reference

ata, which includes aligned T1w and T2w images. Reference data were

eparated into age-specific “banks ”, where each “bank ” consisted of 10

ubjects that were scanned within 2–3 weeks postmenstrual age (PMA)

f each other to account for differences in the rapidly developing neona-

al brain. 

A Kaplan-T2w image is generated to anatomically match an individ-

al subject T1w image. In order to maximize anatomical correspondence

etween the generated Kaplan-T2w and the T1w image, computations

nvolved in creating the Kaplan-T2w were restricted to voxels within the

rain by applying a manually drawn brain mask so that regions of non-

nterest (i.e., the body and surrounding air) did not contribute to sim-

larity optimization. Additionally, all images were bias field corrected

sing the ANTs software package in an effort to remove inhomogeneities

 Avants et al., 2009 ; Tustison et al., 2010 ). 

With the intention of directly mapping each “bank ” image to the

arget individual, ANTs registration tools were used to estimate the de-

ormation field between each of the “bank ” T1w images to the target in-

ividual T1w image. Applying the calculated nonlinear transformations

o each “bank ” T1w and T2w image produced 10 estimations of the tar-

et for each modality ( Fig. 2 a). Given that multi-atlas fusion techniques

roduce superior representations of a target image in comparison to any

ingle estimation alone ( Rohlfing et al., 2004 ; Heckemann et al., 2006 ),

NTs Joint Fusion was used to determine the optimal fusion weight-

ng of the 10 T1w estimates that best represent the individual target

1w ( Fig. 2 b). These weights were then applied to the set of T2w es-

imates, resulting in a pseudo-T2w image that is structurally accurate

o the individual target T1w. In order to improve the texture of the

seudo-T2w image, ANTs DenoiseImage was applied. Since histogram

anipulation has been shown to improve image contrast and quality

 Senthilkumaran and Thimmiaraja, 2014 ; Patel et al., 2020 ), this image

as histogram matched to each of the 10 “bank ” T2w images in order to

rovide realistic image improvements. This resulted in 10 pseudo-T2w

stimations; these were then averaged to produce a realistic pseudo-T2w

rain, depicted in Fig. 2 c. The skull and surrounding background noise

ere mapped similarly to the individual target and added to the brain-

nly image resulting in the final Kaplan-T2w image. The entire process

as completed utilizing multiple CPUs in a matter of hours. 

.2.3. Structural and functional data processing 

T1w and T2w MR images were corrected for gradient and readout

istortions using the methods described in ( Glasser et al., 2013 ), and

istortion corrected images were denoised using ANTs DenoiseImage

 Avants et al., 2009 ; Manjón et al., 2010 ). Anatomical segmentations

nd surfaces were generated using MCRIBS ( Adamson et al., 2020 ),
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Fig. 2. Kaplan-T2w Generation Procedure . Missing T2w 

images can be recovered by generating a Kaplan-T2w 

from a T1w image. The procedure to do so begins with 

(A) nonlinear registration between each T1w “bank ” im- 

age and the target T1w image. The estimated deforma- 

tion is then applied to the T2w and segmentation “bank ”

images, resulting in 3 registered images for each “bank ”

subject. (B) The optimal fusion weighting of the regis- 

tered “bank ” images to the target T1w is estimated using 

only the registered T1w “bank ” images. The computed 

fusion weighting is then applied to the registered T2w 

and segmentation “bank ” images resulting in fused im- 

ages that are structurally comparable to the T1w target 

image. (C) Contrast, texture, and quality of the fused T2w 

image is improved by performing a histogram matching 

to all “bank ” T2w images. These are then averaged to cre- 

ate the final Kaplan-T2w image. 
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normalized to whole brain mode 1000. Time series data were corrected 
here either a T2w image or pseudo-T2w image was used as input. All

egmentations were manually inspected and corrected as needed by ex-

erienced raters (DA, JD, DM). rs-fMRI data were preprocessed through

 standard neonatal BOLD preprocessing pipeline using a combination of

he 4dfp tool suite ( ftp://imaging.wustl.edu/pub/raichlab/4dfp_tools/ ;
4 
hulman et al., 2010 ) and FSL tools ( Jenkinson et al., 2012 ). BOLD time-

