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CONSPECTUS:

In vitro-transcribed RNAs are emerging as new biologics for therapeutic innovation, as 

exemplified by their application recently in SARS-CoV-2 vaccinations. RNAs prepared by in vitro 
transcription (IVT) allow transient expression of proteins of interest, conferring safety over DNA- 

or virus-mediated gene delivery systems. However, in vitro-transcribed RNAs should be used 

with caution because of their immunogenicity, which is in part triggered by double-stranded RNA 

(dsRNA) byproducts during IVT. Cellular innate immune response to dsRNA byproducts can lead 

to undesirable consequences, including suppression of protein synthesis and cell death, which in 

turn can detrimentally impact the efficacy of mRNA therapy. Thus, it is critical to understand the 

nature of IVT byproducts and the mechanisms by which they trigger innate immune responses.

Our lab has been investigating the mechanisms by which the innate immune system discriminates 

between “self” and “nonself” RNA, with the focus on the cytoplasmic dsRNA receptors retinoic 

acid-inducible gene I (RIG-I) and melanoma differentiation-associated 5 (MDA5). We have 
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biochemically and structurally characterized critical events involving RNA discrimination and 

signal transduction by RIG-I or MDA5. We have used in vitro-transcribed RNAs as tools 

to investigate RNA specificity of RIG-I and MDA5, which required optimization of the IVT 

reaction and purification processes to eliminate the effect of IVT byproducts. In this Account, 

we summarize our current understanding of RIG-I and MDA5 and IVT reactions and propose 

future directions for improving IVT as a method to generate both research tools and therapeutics. 

Other critical proteins in cellular innate immune response to dsRNAs are also discussed. We 

arrange the contents in the following order: (i) innate immunity sensors for nonself RNA, 

including the RIG-I-like receptors (RLRs) in the cytosol and the toll-like receptors (TLRs) in the 

endosome, as well as cytoplasmic dsRNA-responding proteins, including protein kinase R (PKR) 

and 2′,5′-oligoadenylate synthetases (OASes), illustrating the feature of protein–RNA binding 

and its consequences; (ii) the immunogenicity of IVT byproducts, specifically the generation 

of dsRNA molecules during IVT; and (iii) methods to reduce IVT RNA immunogenicity, 

including optimizations of RNA polymerases, reagents, and experimental conditions during IVT 

and subsequent purification.

Graphical Abstract

1. INTRODUCTION

Messenger RNA (mRNA)-based therapy can be used to replace endogenous malfunctioning 

genes or deliver antigens either from pathogens or tumors to the immune system.5 As our 

understanding of RNA biology and technology increases, mRNA-based therapy has become 

a promising direction for treatment. mRNA vaccines against SARS-CoV-2 are the most 

well-known example of its application to date.6

Therapeutic mRNAs are produced through in vitro transcription (IVT) catalyzed by DNA-

dependent RNA polymerases derived from bacteriophages, such as T3, T7, or SP6.7 Of 

these, T7 RNA polymerase is the most extensively studied and widely used.8 These RNA 

polymerases selectively recognize the promoter region in DNA templates to synthesize RNA 

transcripts based on downstream template sequences. The resultant transcripts are naked 

RNA molecules—uncapped at the 5′-end and non-polyadenylated [poly(A)] at the 3′-end. 

To mimic naturally occurring mRNAs, extra steps are taken during and after IVT to cap the 

5′-end (linking of N7-methylguanosine to the first nucleotide through a 5′–5′ triphosphate 
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bond), optimize the sequences in the 5′- and 3′-untranslated regions (UTRs) and the coding 

sequence (CDS), and add the poly(A) tail.9

Although these modifications improve the stability and translational efficiency of in vitro-

transcribed RNAs, they are challenged by the host innate immune system, which recognizes 

nonself molecules frequently found in invading pathogens or under pathological conditions. 

The innate immune response impedes therapeutic efficacy, as it not only affects treatment 

safety because of aberrant immune activation but also reduces the translation efficiency 

as part of cellular stress responses.10 Advances in innate immunity and IVT research 

have led us to believe that the purity and nucleotide composition of in vitro-transcribed 

RNA contribute to its immunogenicity. In this Account, we focus on our progress in our 

understanding of innate immune response to nonself RNA and IVT RNA.

