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This study is the largest analysis of DNA viruses in solid tumors with associated genomics. To achieve this,
a novel method for discovery of DNA viruses from matched tumor/normal next-generation sequencing
samples was developed and validated. This method performed comparably to reference methods for the
detection of high-risk (HR) human papilloma virus (HPV) (area under the receiver operating characteristic
curve Z 0.953). After virus identification in 48,148 consecutives samples from 42,846 unique patients,
novel virus tumor associations were established by segregating tumor types to determine whether each
DNA virus was enriched in each of the tumor types compared with the remaining cohort. All firmly
established solid tumor-virus associations (eg, HR HPV in cervical cancer) were confirmed, and the novel
associations discovered included: human herpes virus 6 in neuroblastoma, human herpes virus 7 in
esophagogastric cancer, and HPV42 in digital papillary adenocarcinoma. These associations were
confirmed in an independent validation cohort. HR HPVe and Epstein-Barr viruseassociated tumors
showed newly discovered genomic associations, including a lower tumor mutation burden. The study
demonstrated the ability to study the role of DNA viruses in human cancer from clinical genomics data and
established the largest cohort that can be utilized as a validation set for future discovery efforts.
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Viruses are among the most well-established causal agents
for cellular transformation to malignancy in solid tumors.
The potential for viruses to transform healthy cells to ma-
lignant solid tumors was first described in 1911 by Rous1 in
an animal model. The ability of viruses to induce human
tumors was established by investigators in a variety of solid
tumors later in the century.2e9 The most recent description
of a causal association between a virus and a solid tumor
was the establishment of Merkel cell polyoma virus as the
causal agent in Merkel cell carcinoma. Merkel cell polyoma
virus was discovered in 2008 with next-generation
sequencing (NGS) technology and a digital subtraction
method to remove human genome reads from the analysis of
RNA sequencing reads to detect viral RNA.10

With the advent of large-scale genome sequencing pro-
jects, the opportunity to investigate virus-tumor associations
Pathology and American Society for Investiga
has emerged by examining various data sources: RNA
sequencing, whole genome sequencing, and whole exome
sequencing; sources available through The Cancer Genome
Atlas Research Network.11e14 The ability to apply a similar
digital subtraction technique, whereby sequencing reads that
do not align to the human genome are used to identify
presence of viral DNA, has not previously been investigated
in the context of clinical genomics. This presents the
tive Pathology. Published by Elsevier Inc. All rights reserved.
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opportunity for analysis of the viral status for large cohorts
of tumors. To date, investigators have yet to demonstrate the
feasibility and validate the performance of such an analysis
in clinical sequencing data.

The current study introduces a technique for virus
detection and discovery in clinical, hybrid capture-based,
large-panel NGS data and perform a proof-of-principle
analysis in a clinical sequencing cohort of 48,148 solid
tumor samples. It shows that without performing additional
sequencing, virus-tumor type associations can be interro-
gated with high accuracy and fidelity. It explores the
genomic correlates of virus-associated tumors and that this
viral data can immediately inform diagnosis and patient
management.

Materials and Methods

Data Set

This study was completed utilizing data generated for the
Memorial Sloan KetteringeIntegrated Mutation Profiling of
Actionable Cancer Targets (MSK-IMPACT) clinical assay,
a US Food and Drug Administrationecleared tumor
profiling assay for patients with advanced solid cancers.
MSK-IMPACT Solid is optimized for the detection of
clinically relevant somatic mutations in patients with solid
tumors.15,16 The study was approved by the institutional
review board (Memorial Sloan Kettering Cancer Center; 12-
245 and 18-128). The data used for this study are based on
the first 48,148 solid tumors sequenced by MSK-IMPACT
from January 2014 to October 2020. The tumor diagnoses
were confirmed by a board-certified pathologist and cate-
gorized into 60 distinct tumor types based on morphology
and site of primary tumor, according to Oncotree grouping
(http://oncotree.mskcc.org, last accessed June 16, 2019),
according to the available clinical data at the time of
sequencing. All sequenced solid tumors that passed
quality control, including confirmation of adequate
genomic coverage and lack of contamination, were
included as part of the study to identify viral sequences in
the tumor tissue.

Virus Read Detection

The study was based on paired reads, including human-virus
chimeric reads, which improve virus specificity and elimi-
nate misallocation of reads between samples within indi-
vidual runs. Samtools version 1.7 was used to extract paired
unmapped reads from processed BAM files of MSK-
IMPACT clinical samples into FASTA files.17 The un-
mapped reads from each sample were queried for viral
content using blastn 2.9.0þ against all human viruses from
the National Center for Biotechnology Information Virus
database (https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#,
last accessed August 10, 2020) using the following
settings: strand both, word_size 28, evalue 1 e-10, and
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perc_identity 90.18 The blastn settings were tuned to
improve specificity based on experiments designed to
enhance sensitivity and specificity for a subset of cases
known to be high-risk (HR) human papilloma virus (HPV)
positive. Notably increasing the minimum word size identity
greatly reduced candidate matches and enhanced specificity.
KronaTools (v2.7) function ClassifyBLAST was used to
annotate corresponding National Center for Biotechnology
Information Taxonomy (https://www.ncbi.nlm.nih.gov/
taxonomy, last accessed July 31, 2020) to the aligned hits
using the GI identifier from blastn output.19 To account
for the presence of the Epstein-Barr virus (EBV) genome in
GRCh37, paired reads from the original processed BAM
files aligned to NC_007605 were counted. No other viral
genomes were incorporated in the reference genome uti-
lized. TaxonKit 0.6.0 was used to categorize each virus
taxonomic identifier within a specific species and genus.20

The python script for implementing this pipeline is pro-
vided as Supplemental Code S1.