eries data were corrected for intensity differences due to interleaved

cquisition and debanded. Rigid body motion within BOLD runs was

orrected using linear realignment. Images were bias field corrected and

http://ftp://imaging.wustl.edu/pub/raichlab/4dfp_tools/
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or readout distortion and linearly registered to 711–2N Talairach at-

as space ( Smyser et al., 2010 ) as: BOLD →individual T2w or pseudo-

2w →cohort-specific T2w atlas →711–2N Talairach atlas, with linear

egistrations performed in a single step. The cohort-specific T2w atlas

as generated using ANTs atlas builder from 50 eLABE subjects that

ere independent of the 20 test subjects used in analyses. Atlas regis-

ered BOLD timeseries were mapped to subject-specific surfaces using

ethods adapted from Marcus et al. (2013) and Marcus et al. (2011) .

rame censoring was performed so that only data with at least three

onsecutive frames with frame displacement (FD) < 0.25 mm were used.

ach BOLD run was demeaned, detrended, and regressed for nuisance

aveforms including: white matter, ventricular and extra-axial cere-

rospinal fluid (CSF), whole brain, and the 24-Friston motion param-

ters. Data were then bandpass filtered (0.005–0.1 Hz) to remove non-

OLD frequencies and spatially smoothed. 

.2.4. Evaluation of structural data 

To evaluate the accuracy of the generated pseudo-T2w images, they

ere compared to the corresponding ground-truth T2w images by com-

uting the absolute value of the intensity differences between them. Im-

ges were first normalized to the same scale (0–2000) and the absolute

rror was restricted to voxels that fell within the brain. To summarize

he performance for each individual, the mean of the absolute errors

MAE) across all voxels within the brain was computed. 

To assess the correctness of anatomical structure of the pseudo-T2w

mages, the mean structural similarity index (MSSIM) was computed be-

ween each pseudo-T2w and T2w image ( Wang et al., 2004 ). The images

ere first normalized to the same scale (0–2000) and the calculation

as restricted to voxels that fall within the brain. To validate the struc-

ural similarity of the MCRIBS output ( Adamson et al., 2020 ), the DICE

oefficient was computed between the atlas registered cortical ribbons

erived from the psuedo-T2w and T2w images. 

To gauge the contrast properties important for accurate segmenta-

ion and registration, the contrast-to-noise ratio (CNR) of the anatomical

mages was computed. Here, CNR is defined as 

𝑁𝑅 = 

|𝜇( 𝐺𝑀 ) − 𝜇( 𝑊 𝑀 ) |√ 

( 𝜎( 𝐺𝑀 ) 2 + 𝜎( 𝑊 𝑀 ) 2 )∕2 
(1)

here μ(GM) and 𝜎(GM) are the average and standard deviation of all

oxels within the gray matter region-of-interest (ROI), and μ(WM) and

(WM) are the average and standard deviation of all voxels within the

hite matter ROI ( Lee and Riederer, 1987 ). MCRIBS ( Adamson et al.,

020 ) anatomical segmentations generated from the T2w or pseudo-

2w images were adapted to obtain gray and white matter ROIs that

inimize partial volume averaging. To construct the gray matter ROI,

he gray matter segmentation was shifted inward by both 1 and 2 voxels,

nd the 2-voxel shift mask was then removed from the 1-voxel shift mask

o that only the center of the segmentation remained. White matter ROIs

ere generated by eroding the white matter segmentations by 5 voxels.

CNR was computed to confirm that pseudo-T2w images possess simi-

ar contrast compared to T2w images. Paired t-tests were then performed

etween all combinations of anatomical image types to determine the

ignificance of differences in CNR, using a threshold of p < 0.05 to de-

ote significance. 