2. CELLULAR INNATE IMMUNITY

Nonself molecules are sensed by host-encoded pattern recognition receptors (PRRs). PRRs 

generally do not recognize specific sequences from DNA, RNA, or protein but rather the 

molecular structures or kinds. Ligand-bound PRRs activate type-I interferon (IFN-I, such 

as IFNα or IFNβ) and inflammatory nuclear factor kappa B (NF-κB) signaling pathways 

to direct and modulate innate and adaptive immunity.11,12 Aberrant activation elicited by, 

for example, mutations in critical genes results in inflammation and immune diseases.13 

Cellular functions, including gene expression, metabolism, proliferation, and differentiation, 

are under stress in cells involved in the innate immune response.14,15 In such cases, the 

translation of in vitro-transcribed mRNAs is negatively affected.

We will discuss PRRs that recognize nonself RNAs, most notably cytosolic RIG-I-like 

receptors (RLRs) and endosomal toll-like receptors (TLRs). Other double-stranded RNA 

(dsRNA)-binding proteins that shape cellular stress responses to dsRNA will also be 

discussed.

2.1. RLRs

Upon RNA virus infection, dsRNAs are formed intracellularly and recognized by RLRs, 

including retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated 5 

(MDA5).16,17 They have similar amino acid sequences and domain architectures, with two 

tandem N-terminal caspase activation and recruitment domain (CARD) motifs, a central 

DExD/H box helicase domain, and a C-terminal domain (CTD) (Figure 1a).16 RIG-I and 

MDA5 use the same downstream adaptors, kinases, and transcription factors to activate IFN 

signaling.16 Thus, the study of one receptor provides insights into the other.

We determined the structure of MDA5 bound to dsRNA and found that MDA5 binds 

dsRNA in a sequence-independent manner by interacting with the backbone of the RNA 

duplex (Figure 1b).1 Upon dsRNA binding through the helicase domain and CTD, proteins 

oligomerize along the length of the dsRNA and form a filamentous structure.18 The two 

CARD motifs (2CARDs) oligomerize upon filament formation,19 activating the downstream 

adaptor mitochondrial antiviral signaling protein (MAVS) in the mitochondria. We used 

RIG-I 2CARD oligomers to study their interaction with MAVS and found that they interact 
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with the CARD motif of MAVS, triggering MAVS to form prion-like aggregates.2 It was 

shown that this MAVS–MAVS interaction is mediated through its CARD–CARD binding2 

in the way that 2CARD oligomers from the RIG-I filament nucleate MAVS assembly 

(Figure 1c).2 This work uncovered how signals are transduced from RLR–dsRNA to MAVS. 

Activated MAVS then recruits tumor necrosis factor (TNF) receptor-associated factors 

(TRAFs), TANK-binding kinase 1 (TBK1), and interferon regulatory factor 3 (IRF3) to 

activate IFN signaling (Figure 1d).2,20

Despite sharing similarities, RIG-I and MDA5 have different substrate preferences and 

modes of filament formation. We and others have shown that RIG-I senses 5′-triphosphate 

(5′-ppp) or 5′-diphosphate (5′-pp) dsRNA with minimal lengths of ~20 base pairs (bp) and 

40–150 bp for optimal signal transduction efficiency.21–24 First, it binds to the 5′-end of 

dsRNA and translocates to the inner side of dsRNA by hydrolyzing adenosine triphosphates 

(ATPs). A second RIG-I molecule then binds to the exposed dsRNA end and processes 

it in the same manner.19 MDA5 prefers longer dsRNA molecules (normally >1000 bp), 

independent of cap structure. It binds to the inside of dsRNA to nucleate protein association 

for filament formation.2,18 It was found that nucleation is a rate-limiting step compared with 

filament elongation. Hydrolyzing ATP leads to dissociation of MDA5 from the filament end 

and new MDA5s then assemble to fill the gap. Long dsRNA is preferred because a certain 

length of filament can be maintained under such assembly-and-disassembly conditions.18,22 

The ATPase activities of both RIG-I and MDA5 play important roles in discrimination of 

nonself from self RNA substrates.18,25,26 The sensitivity of RLRs needs to be balanced 

with the specificity. The gain-of-function mutations of MDA5 showed more IFN-activating 

capacity at the cost of self-recognition,3 leading to the onset of autoimmune diseases. 