High-Risk HPV Validation with ISH

The standard-of-care, clinically validated high-risk HPV in
situ hybridization (ISH) test for evaluation for the presence
of HR HPV in tumor tissue was used to test performance of
the method. Tumors evaluated by the RNA HR HPV ISH
and MSK-IMPACT testing were identified. The cases
evaluated by HR HPV ISH were tested as a part of routine
surgical pathology workflow. Methods for HPV ISH have
been described previously.21 The probes were designed to
detect the E6 and E7 genes of seven HR HPV genotypes
(HPV-16, HPV-18, HPV-31, HPV-33, HPV-35, HPV-52,
and HPV-58). The pathologist’s interpretation of the HR
HPV ISH was documented, and the slides for each case
were obtained to verify the results.

HR HPV Validation with Isothermal Amplification

Performance characteristics were assessed in comparison to
the AmpFire HPV Detection and AmpFire Genotyping HPV
assay (Atila BioSystems Inc., Mountain View, CA), using
an additional aliquot of extracted DNA. Twenty-eight cases
from which ISH was performed had residual DNA for
testing by isothermal amplification. The remaining cases
were selected randomly within positive and negative classes
from cases with residual DNA from MSK-IMPACT with a
target prevalence of 50% based on MSK-IMPACT HPV
results. This assay uses isothermal amplification real-time
fluorescent detection that is validated to detect and classify
15 high-risk HPV types.22

Analysis of EBV-Associated Tumors

Epstein-Barr Early Region (EBER) in situ hybridization is
commonly performed in clinical laboratories to identify the
presence of EBV virus.23 A retrospective analysis of the
jmdjournal.org - The Journal of Molecular Diagnostics
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tumors with EBV ISH was performed as part of the clinical
workflow for tumors. For cases in which >70 reads of EBV
were identified, additional EBV ISH tests were performed
when tissue was available. EBV ISH was performed on a
select group of tumors with <70 reads to identify any
nontumor cells with identifiable virus.

Virus Associations with Tumor Type and Mutations

Viruses detected with two or more paired reads were asso-
ciated with the respective Oncotree tumor type. The two-
read cutoff is based on optimal threshold for detecting HPV
based on above validation. The frequency of a virus type in
a specific tumor type was compared with the frequency of
the same virus in all other tumor types combined using an
odds ratio (OR). An instance was generated in CBioportal
(https://www.cbioportal.org, last accessed September 28,
2020) that associated the tumor cases with the virus
species and number of viral reads identified. The Groups
feature was utilized to generate cohorts of virus-positive
and tumor typeematched virus-negative tumors to deter-
mine enrichment or depletion of specific genomic event in
virus-positive cases, reported as ORs. A validation cohort of
7814 consecutive clinical tumor cases not overlapping with
the discovery cohort was identified. The validation cohort
included samples analyzed by an updated version of the
MSK-IMPACT panel in which probes for the human DNA
viruses were added. Thus, the virus-positive tumors were
enriched for virus reads and were not off-target captured
reads as in the discovery cohort. Read threshold was cali-
brated for updated methods. The validation cohort was used
to demonstrate that the novel findings of prior analyses can
be replicated on an independent cohort using a different
hybridization capture protocol.

Viral Integration Detection

A virus-human combined reference genome was generated
utilizing the standard human reference (GRCh37) and add-
ing 197 relevant viral genomes as additional contigs. Sam-
ples with �10 viral reads identified by the previously
discussed viral identification pipeline were selected to
identify the integration site. The complete complement of
FASTQ files generated from sequencing was aligned to the
virus-human reference. DELLY version 0.7.7, the structural
variant detection algorithm currently employed in MSK-
IMPACT pipeline, was used for identification of integration
events.15 A translocation event is called by the algorithm
when one end of the split read aligns to the human genome
and the other to one of the virus genomes. This is consistent
with an integration event, and the integration site is docu-
mented. In parallel, a previously reported integration event
algorithm called GENE-IS version 1.0 was used, which has
been used as a viral vector detection algorithm in gene
therapy studies to validate the results from DELLY
algorithm.24
The Journal of Molecular Diagnostics - jmdjournal.org
Statistical Analysis

Statistical calculations were performed using R version 3.5.1.
Receiver operating characteristic curve calculations were
performed using the R package pROC, and CIs were
calculated using bootstrapping methods.25 ORs were calcu-
lated with R package fmsb with a 2 � 2 matrix, where the
odds of the tumor type being positive for a virus were
compared with the odds that the remaining cohort was pos-
itive for the same virus. Each analysis was performed inde-
pendently. Haldane-Anscombe correction was applied as
appropriate. Bonferroni adjustment of the P value was uti-
lized for all analyses where adjustment for multiple hypoth-
eses was needed. Comparison of tumor mutation burden in
virus-positive tumor was performed using unpaired t-test on
the normally distributed log10 of sample-level tumor muta-
tion burden. The R script for statistical analysis is provided
(Supplemental Code S2).