.2.5. Evaluation of synthetic images in fMRI analyses 

The 4dfp tool suite ( ftp://imaging.wustl.edu/pub/raichlab/4dfp_tool

hulman et al., 2010 ) was used to compute linear registrations between

OLD and anatomical data (T2w and pseudo-T2w images) to 711–2N

alairach atlas space. Registrations optimized the gradient correlation

etween images and were computed BOLD → individual anatomic

mage → cohort-specific T2w atlas → 711–2N Talairach atlas. To assess

he quality of BOLD to anatomical and anatomical to atlas registrations,

he mutual information (MI) between each registered image and its

arget was computed ( Avants et al., 2009 ). MI measures the amount of

hared information between two images and has the ability to capture
5 
onlinear relationships in image intensities ( Viola and Wells, 1995 ;

ollignon et al., 1995 ). This property is ideal for evaluating registrations

f multi-modality images, which often have nonlinear relationships.

aired t -tests were then performed between the computed MI for

ll combinations of anatomical images to determine the significance

f differences in registration quality, using a threshold of p < 0.05

o denote significance. See SI “Additional Comparisons ” for further

nalysis comparing the registration quality to the T1w. 

To assess brain-wide similarities of BOLD data that were pre-

rocessed using either a T2w or pseudo-T2w image, functional dense

onnectomes (dconns) from each participant’s rs-fMRI data were com-

uted for each of the three anatomic images. An average dconn for each

f the three pre-processing methods, T2w, 3DGAN-T2w, and Kaplan-

2w, was obtained by averaging across participants. Pearson correlation

oefficients were computed between the T2w average dconn and each

f the pseudo-T2w average dconns to measure similarity. 

Functional connectivity (FC) estimates for BOLD data pre-processed

sing T2w and pseudo-T2w images were obtained by computing the

airwise correlation of the average BOLD time series for a set of stan-

ard cortical parcels ( Gordon et al., 2016 ). Matrices consisting of these

C estimates for each participant were then organized based upon age-

pecific resting state network assignments (RSN) determined using pre-

iously published methods ( Wheelock et al., 2019 ; Eggebrecht et al.,

017 ). The average and variance of the connectivity matrices were com-

uted across subjects to evaluate similarity in RSN connectivity patterns

etween BOLD data pre-processed using T2w and pseudo-T2w images.

aired t-tests between the T2w connectivity matrices and both of the

seudo-T2w connectivity matrices were then performed to determine

he significance of differences in FC estimates, using a Bonferroni cor-

ected threshold of p < 0.00015 to denote significance. Bonferroni cor-

ection was computed as 

 < 

0 . 05 
𝑁 𝑝𝑎𝑟𝑐 

(2)

here N parc = 333 parcels. 

. Results 

.1. Anatomical comparison of T2w and pseudo-T2w images 

Resulting absolute error for a representative subject is presented in

ig. 3 a where brighter voxels represent the largest error. Here, the over-

ll error in both pseudo-T2w images is low and localized to the CSF. The

elative mean absolute error (MAE) of included voxels for all subjects is

resented in Fig. 3 b. Relative MAE across subjects was 6.9 ± 0.9% for

he Kaplan-T2w images and 5.6 ± 1.1% for the 3DGAN-T2w images. 

Anatomical similarity between pseudo-T2w and T2w images across

ubjects is presented in Fig. 4 . MSSIM ( Fig. 4 a) was 0.72 ± 0.04 for the

aplan-T2w images and 0.79 ± 0.04 for the 3DGAN-T2w images, and cor-

ical ribbon DICE coefficients ( Fig. 4 b) were 0.76 ± 0.03 for the Kaplan-

2w images and 0.82 ± 0.03 for the 3DGAN-T2w images. See SI “Ad-

itional Comparison ” for visual comparison of pseudo-T2w and T2w

ortical ribbons. 