RLRs were found to be involved in in vitro-transcribed RNA-mediated activation of IFN 

signaling.27,28

2.2. TLRs

Viruses invading cells through endocytosis enter the endosomes for uncoating and release 

of their genomic materials into the cytosol. Several types of TLRs localize and face toward 

the inside of the endosome.29 Recognition of dsRNAs with a minimal length of ~40 bp 

by TLR330 leads to TLR3 dimerization and subsequently activates the downstream adaptor 

protein Toll or interleukin-1 receptor (TIR) domain-containing adapter-inducing interferon-

beta (TRIF). TRIF then recruits TRAF3 and TRAF6 for transcriptional activation of IFN 

and NF-κB activation.29,31 Structural studies have revealed that TLR3 binds to the ribose–

phosphate backbone and not individual bases of dsRNA.32

Single-stranded RNAs (ssRNAs) are also recognized by TLR7 or TLR8 in the endosome. 

TLR7 dimerizes upon RNA binding, whereas TLR8 exists as a dimer before RNA 

recognition.33,34 Once bound to their ligands, TLR7 and TLR8 recruit the downstream 

adaptor myeloid differentiation primary response 88 (MyD88), which in turn associates 

with interleukin-1 receptor-associated kinase 4 (IRAK4) and IRAK1/IRAK2 to form the 

Myddosome. The Myddosome recruits TRAFs to activate IFN and NF-κB signaling.35–38 

Human TLR8 prefers GU-rich ssRNAs.39 The immunogenicity of U-rich stretches was 

demonstrated using mouse and human cells in a study showing that uridine stretches are 
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strong ligands for TLR7.40 Consistently, structural analysis revealed that both TLR7 and 

TLR8 bind to uridine in a uracil- and ribose-dependent manner (Figure 2a for TLR7 and 

Figure 2b for TLR8).33,34 It is noteworthy that the binding sites on the uracil base are still 

present in chemically modified versions of uridine, such as pseudouridine (ψ) (Figure 2c), 

which will be discussed in more detail later in this Account. Several studies have confirmed 

that in vitro-transcribed RNAs stimulate TLR3, TLR7, and TLR8.41–43

2.3. Other dsRNA-Binding Proteins

When protein kinase R (PKR) binds to dsRNAs with a minimal length of ~33 

bp, it dimerizes and gets activated by autophosphorylation,17,44 which leads to the 

phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α). 

Phosphorylated eIF2α blocks global translation initiation and subsequently leads to 

activation of NF-κB-mediated apoptosis.45,46 Similar to RLRs, PKR binds to dsRNA in a 

sequence-independent manner.47,48 In vitro-transcribed RNAs have been reported to trigger 

PKR activation in vitro and in cells.49,50

2′,5′-Oligoadenylate synthetase (OAS) binds to dsRNA to produce 2′,5′-oligoadenylate 

(2–5A), which serves as a secondary messenger to activate RNase L by inducing its 

dimerization or oligomerization.51 Activated RNase L then globally degrades cellular 

RNAs52 and actively arrests global translation.53–55 Interestingly, defense mRNAs such 

as IFNβ are not cleaved and translate during this process. All of these reprogram the 

cellular environment toward making IFNs.53–55 In humans, the OAS family comprises 

OAS1, OAS2, OAS3, and OAS-like protein (OASL); OASL is enzymatically inactive.56 

OAS3 is more potent in responding to dsRNAs than OAS1 and OAS2 and is the primary 

activator of RNase L.57 In vitro-transcribed RNAs activate the OAS–RNase L pathway and 

inhibit their own translation.58

A schematic view of cellular innate immunity is shown in Figure 3.

It is noteworthy that theoretically a potential consequence of in vitro-transcribed RNAs 

applied in vivo is the raising of anti-RNA antibodies. These RNA-recognizing antibodies 

are evident in the case of autoimmune diseases like systemic lupus erythematosus.59,60 

Studies have shown that TLR7 in B cells contributes to such antibody production and that 

RNA antigens can be RNA epitopes on small nuclear RNAs (snRNAs), 28S rRNA (rRNA), 

certain tRNAs (tRNAs), and even some mRNAs.59–62 Although reports on anti-IVT RNA 

antibodies are still lacking, one might consider examining mRNAs for therapeutics, as they 

themselves do not induce anti-RNA antibodies.