Results

Detection of Viral DNA in Routine Clinical Genomic
Testing

Hybridization-captureebased NGS assays retain a small
amount of off-target genomic DNA and the subsequently
sequenced nonhuman DNA. Because of the high read depth
(500� to 1000�) generated through targeted clinical
sequencing applications, these reads occur at a frequency
that the analysis of the nontarget reads can be exploited to
identify clinically relevant viruses (Figure 1A). Sequencing
data from 48,148 samples (42,846 patients) analyzed by
MSK-IMPACT, the clinical NGS assay developed at Me-
morial Sloan Kettering Cancer Center, were used to identify,
on average, 12,096,946 unique paired sequencing reads per
sample. On average, 32,810 paired reads (median, 15,791;
range, 595 to 7,421,821; 0.3% of all paired reads) did not
map to the human genome (Figure 1B), and 15 (median, 1;
range, 0 to 78,998) paired human virus reads were identified
per sample. Just 26.1% of cases had >1 human virus read
(Figure 1, C and D).

Comparison of Virus Detection Method with Reference
Assays

To determine a threshold above which a sample would be
considered to harbor a virus, two well-characterized viruses
with existing clinically validated orthogonal tests, HR HPV
and human herpes virus (HHV) 4/EBV, were chosen. The
standard-of-care method for detection of HR HPV in
formalin-fixed, paraffin-embedded (FFPE) specimens is
RNA in situ hybridization.21 A total of 122 specimens,
enriched for cervical and head and neck cancer, had both ISH
and MSK-IMPACT testing performed as part of clinical
testing; and concordance between the two methods was 96%
(90% sensitivity, and 100% specificity). To assess the
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Figure 1 Summary of virus discovery method. A: DNA sequencing reads derived from tumor-associated microbes that do not align to the human genome.
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performance of the MSK-IMPACT virus detection method
with unbiased sample collection, 108 samples were tested
with AmpFire Genotyping HPV, an isothermal amplification
assay that is a highly sensitive platform for detecting HR
HPV DNA in FFPE material.22 The complete list of
validation samples and results are provided (Supplemental
Table S1). Of the 122 samples with ISH, 28 had residual
DNA available from sequencing available for testing by
isothermal amplification.
Receiver Operating Characteristic Curve Analysis

Receiver operating characteristic analysis comparing NGS
read analysis for HR HPV with isothermal amplification
showed an area under the curve of 95.3% (95% CI, 91.3%e
99.2%, by DeLong bootstrapping method) (Figure 2A). The
optimal threshold for determining presence of HR HPV was
the presence of two or more paired virus reads. At the two
paired read threshold, the specificity of the nonmapping
paired read analysis from MSK-IMPACT is 94.3% (95%
CI, 88.7%e100%) and sensitivity is 92.7% (95% CI,
78.2%e98.2%). Figure 2B summarizes the results of vali-
dation samples that were positive for HR HPV by one of the
three methods, including demonstration of 100% concor-
dance in HPV genotyping between methods when a virus
was detected by both isothermal amplification and MSK-
IMPACT. Supplemental Table S1 includes the results
from all validation cases, including negative samples. The
518
performance characteristics for virus detection were inde-
pendent of total sample reads and total nonmapping reads.
Assessment of Discrepant Cases and Quantitative
Nature of Paired Virus Read Detection

The study explored cases that were discrepant among
methods. Figure 2C shows the comparative signal by RNA
ISH in samples with a broad range of virus reads. As the
total number of paired reads detected decreased, the
strength of ISH signal also decreased, which suggests the
viral reads detected correlate with the level of RNA
expression and thus the amount of virus nucleic acid in
samples. The relationship between the strength of staining
by ISH and the total number of reads detected by NGS
suggested that analysis of nonmapping reads is semi-
quantitative. The other source of discrepancy between
NGS and reference methods was cases with low tumor
content relative to surrounding inflammatory cells, which
is a known source of false-negative mutation calls for so-
matic mutation detection by NGS.26 The discrepant cases
among the three methods, including the discrepancy be-
tween ISH and isothermal amplification, occurred when the
total virus reads from MSK-IMPACT were <6 paired virus
reads. These cases also had weak signal for virus by ISH or
had low tumor content. This finding suggests that samples
with low reads detected by NGS are more challenging
cases to detect the virus by all methods, presumably
because these samples have a lower level of viral nucleic
jmdjournal.org - The Journal of Molecular Diagnostics
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acid. Differences between various reference methods for
virus detection are well described.27 The discrepancies
have been ascribed to technical limitations of different
assays, but these results suggest that sample dependencies,
The Journal of Molecular Diagnostics - jmdjournal.org
such as lower levels of virus, are also a factor. Overall, the
validation experiments suggest that the analysis of non-
mapping NGS reads has similar performance to reference
methods for detecting HR HPV.
519
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Assessment of Detection of EBV