Volumetric slices of anatomic images from a representative partici-

ant are presented in Fig. 5 a. Fig. 5 a demonstrates the qualitative simi-

arities in contrast properties between the pseudo-T2w and T2w images

hat are important for segmenting tissues, as well as computing optimal

egistrations between images automatically. These qualitative observa-

ions of tissue contrast can be quantitatively measured using CNR, de-

icted in Fig. 5 b for T2w and pseudo-T2w images, where increased CNR

orresponds to improved contrast necessary for subsequent processing.

lotted mean lines show no significant CNR differences between T2w

mages and both pseudo-T2w images (T2w with: Kaplan-T2w p = 0.15,

DGAN-T2w p = 0.71). 

http://ftp://imaging.wustl.edu/pub/raichlab/4dfp_tools/
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Fig. 3. Error in pseudo-T2w images. (A) Heatmap of absolute error between each pseudo-T2w image and the corresponding T2w image for a representative subject, 

where 100% represents the highest error value between the images. Here, brighter values indicate larger error and are localized to regions of CSF. (B) Violin plot 

depicting the relative MAE with T2w images of all subjects for both peudo-T2w images (Kaplan-T2w 6.9 ± 0.9%, 3DGAN-T2w 5.6 ± 1.1%). Smaller values indicate 

less error. 

Fig. 4. Structural comparison of pseudo-T2w images to T2w images . Violin plots depicting the (A) MSSIM of the images and (B) DICE coefficient of the cortical ribbons 

between the T2w and each psuedo-T2w for all subjects. For both metrics, values closer to 1 indicate higher similarity. 

Fig. 5. Contrast comparison of anatomical images . 

(A) Volumetric image slices from T2w and pseudo- 

T2w images for a representative subject. Cropped 

regions highlight contrast properties of each im- 

age between gray and white matter. Visual contrast 

properties are quantified as the (B) CNR between 

gray and white matter of different anatomical im- 

age types. CNR distributions are equivalent be- 

tween T2w (0.62 ± 0.31), Kaplan-T2w (0.76 ± 0.45), 

and 3DGAN-T2w (0.63 ± 0.29) images. 

6 
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Fig. 6. Registration accuracy of BOLD and anatomical images. Mutual information (MI) for each participant between registered (A) BOLD and anatomical images, as 

well as registered (B) anatomical and atlas images for each anatomical image type. Note the overlap in MI between T2w and pseudo-T2w images for both BOLD and 

anatomic image registrations. 
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.2. fMRI pre-processing with pseudo-T2w images is comparable to T2w 

mages 

Since registration algorithms typically rely on intensity differences

etween tissues to perform alignment ( Gonzalez-Castillo et al., 2013 ),

reater tissue contrast translates to better registration between im-

ges. Fig. 6 shows the quality of registration of BOLD to anatomic

ata ( Fig. 6 a), as well as anatomic data to the 711–2N Talairach at-

as ( Fig. 6 b). Here, higher quality registration is defined as increased MI,

nd there is substantial overlap between the MI of pseudo-T2w and T2w

egistrations. However, the T2w registration quality was higher than

oth pseudo-T2w images (BOLD registration: p < 0.001 for both Kaplan-

2w and 3DGAN-T2w; anatomical registration: p = 0.002 for Kaplan-

2w and p < 0.001 for 3DGAN-T2w). Between the pseudo-T2w regis-

rations, registration quality for Kaplan-T2ws was higher than 3DGAN-

2ws for anatomical registrations ( p = 0.04), but 3DGAN-T2ws were

igher for BOLD registration ( p < 0.001). 

Group average dconns for BOLD data pre-processed using T2w and

seudo-T2w images are shown in Fig. 7 a. Select seeds from early devel-

ping brain networks are shown, where seeds are taken from the center

f adult-defined network clusters ( Power et al., 2011 ). Note the simi-

ar connectivity patterns between the seedmaps of the pseudo-T2w and

2w maps. The brain-wide likeness is further reflected when correlating

he dconns of pseudo-T2w and T2w maps ( r = 0.98 for both Kaplan-T2w

nd 3DGAN-T2w). 

In addition to brain-wide similarities, Fig. 7 b demonstrates regional

onnectivity patterns of BOLD data pre-processed with pseudo-T2w and

2w images. The first row displays the average connectivity matrices for

ll three pre-processing methods. FC patterns are consistent between all

hree average connectivity matrices, both within and between RSNs. To

emonstrate the spread across subjects, the variances of the connectiv-

ty matrices are plotted in the second row. Overall, the variance is low

or all three pre-processing methods, but notably, regions of higher vari-

nce occur in the same parcels regardless of the anatomic pre-processing

ethod. 