3. RNA IMMUNOGENICITY DUE TO IVT REACTION

IVT RNAs are often used to investigate the RNA specificity of RNA sensors in the innate 

immune system. IVT can be easily performed using commercial kits or homemade T7 

RNA polymerase. However, IVT yields not only the desired full-length ssRNA but also 

several types of byproducts, including short transcripts due to abortive transcription63 and 

dsRNAs.4,64,65 Such complexity can be exemplified by the observation that RNA produced 

by IVT activated OAS while that with the same sequence produced by chemical synthesis 
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did not.66 Understanding how dsRNA byproducts are formed during IVT will help reduce 

unwanted immunogenicity.

dsRNA byproducts are mainly produced through the 3′-extension of the ssRNA transcript, 

caused by annealing of the 3′-end to complementary sequences in cis or trans and continued 

transcription (Figure 4a).64,65 Additionally, we identified that dsRNA byproducts that were 

resistant to ssRNA-specific RNase I digestion but sensitive to dsRNA-targeting RNase III 

treatment (Figure 4b) were composed of two separate reverse complementary RNA strands 

(Figure 4c). The sense strand in the dsRNA corresponds to the desired ssRNA product, 

whereas the antisense strand was a full-length RNA molecule transcribed from the 3′-end 

of the template to the promoter region (Figure 4c), indicating that the antisense strand is 

transcribed in a promoter-independent, 3′-end extension-free manner and anneals to the 

sense strand to form a duplex (Figure 4d). This full-length dsRNA byproduct activates both 

RIG-I and MDA5 for IFN signaling (Figure 4e).4 The promoter-free transcription from 

the 3′-end of the DNA template is dependent on the sequence of the 3′-end in the DNA 

template.4,67

Double-stranded structures can also be formed through annealing of complementary 

sequences intra- or intermolecularly.68 Therefore, checking in vitro-transcribed RNA for 

the presence of dsRNA byproducts even after RNA purification is critical. Traditional 

purification methods, including phenol/chloroform extraction, lithium chloride precipitation, 

and column-based purification methods, cannot distinguish dsRNA from ssRNAs, and short 

abortive RNAs are not always removed. We used acridine orange (AO) to stain RNAs 

on native PAGE because AO helps distinguish between ssRNA and dsRNA (Figure 4b). 

Moreover, analysis of RNA products using different types of RNases is helpful (Figure 4b).

4. METHODS TO REDUCE IMMUNOGENICITY

Many groups, including ours, have attempted to eliminate the dsRNA byproduct during 

transcription or purification. We have arranged this section based on operational order, from 

during IVT to after IVT. During IVT, optimizations are performed on RNA polymerases, 

chemically modified NTPs, reaction conditions, and template sequences. For the subsequent 

purification steps, chromatography-based methods are effective.

4.1. RNA Polymerases

IVT can be performed at higher temperatures (51–55 °C) by using an engineered 

thermostable T7 RNA polymerase to yield ssRNA products lacking 3′-extension-derived 

dsRNA byproducts. Higher temperatures are believed to decrease the efficiency of either 

polymerase binding to the 3′-end of RNA or 3′-end priming for antisense synthesis.67 

Interestingly, this high-temperature condition could not reduce the formation of the dsRNA 

byproduct formed by the annealing of sense and antisense RNAs. However, introduction of 

the poly(A) tail encoded by the template reduced antisense byproduct formation at higher 

temperatures. Thus, a combination of high temperature and poly(A) tailing was proposed to 

reduce immunogenicity67
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RNA polymerases from other bacteriophages have also been studied. An RNA polymerase 

from the psychrophilic phage VSW-3 was shown to be more effective than T7 RNA 

polymerase in maintaining the yield of ssRNA products and decreasing the yield of dsRNA 

byproducts. Reactions can be performed at ≤25 °C, which is reportedly beneficial for the 

stability of RNA products.69

4.2. Chemically Modified Nucleotides

DNA molecules undergo modifications such as cytosine methylation on nucleosides, not to 

affect base paring but to influence protein binding.70 Similarly, mammalian RNAs, including 

mRNAs, are modified post-transcriptionally. Chemically modified nucleosides include 

pseudouridine (ψ), N6-methyladenosine (m6A), 5-methylcytidine (m5C), etc.71 Other 

common modified nucleosides include 2-thiouridine (s2U) and N1-methylpseudouridine 

(m1ψ) (Figure 2c). Such modifications are suggested to mark the RNAs as self and 

protect them from innate immune recognition.42 Extensive efforts have been made to 

investigate the protective role of modified nucleosides toward in vitro-transcribed mRNAs. 