An EBV RNA ISH test is the standard-of-care test for EBV
in solid tumors. The study identified 39 cases from the
MSK-IMPACT cohort with EBV ISH testing performed
during routine pathology assessment. The ISH testing was
enriched in tumors with a morphologic phenotype, called
lymphoepithelial-like carcinoma (LE-LC) that is associated
with EBV positive epithelial tumors, which was observed in
nasopharyngeal, esophagogastric, thymic, and small bowel/
ampullary tumors. The study found cells with EBV signal
by RNA ISH in all samples that contained NGS reads and
for which EBV ISH was performed clinically. However,
EBV presents a unique challenge not seen in other viruses.
EBV not only causes oncogenic transformation but also is a
common chronic infection that can be reactivated when
patients experience immunosuppression, such as during
chemotherapy.28 Thus, EBV is the most common virus
observed in the data set, with 22% of samples having two or
more EBV reads. Comparison of samples with EBV
confirmed by ISH was used to establish that all cases with
EBV expression in the tumor cells contained �70 reads by
NGS. A total of 90 cases within the cohort had �70 EBV
reads. A total of 47 of these cases had available tissue for
EBV ISH to be performed, including those with previous
clinical testing. The results are summarized in Figure 2D.
One case of gastric cancer with LE-LC morphology was
negative for ISH but had >2000 reads detected by NGS,
suggesting the RNA ISH was a false negative. Two cases
with >70 EBV reads were negative in the tumor cells, but
the EBV ISH was positive in the benign epithelium adjacent
to the tumor and not within the tumor cells (Figure 2E). This
demonstrates a clear source of virus presence when the virus
is unrelated to the malignancy. This situation can be
resolved in routine clinical practice by EBV ISH. EBV
infection of benign epithelium has been previously
described but not in the setting of adjacent malignancy.29

The source of EBV signal below the 70-read threshold
was reactivation of EBV in tumor-associated lymphocytes
(Figure 2F).

Confirmation of Expected Tumor-Virus Associations

The viral read analysis was extended to a larger cohort of
48,148 samples sequenced prospectively between January
2014 and September 2020. Considering taxonomies
observed in two or more samples, a total of 82 unique
virus taxonomies from 51 distinct species of virus were
present in 12,566 clinical tumor samples. The frequency
of virus-tumor type combinations was compared with
frequency of the same virus in the full cohort of all other
tumor types. Each analysis was performed independently
as the presence of one virus does not exclude the pres-
ence of another. Figure 3A shows the tumor-virus pairs
with four or more instances in the cohort and for which
the pair frequency is significantly increased over controls
520
(lower bound 95% CI > 1 and significant P value after
Bonferroni adjustment for each taxonomy tested per
tumor type). This analysis was used to recapitulate known
virus-tumor type relationships: various HPV genotypes in
cervical, anal, and head and neck cancer; EBV in LE-LC
head and neck, thymic, and esophagogastric cancer;
Merkel cell polyoma virus in nonmelanoma skin cancer
(ie, Merkel cell carcinoma); HHV8 in sarcomas (ie,
Kaposi sarcoma); and hepatitis B in hepatocellular
carcinoma.

Viruses Associated with Organ-Specific Infections

Viruses that are common infections in the primary organ
of the tumor type but are not likely to be associated with
the development of malignancy are also observed: human
herpes virus 5/cytomegalovirus in colorectal and esoph-
agogastric cancers; and herpes simplex virus (human
alphaherpesvirus 1) in esophagogastric carcinoma.30e32

Although several cases of herpes simplex virus were
observed in esophagogastric cancer with high read counts,
herpes simplex was statistically enriched only in bile duct/
ampullary cancers. It is possible that these opportunistic
infections may be related to immunosuppression related to
cancer therapy or to a permissive immune system that
contributed to the development of malignancy.33,34

Novel Virus-Tumor Associations

An association between HHV7 and esophagogastric carci-
noma has not previously been observed. HHV7 is also
observed in salivary gland cancers, but there are only two ex-
amples. Studies have shown varying rates or persistent shed-
ding of HHV7 in saliva of patients, but no association between
esophagogastric tumors and HHV7 has been described.35 The
enrichment of HPV18 in a subset of gastrointestinal cancer
with neuroendocrine morphology is a novel observation. The
HPV18-positive neuroendocrine tumors tend to be high-grade
tumors and involve the distal colon. The exclusive presence of
HPV42 in a rare form of nonmelanoma skin cancer called
digital papillary adenocarcinoma is also not described in the
literature, although there has been speculation that the entity is
associated with HR HPV.36 HPV42 does not belong to the
group of HR HPV and thus targeted PCR assays and ISH for
HR HPV would not detect the virus.