To confirm equivalency between T2w and pseudo-T2w connectivity

atrices, Fig. 7 c shows statistical differences measured using a paired t -

est. Parcels identified as different are sparse with no apparent patterns,

or are they isolated to any particular region. Additionally, overall dif-

erences are minimal (0.06% for Kaplan-T2w and 0.03% for 3DGAN-

i  

7 
2w). All analyses and results were replicated in the ECHO cohort, see

I ECHO Cohort Results ”. 

. Discussion 

In this work, we developed two techniques to generate accurate syn-

hetic T2w images from T1w images in neonates. In the first method, we

xtended prior 2D deep learning models to 3D, avoiding the banding is-

ues associated with 2D models. Alternatively, we proposed a second

ethod that makes use of recent advances in nonlinear registration and

uilds upon prior work to perform image-to-image translation. Notably,

e have shown that T2w and synthetic T2w images are anatomically

like, possess similar contrast properties, and provide accurate targets

or BOLD image registration. Further, we demonstrated that pseudo-

2w images produce equivalent results to T2w images for rs-fMRI pre-

rocessing, surface mapping, and connectivity estimates in two inde-

endent cohorts. Crucially, implementing these techniques affords the

bility effectively recover potentially otherwise lost participant data. 

.1. Prior utilization of synthetic image methods 

Deep learning continues to allure researchers with promises of an all-

owerful model capable of generating multi-contrast images with tun-

ble image acquisition parameters ( Denck et al., 2021 ). While recent

evelopments in the form of GANs have enabled training of such mod-

ls without the requirement of paired data, sizable datasets with a wide

ariety of image types are still required. Recent variations of the classic

AN ( Goodfellow et al., 2014 ), including TarGAN ( Chen et al., 2021 ),

yper-GAN ( Yang et al., 2021 ), and PTNet ( Zhang et al., 2021 ) among

thers, have reported new improvements to network architecture to op-

imize cross contrast MR image estimation. However, in an effort to limit

omputational resources, these models are critically restricted to com-

utations on 2D slices, which has been shown to result in discontinuities

nd artifacts in the final synthetic volumetric image ( Xiang et al., 2018 ).

his major limitation of these deep learning algorithms has been high-

ighted by researchers attempting to impute missing data for longitudi-

al studies (Peng et al., 2021). To address this issue, Peng et al. conceded

mage resolution and downsampled cropped input images by a factor of

wo. However, because high-resolution images are optimal for anatom-

cal image preprocessing, we instead opted to reduce the parameters
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Fig. 7. Pseudo-T2w use in functional connectivity . (A) 

Average functional dense connectomes at select seeds 

for BOLD data pre-processed with T2w and psuedo- 

T2w images. Seeds were selected as the center vertex of 

adult-defined network clusters from early developing 

networks. Seedmaps from the somatomotor (top row) 

and default mode (bottom row) networks show simi- 

lar connectivity patterns across the three anatomical 

image types. (B) Average functional connectivity ma- 

trices (top row) using cortical parcels and the variance 

of the connectivity matrices (bottom row) across par- 

ticipants for BOLD data pre-processed with T2w and 

pseudo-T2w images. Parcels are organized into net- 

works including: motor, temporal lobe (Temp), pos- 

terior frontoparietal (pFPN), posterior cingulate cor- 

tex (PCC), lateral visual (lVIS), medial visual (mVIS), 

dorsal attention (DAN), anterior frontoparietal (aFPN), 

cingulo-opercular (CO), default mode (DMN), and 

unassigned (Usp). Note similar patterns and connectiv- 

ity strength between matrices of T2w and pseudo-T2w 

images. (C) FC estimate differences between BOLD 

data pre-processed with T2w images and Kaplan-T2w 

or 3DGAN-T2w images. Brighter colors indicate more 

significant differences. 
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f the model to address this limitation. Subsequently, in this study, we

emonstrated these shallower CNNs are equally capable of generating

D volumes that can be successfully implemented in current research

pplications. Additionally, while 3D cycleGANs have previously been

mplemented for various medical image synthesis tasks in adult popula-

ions ( Zhang et al., 2018 ; Abramian and Eklund, 2019 ; Pan et al., 2018 ,

019 ), to the best of our knowledge this is the first to do so in the context

f neonatal T1w-to-T2w applications. 