Studies in dendritic cells (DCs) from peripheral blood have found that m5C and m6A 

present immunostimulatory effects comparable to those with unmodified bases, whereas 

ψ, s2U, and ψ/m6A are nonstimulatory.42 This suggests a dominant role of ψ (over 

m6A) in protecting RNAs from recognition and that mRNAs containing m1ψ are less 

immunogenic.72,73 Consistently, in mice, modified nucleosides such as s2U/m5C, ψ/m5C, 

and ψ reduce the immunogenicity of in vitro-transcribed mRNA.43,74,75

These chemically modified nucleotides containing in vitro-transcribed RNAs may lose 

efficient binding affinity to innate immune receptors. We reported that the presence of ψ, 

s2U, or m6A in the RNA duplex suppresses RIG-I from forming filaments on dsRNA.19 

Consistently, Gehrke et al. observed that m6A protects in vitro-transcribed RNAs from 

binding to RIG-I, whereas ψ, m1ψ, and m5C prevent RIG-I conformational change after 

binding.28 A combination of m5C and s2U protects mRNAs from binding to TLR3, TLR7, 

TLR8, and RIG-I.43

Studies have shown that for IVT mRNA, translation efficacy is higher with modified 

nucleotides than with normal nucleotides.43,72,73,75 For example, in vitro-transcribed 

mRNAs containing ψ or m5C exhibited a dramatic increase in translation, which was 

immunogenicity-independent for in vitro-transcribed mRNAs containing ψ.75 Comparison 

of in vitro-transcribed yeast tRNA and natively isolated tRNA showed that the IVT product 

is a strong agonist of PKR activation and that nucleoside modifications, including ψ, 

m5C, and s2U, abolished this activation.76 Consistently, tests with in vitro-transcribed 

mRNAs have shown that ψ, m1ψ, and s2U are responsible for protection against PKR 

recognition.49,50,77 Moreover, replacement of U with ψ protects the RNA molecule from 

activating OAS and the downstream RNase L-mediated RNA cleavage event.58 Mounting 

evidence from mice studies supports the beneficial role of modified nucleosides (ψ and 

m1ψ) in mRNA translation.58,72,73,75,78–80 However, it should be noted that exactly why 

certain modifications are more effective than others in evading translational suppression 

is unclear. Not all modifications are beneficial to translation, even if they contribute to 

reducing PKR binding. Additionally, different cells may exhibit different sensitivities to 
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modified nucleosides. For example, in vitro-transcribed mRNAs containing s2U and m6A 

in HEK293 cells (an immortal human embryonic kidney cell line) and murine monocyte-

derived dendritic cells (MDDCs) are not translated.75 Furthermore, ψ and m1ψ could 

not improve translation of in vitro-transcribed mRNAs in HeLa cells (an immortal human 

cervical cancer cell line) or keratinocytes (an epidermal cell line) but could enhance the 

translation of in vitro-transcribed mRNA in C2C12 cells (an immortalized mouse myoblast 

cell line).72

These observations suggest that the effect of RNA modification on immunogenicity and 

translation suppression may not be entirely due to the direct effect of modified nucleosides 

on the RNA sensors. In fact, our study found that modified nucleotides in the IVT reaction 

also alter the behavior of the RNA polymerase and consequently the synthesized RNA 

products. We tested selected modified nucleotides to replace original nucleotides for IVT 

and found that antisense-mediated dsRNA byproducts were reduced when ψ, m1ψ, or m5C 

was used but not when m6A was used (Figure 5a, 512B transcript).4 A similar observation 

was made by Karikó et al. when ψ was used in place of U.78 Intriguingly, the MDA5-

mediated IFN signaling efficacy was unaffected by gel-purified dsRNA containing modified 

nucleotides (Figure 5b, purified 512B:c512B), consistent with the notion that MDA5 binds 

to the dsRNA backbone rather than interacting with bases, where modification often occurs. 

Our data suggest that modified nucleotides in part reduce the immunogenicity of in vitro-

transcribed RNA by inhibiting the production of dsRNA byproducts, thus improving RNA 

purity. It is also possible that modified nucleotides in the IVT reaction also suppress other 

immunogenic byproducts besides the dsRNA byproduct as described above, which would be 

an interesting area of future research.