HHV6 Enrichment in Neuroblastoma

HHV6 is not an oncogenic virus and is typically associated
with childhood illness and transient infection associated
with immunosuppression. HHV6 is also integrated into the
germline [chromosomally integrated HHV6 (ciHHV6)] and
inherited in 1% to 2% of the population. ciHHV6 exhibits
mendelian inheritance.37,38 There is no compelling evi-
dence that ciHHV6 predisposes individuals to malignancy.
As such, the expected proportion of cases positive for this
jmdjournal.org - The Journal of Molecular Diagnostics
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Figure 4 Genomic associations with high-risk (HR) human papilloma virus (HPV) and Epstein-Barr virus (EBV). AeC: Volcano plots showing oncogenic
virus-positive tumors. AeC: The dashed lines representing predetermined thresholds for displaying events enriched, with vertical and horizontal dashed
lines representing an odds ratio of �2 and P value of �log10(0.001), respectively: HR HPV mutations (A), HR HPV copy number alterations (B), and EBV
mutations (C) are enriched (right side of plots) or depleted (left side of plot) in virus-positive tumors. The x axis is negative log10 of P values. Gene names are
displayed for genes that are enriched/depleted in virus-positive tumors with P < 0.001. The P-value threshold is Bonferroni-adjusted for the multiple genes
tested. D: Tumor mutation burden (TMB) comparison between virus-positive tumors and tumor typeematched negative controls. Statistical analysis is via an
unpaired t-test. **P < 0.01 (D), ***P < 0.001 (AeC). Amp, amplification; Del, deletion.
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virus should be equivalent across tumor types. However,
enrichment of the virus was observed in neuroblastoma.
MSK-IMPACT utilizes a paired peripheral blood sample
for the purpose of identifying and excluding germline
polymorphisms as somatic events in tumors. When
ciHHV6 is present, we expect the virus to be observed in
both the tumor and the paired peripheral blood sample.
Within the cohort, 702 (1.4%) tumor samples had detect-
able HHV6. Figure 3B shows the quantity of reads in
HHV6-positive tumors and the corresponding number of
reads in the paired blood sample. The triangles in the
figure represent the rare cases where HHV6 is present in
522
the tumor but not in the blood, which suggests the virus is
not chromosomally integrated and thus in tumor only. For
all other viruses detected in tumor, the corresponding virus
reads were rarely detected in the blood, and when present,
they were suggestive of tumor cell-free DNA with inte-
grated virus or a systemic infection, such as EBV infec-
tion. For HHV6, 83% of virus-positive tumor samples also
had virus reads detected in the blood sample. On the basis
of this, these cases were presumed to be ciHHV6. How-
ever, 17% of HHV6-positive samples were found to have
HHV6 only in the tumor, which appears to represent a
different biological case than ciHHV6.
jmdjournal.org - The Journal of Molecular Diagnostics
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Figure 5 Analysis of virus integration identified by MSK-IMPACT. A: Bar plot showing the distribution of tumor types and viruses in which viral integration
was detected. B: Genome browser view showing integration of human papilloma virus 16 (HPV16) within ERBB2 gene. The internal panel shows the whole
genome log-ratio plot for the tumor, demonstrating 13-fold amplification of ERBB2 associated with the HPV16 integration, highlighted by the green circle. C:
Oncoprint of hepatocellular carcinoma cases from cohort, demonstrating mutual exclusivity between hepatitis B virus integration and TERT mutations. EBV,
Epstein-Barr virus.

Pan-Cancer Virus
Tumor-Only HHV6 Enriched in Neuroblastoma

Whether different tumor types had consistent levels
ciHHV6 versus tumor-only HHV6 was investigated.
Figure 3C shows the relative frequency of ciHHV6 in the
tumor types. As expected, based on population frequency
of ciHHV6, most tumor types showed a frequency of
HHV6 at approximately 1%. Neuroblastoma was the only
tumor type statistically enriched for HHV6 and had HHV6
positivity 3.0 times the average. Interestingly, for neuro-
blastoma, the increased frequency of HHV6 is fully
attributable to HHV6-positive tumors with no virus
detected in blood. The OR for cases with HHV6 only
detected in tumor for neuroblastoma was 13.7 (95% CI,
6.3e30.0; P Z 2.2 � 10�16). This makes the relationship
between neuroblastoma and HHV6 compelling and worthy
of more detailed investigation.

Validation Cohort

The validation cohort contained 7813 consecutive cases
from the clinical testing cohort with a similar variety of
different tumors. These cases were unique and independent
from the discovery cohort. The four novel virus tumor type
associations were the focus of this analysis. The associations
for which there were statistical power on the validation
cohort are available in Supplemental Figure S1A. HHV6
was enriched in neuroblastoma, colorectal, and esoph-
agogastric cancer in the validation cohort. This validation
cohort contained 108 neuroblastoma cases, and 4 of the
cases are positive for HHV6. All colorectal and
The Journal of Molecular Diagnostics - jmdjournal.org
esophagogastric tumors positive for HHV6 were also posi-
tive in the blood, consistent with ciHHV6. All neuroblas-
toma cases with HHV6 reads in the tumor had zero HHV6
reads in the blood, consistent with tumor-specific HHV6. As
in the discovery cohort, neuroblastoma was significantly
enriched for tumor-specific HHV6 (OR, 13.7; 95% CI,
4.6e41.1; P Z 8.7 � 10�10) in the validation cohort.
HHV7 was enriched in esophagogastric cancer and salivary
gland, as in the discovery cohort. One case of digital
papillary carcinoma was present in the validation set that
contained 800 reads of HPV42. Images of the histology and
RNA ISH are provided in the Supplemental Figure S1B.
The validation cohort did not confirm the association be-
tween HPV18 and gastrointestinal neuroendocrine tumors.
The discovery cohort showed the HPV18-positive tumors
were high-grade gastrointestinal neuroendocrine tumor. The
validation cohort contained four high high-grade gastroin-
testinal neuroendocrine tumors, and zero were positive for
HPV18. Two of the four high-grade gastrointestinal
neuroendocrine tumor samples were positive for other HPV
genotypes in the validation cohort.