Alternatively, registration based methods have been thoroughly

nvestigated and remain the gold standard for brain segmentation

ven with the availability of deep learning methods ( Iglesias and

abuncu, 2015 ), though their use in image translation has been
8 
redominantly overlooked in recent literature. Earlier attempts by

chreibmann et al. (2010) to synthetically translate MR images to CT

tilized deformable registration; however, their approach only included

 single atlas, which has been shown to underperform compared to

ulti-atlas fusion ( Rohlfing et al., 2004 ; Heckemann et al., 2006 ). While

ulti-atlas fusion techniques typically use template image intensity to

nform fusion weightings for segmentation ( Wang et al., 2013 ), the same

ethodology has not been fully explored to create synthetic images. Al-

hough in prior work ( Burgos et al. 2014 ) utilized multi-atlas fusion

or PET attenuation correction, their method did not exploit recent ad-

ances in diffeomorphic registration which has proven advantageous

or high variability in deformation magnitudes, a common issue in the
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c  
eveloping brain ( Klein et al., 2009 ; Avants et al., 2009 ; Rogelj and Ko-

acic 2006 ; Trouvé 1998 ; Beg et al., 2005 ). Further still, previous work

as not addressed the anatomical accuracy of translated images to the

egree found in highly detailed MR images. In this work, we build upon

hese efforts and used image intensity fusion and optimal nonlinear reg-

stration to demonstrate that multi-atlas fusion is capable of generating

ccurate anatomical images in normative populations. 

.2. Comparison of pseudo-T2w method requirements 

Overall, both pseudo-T2w methods produce highly accurate anatom-

cal images that can be used interchangeably with T2w images for rs-

MRI analyses. Despite minor differences in performance for metrics

valuated in this work, the two pseudo-T2ws primarily differ in their

ethodological requirements, including data availability, as well as sys-

em resources and computational time. While both pseudo-T2w meth-

ds require high-quality (i.e., little to no motion) reference images, the

uantity of reference data differs greatly between the two: roughly 10

ubjects for Kaplan-T2w compared to about 70 subjects for the initial

raining of the 3DGAN-T2w. This becomes particularly important for

tudies with limited data, as it leaves the Kaplan-T2w method as the

rimary option for developing a new model. However, if a pre-trained

DGAN-T2w model exists, lower quantities of new data could be incor-

orated by further training the model. 

Because the initial training of the 3DGAN-T2w method requires large

uantities of data, it must be run on a GPU with at least 32 GB of VRAM

nd takes approximately one week to train the model. However, once

he network training is complete, 3DGAN-T2w images can be produced

ithin minutes on a CPU. In contrast, the Kaplan-T2w method gener-

tes images within a couple hours and is executed on CPUs. Since CPUs

re more cost effective and widely available, producing Kaplan-T2w im-

ges might be more readily implementable. Importantly, both methods

tilize software that is publicly available on most operating systems. 

The procedures behind the pseudo-T2w methods also lead to differ-

nces in their potential ability to incorporate new sequence parameters.

or instance, it is straightforward to add new sequences to an existing

re-trained 3DGAN-T2w model for subsequent training and refinement

ithout the need for paired data. In contrast, the Kaplan-T2w method

ould require a new set of paired data to accommodate substantially

ifferent sequences. As was shown in the ECHO dataset results, while

enerated pseudo-T2w contrast properties are specific to the sequences

n the training data, both methods generalize well to new sequence pa-

ameters in terms of resultant anatomical accuracy and subsequently

erived measures. Potential considerations for training a new model in-

lude: age of cohort, tolerance of contrast deviation, and input image

ariation. First, since T1w and T2w contrast properties flip during the

rst few months of life ( Dubois et al., 2014 ), it would be necessary to

rain a new model for each period of development. In addition, output

mage contrast properties cannot be extrapolated outside of the training

et, so the need to train a new model depends on the tolerance of de-

iation in the training set’s contrast properties from that of a particular

tudy. Finally, a new model would need to be trained if the input images

iffer substantially from the training set, and further investigation into

cceptable input image parameter bounds is needed. Ultimately, both

ethods are sufficiently well-suited for MR analyses, and pseudo-T2w

ethod selection should be determined by the needs and resources of a

articular study. 