Oncogenic Virus Status and Genomic Alterations

A total of 538 patients with HR HPV-positive tumors were
compared with a tumor typeematched control cohort con-
sisting of 643 presumed HR HPV-negative head and neck,
cervical, anal, vaginal, and penile squamous cell carcinoma
cases. HR HPV-positive cases showed a decreased fre-
quency of mutations in TP53 (P Z 1.9 � 10�79), TERT
promoter (P Z 1.2 � 10�31), and CDKN2A
523
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Figure 6 High-risk (HR) human papilloma virus (HPV) in unexpected metastatic tumor. Photomicrographs of the squamous cell carcinoma recharacterized
to be metastatic cervical cancer. Left panels: Hematoxylin and eosin (H&E)estained tumors. Right panels: Corresponding HR HPV in situ hybridization (ISH)
in subsequent sections showing strong signal for the virus in tumor cells in both lesions from the lung and liver. Scale bars Z 100 mm.
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(P Z 4.9 � 10�18) compared with HR HPV controls.
Inversely, HR HPV-positive tumors were enriched for AKT1
(P Z 1.6 � 10�4) mutations (Figure 4A). Specific copy
number alterations were also differentially distributed in the
two cohorts. Chromosome region 11q13.3
(P < 1.0 � 10�12) and EGFR (P Z 2.2 � 10�9) amplifi-
cations as well as 9p21 deletions (P < 5.3 � 10�15) were
enriched in HPV-negative tumors. The genes BCL6
(P Z 1.1 � 10�7), EIF4A2 (P Z 1.6 � 10�8), DNMT3B
(PZ 1.4 � 10�4), and ASXL1 (PZ 7.6 � 10�5) were more
frequently amplified, and FGFR3 (P Z 6.9 � 10�13) was
more frequently deleted, in HR HPV-positive tumors
(Figure 4B).
EBV-Positive Tumor Associations

The analysis of EBV-positive tumors was restricted to the
tumors with >70 EBV reads. A total of 90 tumors were
compared with tumor typeematched controls. EBV-positive
tumors were enriched for mutations in NFKBIA
(P Z 3.9 � 10�5) (Figure 4C), compared with negative
controls, whereas EBV-negative controls showed increased
frequency of TP53 (2.9 � 10�11). TERT promoter mutation
(P Z 0.04) was also enriched in EBV-negative tumors, but
the result was not significant after multiple hypotheses
correction. The copy number alterations showed no
524
significant differences between EBV-positive tumors and
EBV-negative controls.

Tumor Mutation Burden and Oncogenic Viruses

Both HPV- and EBV-associated tumors had a significantly
lower tumor mutation burden (P Z 0.003 and P Z 0.003,
respectively) than tumor typeematched controls
(Figure 4D). The comparatively low tumor mutation burden
in virus-associated tumors may be related to the expression
of viral proteins that serve similar functions to activated
oncogenes and/or inactivated tumor suppressor genes in
virus-negative tumors. For example, lower rates of TP53
and TERT mutations were observed in virus-positive tumors
compared with virus-negative tumors.

Virus Integration

Viral integration sites within the human genome were
observed by a modified analysis pipeline. A total of 619
samples with �10 viral reads were selected for viral inte-
gration analysis. A total of 18% of the samples tested
showed evidence of integration with two or more chimeric
reads containing both virus and human genome detected by
at least one algorithm (Figure 5A). HPV16 and HPV18 were
the most common viruses with detected integration sites in
anal, cervical/vaginal cancers, and head and neck squamous
jmdjournal.org - The Journal of Molecular Diagnostics
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cell carcinomas. Interestingly, an associated copy number
change at the human genome integrations site was observed.
Figure 5B shows ERBB2 amplification directly associated
with integration site of HPV16 at the ERBB2 locus. This
suggests that viral integration may drive oncogenesis not
only by the expression of viral genes, as has been exten-
sively described, but also by instigating genomic amplifi-
cation of human oncogenes. Genomic amplification
associated with virus integration has been proposed as a
mechanism of oncogenesis in tumors based on tumor cell
line evaluation.39 However, the authors are not aware of a
clear demonstration of such an event in a clinical tumor
sample. In the data set, HBV was recurrently integrated in
the TERT promoter in hepatocellular carcinomas, which has
been previously described.14,40 HBV integration in the
TERT promoter region was mutually exclusive with TERT
promoter mutations in our data set (Figure 5C).

Clinical Applications

In the course of this study, several virus-associated tu-
mors were discovered at the time of sequencing, which
would not have been identified without the current anal-
ysis. This was most commonly observed in EBV-positive
tumors less commonly associated with EBV, such as LE-
LC of the thymus, lung, and pancreatobiliary cancers. In
several of these cases, especially in lung cancer, the
lymphoepithelial-like phenotype was not fully evident.
The observation of morphologically occult LE-LC of the
lung along with reports of this entity41 has led the pul-
monary pathologists to implement EBV ISH testing on all
never smoker patients with squamous cell lung cancer. An
EBV-positive cholangiocarcinoma case was discovered
and confirmed by ISH. Protocols using immunotherapy
strategies to target the EBV-specific antigens are currently
being undertaken when occult EBV tumors are identified.
Thus, detecting EBV as part of clinical genomic
sequencing will be valuable with tumors not expected to
be EBV-positive based on routine pathologic evaluation.

An impactful demonstration of the clinical utility of
comprehensive virus detection for the management of can-
cer patients was that of a 55-yeareold woman with a
documented smoking history. The patient was found to have
a lung mass. The lung mass was biopsied, and histologic
examination was consistent with squamous cell carcinoma.
The patient was diagnosed with lung squamous cell carci-
noma and was managed with standard therapy for lung
cancer. Subsequently, the patient developed a liver metas-
tasis. The metastatic lesion was confirmed by histology and
was then sent for molecular testing. HPV16 reads were
identified at the time of sequencing. HR HPV ISH
confirmed the presence of virus on both the lung and the
liver biopsy (Figure 6). The patient had a remote history of
early-stage cervical cancer that was believed to have been
cured by simple excision. Knowing the HPV16 status, the
diagnosis was revised to metastatic cervical cancer. This
The Journal of Molecular Diagnostics - jmdjournal.org
vignette demonstrates the potential for prospective and
routine virus analysis to inform cancer therapy.
Discussion

The study described here is the largest and most compre-
hensive study of human DNA virus detection in cancer re-
ported in the literature and the first clinical validation and
determination of performance characteristics of meta-
genomics techniques by analyzing nonhuman reads from
cancer tissue. The investigation includes 48,148 individual
tumor samples of diverse tumor types prospectively
sequenced in a clinical setting. This analysis demonstrates the
feasibility of detecting (and potentially reporting) tumor virus
status for use in routine clinical management of cancer pa-
tients. Obtaining viral status in tissue has historically been a
major challenge because of the cost and technical hurdles not
addressed by other testing methods.27 Virus discovery in
clinical practice by molecular methods has been hindered by
the inherent challenge of traditional molecular methods on
tumor specimens, which are routinely processed as FFPE
tissue for pathologic examination. Methods currently
employed for such analyses for HR HPV experience various
challenges related to sensitivity and specificity due to nucleic
acid degradation in FFPE tissue. The most common method
for detecting viruses in FFPE tissue, in situ hybridization,
lacks ability to genotype the viruses.27 These methods also do
not allow for the detection of multiple different virus classes
in a single test. Because of these challenges, testing for the
presence of multiple viruses in tumor tissue is not routinely
performed, and testing for single viruses is limited to narrow
clinical scenarios. Establishing a technique with comparable
sensitivity and specificity to legacy molecular methods that
allows for the detection of the common human DNA viruses
would be of tremendous value for the management of cancer
patients. The technique described herein utilizes data previ-
ously acquired for clinical tumor sequencing. Because this is
a bioinformatic technique, it requires no additional
sequencing, and virus detection can be achieved with mini-
mal additional cost. This technique paves the way for clinical
reporting of viral status of tumors along with the somatic
mutation report and offers the potential to add significant
value to the clinical genomic sequencing of tumor tissue.

The value of virus identification in routine clinical prac-
tice, specifically when performed in tandem with somatic
mutation detection, has many appealing aspects for patient
management and clinical investigation. Aside from
providing insights into etiology, virus status can be utilized
to resolve diagnostic challenges, such as when a metastatic
lesion does not have a clinically evident primary source
(cancer of unknown primary). It can also be prognostically
significant and can function as a predictive biomarker for
treatment response (radiotherapy and immunotherapy).42,43

This study validates the accuracy of the digital subtrac-
tion method on DNA reads that do not align to the human
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genome from a large-panel NGS assay without virus-
specific probes. By cross validating the results with multi-
ple methods across tumor types and with different virus
species, the method is demonstrated to be readily applicable
to data from a clinical hybridization capture NGS
sequencing assay. The validation data allow for extension of
the analysis to discover novel tumor-virus associations.