.3. Implementation of synthetic images in MR analyses 

Given that most MR analyses rely on T1w and T2w images for deter-

ining spatial and structural information, anatomical accuracy in syn-

hetic images is essential. Even moderate errors in anatomy can result

n incorrect volumetric measures or improper localization of functional

ctivity, which can bias study conclusions. We have demonstrated that

he two methods for synthesizing pseudo-T2w images presented in this
9 
ork are appropriate for use in MR analyses due to their high anatomic

ccuracy when compared to corresponding T2w images. Critically, im-

lementation of both methods permits the use of any processing stream

egardless of which anatomical image is collected. 

In rs-fMRI analyses, anatomical images typically serve as intermedi-

te targets for BOLD registration to atlas templates and are used to gen-

rate surfaces and tissue segmentations for delineating nuisance signals.

herefore, it is crucial for BOLD data to precisely align with anatomi-

al images to ensure nuisance signals are correctly demarcated and for

ccurate anatomical atlas registration to compare rs-fMRI data across

ndividuals. Tissue contrast has been shown to greatly affect the quality

f image registration estimates ( Gonzalez-Castillo et al., 2013 ). Herein,

e have shown that, for neonates, T2w and pseudo-T2w images have

imilar tissue contrast that, more importantly, translates to the precise

egistration necessary for correct surface mapping and nuisance regres-

ion. Between the pseudo-T2w methods, minor differences in registra-

ion performance may be attributed to the higher CNR for the Kaplan-

2w and lower MAE for the 3DGAN-T2w; but more importantly, both

ethods result in highly accurate registrations overall. Once the corti-

al signal is accurately identified, cortical brain-behavior outcomes are

enerally investigated regionally at the parcel or network level. To best

ssess the effect that pre-processing BOLD data with pseudo-T2w im-

ges has on a typical study of FC, we computed FC estimates using a

et of standard cortical parcels ( Gordon et al., 2016 ). By showing that

here is no effective difference between both pseudo-T2w and T2w FC

stimates, we demonstrate that implementing pseudo-T2w fc processing

ikely will not impact study outcomes in this age range and can therefore

e confidently used when T2w images are not available. 

.4. Limitations and future work 

This work was limited to data obtained from healthy term-born

eonates. Further investigation is needed to determine the applicability

f these methods to premature, injured, or other atypically developed

rains, as well as different age groups. Further, although network-level

c estimates were evaluated using networks derived from infant data, the

nitial parcellation scheme was developed using adult data, which may

ot appropriately fit the developing neonatal brain. Replicating these

nalyses using a neonatal derived parcellation scheme remains neces-

ary. In addition, this work was completed using manually drawn brain

asks for both training and testing data, which is a time consuming and

xpensive process. Future work is needed to adapt these methods to al-

ow for unmasked data. For the 3DGAN-T2w method, this would mean

mproving memory efficiency to allow for the larger image inputs, and

or the Kaplan-T2w method this would require initial unmasked image

egistration that can be used to automatically delineate the brain-skull

oundary. 

. Conclusions 

This work offers two innovative methods for synthetic image gen-

ration that can be used when one structural image modality is miss-

ng in neonatal MR analyses. Critically, both methods can be readily

mplemented using publicly available software, and output images can

e successfully incorporated into existing MRI processing pipelines. Im-

ortantly, developing these methods in a neonatal population provides

 means of avoiding subject loss due to inherent challenges associated

ith scanning this age group, and successful application of either ap-

roach will greatly assist future studies of brain-behavior relationships

n the developing brain. 
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ng agreement between institutions that includes: 1) using the data only

or research purposes and not attempting to identify any participant; 2)
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rotocols; and 3) no redistribution of any shared data without a data

haring agreement. 
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