The novel tumor-virus associations of HHV6 in neuro-
blastoma and HHV7 in esophagogastric cancer were vali-
dated using an independent data set that specifically
enriches the sequenced reads for viral reads. To the best of
our knowledge, the association between neuroblastoma and
HHV6 is novel. To rule out adrenal gland HHV6 coloni-
zation as a cause, 297 non-neuroblastoma adrenal gland
samples from the cohort were observed. A total of 112 non-
neuroblastoma adrenal gland primary tumors and 185 tu-
mors metastatic to the adrenal gland were present in the
cohort and were all negative for HHV6. Furthermore, the
cohort contained two patients with neuroblastoma with both
primary and distant metastasis sequenced. In both cases, the
primary and metastatic tumor samples were positive for
HHV6, and the peripheral blood samples were negative,
ruling out systemic infection and isolating the virus to the
tumor tissue in these patients. The study does not allow for
conclusive evidence of a causal relationship between HHV6
and neuroblastoma but shows a strong and unique rela-
tionship not observed in other tumor types. Additional
investigation is warranted to better understand the relation-
ship between HHV6 and neuroblastoma.

The final novel association is the relationship of HPV42
to digital papillary carcinoma. The pathology department’s
clinical in situ hybridization laboratory has validated an
HPV42 ISH assay that is now used routinely in identifying
digital papillary adenocarcinoma at our institution. All
samples to date where HPV42 reads were found in the
tumor have been confirmed with the ISH assay, and zero
samples with this histology have lacked the virus. A tech-
nique of unbiased detection of virus DNA allows for the
opportunity to investigate not only the role of known viruses
in oncogenesis, but also potentially undiscovered viruses by
using established and emerging metagenomic virus dis-
covery techniques.44,45 Having access to these data for
discovery by data analysis alone allows for resources to be
dedicated to investigating the role that viruses might play in
oncogenesis and considering virus-informed therapies rather
than performing laborious single virus discovery assays.

This analytic approach also allows for defining the
genomic landscape of tumors that contain virus compared
with tumor typeematched controls. With virus data
collected in tandem with genomic data, more extensive
analyses can be performed to better understand the in-
teractions of the tumor genome with oncogenic viruses. The
largest previous study of viruses in tumors was the Pan-
Cancer Analysis of Whole Genomes consortium study uti-
lizing whole genome and transcriptome sequencing from
2658 The Cancer Genome Atlas tumor samples.14 Whole
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transcriptome sequencing has some benefits for detecting a
greater number of viral reads and more chimeric reads, and
the ability to detect RNA viruses. The findings of the Pan-
Cancer Analysis of Whole Genomes study and the current
study are largely complementary. The strength of the Pan-
Cancer Analysis of Whole Genomes study was the ability
to detect large numbers of viral integration sites in virus-
positive tumors from RNA sequencing compared with the
relatively small number of integration events detected using
DNA reads from targeted clinical sequencing. The depletion
of TP53, CDKN2A, and TERT mutations in HPV-positive
tumors was noted in both studies. The current study, how-
ever, being an order of magnitude larger, allows for
increased statistical power to discover novel virus-tumor
type associations and some novel virus-mutation associa-
tions. The current study also has the advantage of being able
to validate the bioinformatics method against clinical labo-
ratory tests to determine the threshold for detecting positive
cases and determining sensitivity and specificity for virus
detection in a clinical setting.
Although the sequencing is optimized for capturing spe-

cific regions of the tumor genome and the viral reads are a
convenient byproduct of hybridization capture technology,
the sensitivity and specificity observed herein are remark-
able. Sensitivity can be improved by optimization of both
the sequencing assay and bioinformatics analysis. In the
updated MSK-IMPACT clinical assay used as the validation
cohort in this study, hybridization capture probes were
designed and implemented to enrich for DNA virus-specific
sequences. Preliminary validations confirmed that improved
sensitivity for the viruses and integration site detection can
be achieved with this strategy. As an example, the method
with virus-specific probes identified at least 10-fold greater
reads per case on average in HPV16-positive cases
compared with the original method.
Although based on the HR HPV assessment the technical

specificity is high, viruses can be present in tumor tissue
even when the virus is not the causal agent. For example,
patients can have viral infections in nonneoplastic cells near
tumor or in tumor-associated lymphocytes. Therefore,
caution must be considered in interpretation of these data,
and direct visualization techniques or virus integration
analysis should be performed to confirm the role of the virus
in the cancer.
Multiple molecular techniques are currently employed in

clinical practice to detect various oncogenic viruses.46e48

However, historical methods only allow for the detection
of a single virus type per test, and each test requires addi-
tional time, cost, and tissue, which has made testing of tu-
mors for viruses uncommon in routine management of
cancer patients. As hybridization capture NGS becomes
more common in clinical oncology, a virus detection
mechanism incorporated with somatic mutation detection
offers the opportunity to augment clinical practice for cancer
patients. The emergence of genomic medicine and targeted
molecular therapy now allows for the efficient detection of
jmdjournal.org - The Journal of Molecular Diagnostics
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mutations in many genes in thousands of cancer cases.16 A
similar trajectory may be possible for virus-relevant cancer
therapy as more advanced techniques for virus discovery are
implemented with advances in virus antigen-directed
immunotherapy.49 This analysis of nonmapping reads in
clinical sequencing data offers the highest potential to un-
derstand tumor-virus relationships across cancer tumor
types. The technique has the potential for high utility both in
clinical practice and for understanding the roles of viruses in
cancer.
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