4.3. Transcription Conditions

We tested different IVT conditions, such as the concentrations of RNA polymerase, 

template, NTPs, and NaCl, to decrease dsRNA formation and found that lowering the Mg2+ 

concentration (from 30 to 5 mM) reduced the amount of dsRNA byproducts generated by 

the promoter-free antisense RNA synthesis mechanism (Figure 5c) independent of template 

length.4 Although the reason for this improvement is unclear, we speculate that the T7 RNA 

polymerase in the promoter-free antisense RNA synthesis maintains its conformation in the 

elongation phase to stay transcriptionally active and that a high concentration of Mg2+ (30 

mM) promotes maintenance of such a conformation.4

4.4. Template Sequences

Sequence manipulation can reduce the immunogenicity of in vitro-transcribed mRNA. By 

using different restriction sites to change the 3′-end sequence in the IVT template and 

digestion of these sites to create different structures, we noticed that the 3′-end sequence 

and structures impact the promoter-free antisense transcription (Figure 5d).4 Other studies 

have shown that using uridine-depleted sequences lowers the immunogenicity of in vitro-

transcribed Cas9 mRNA containing modified nucleosides by an unknown mechanism,81 

supporting the notion that TLR7 and TLR8 bind U-containing ssRNAs.
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4.5. Purification of In Vitro-Transcribed RNAs

On the basis of RNA size and structure, native PAGE or agarose gel electrophoresis can 

identify the correct ssRNA products on a small scale.82 For larger amounts of in vitro-

transcribed RNAs, chromatographic purification effectively separates IVT byproducts, such 

as short abortive transcripts, nucleotides, and dsRNAs with distinct conformations.83–85 

High-performance liquid chromatography (HPLC) was reported to effectively remove 

dsRNA contaminants; however, the resultant in vitro-transcribed mRNA, composed of 

unmodified nucleotides, remained immunostimulatory—DCs maintained high levels of 

TNF-α and IFN-α. By contrast, HPLC-purified ψ-, m5C- or ψ/m5C- modified mRNAs did 

not induce cytokine release.85 Findings from a study using m1ψ were consistent.86 Thus, 

using a combination of modified nucleotides for IVT and HPLC purification can produce 

non-immunostimulatory mRNAs.

Another approach to remove dsRNA contaminants takes advantage of the fact that dsRNA 

prefers to bind to cellulose in ethanol-containing buffer78 and is utilized in the study of 

microorganisms.87,88 Cellulose-bound dsRNA is separated in the spin column from the 

ssRNA flowthrough. Nucleoside-modified RNAs (m1ψ) can be effectively purified using 

this method. Results from in vivo assays suggested that mRNAs purified using this method 

are comparable with HPLC-purified mRNAs in terms of translation efficiency.78 Consistent 

with results from HPLC purification, cellulose-purified in vitro-transcribed mRNAs 

containing unmodified nucleosides were immunostimulatory, whereas m1ψ-containing in 
vitro-transcribed mRNAs were not, further highlighting the protective role of modified 

nucleosides.

A summary of methods to reduce immunogenicity is illustrated in Figure 6. Purification 

of in vitro-transcribed mRNAs to discard dsRNA contaminants or abortive short transcripts 

is not effective enough to keep the in vitro-transcribed mRNAs from being immunogenic. 

For now, a combination of modified nucleotide usage for transcription and chromatographic 

purification appears to be promising for in vitro-transcribed mRNA preparation.

5. OUTLOOK

Progress in innate immunity has increased our understanding of the immunogenicity of in 
vitro-transcribed mRNAs. Mechanistic studies of the interactions between host-cell-encoded 

receptors and their RNA ligands have revealed details of innate immune activation, and 

investigations of IVT reactions have shed light on the origin of such immunogenicity. 

Although immunogenicity can be potentially beneficial in the case of vaccination,89 a 

well-controlled in vitro-transcribed mRNA product is crucial for therapeutic applications, 

as the goal of mRNA therapy is to express proteins of interest in target cells. The use 

of chemically modified nucleotides for IVT and chromatographic purification steps makes 

in vitro-transcribed mRNAs competent in protein translation and immunosilencing.78,85,86 

New RNA polymerases, including the optimized T7 RNA polymerase, are also worth 

exploring.67,69

The use of chemically modified nucleotides in IVT contributes not only to reducing 

the immunogenicity of purified ssRNAs but also to decreasing dsRNA production.4,78 
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We speculate that modified nucleotides may benefit IVT by increasing transcript purity 

and decreasing transcript immunogenicity. Because of the complex nature of in vitro 
transcription, using AO staining can be a straightforward way to check the presence of 

dsRNA byproducts, thus reducing uncertainties about the IVT samples.

How modified nucleotides suppress dsRNA production or RNA immunogenicity is still 

unclear. Considering immune evasion as an example, the dsRNA-binding proteins discussed 

here sense RNA in a sequence-independent manner. For the ssRNA-sensing receptors TLR7 

and TLR8, structural studies have shown that the receptor-bound atoms in uridine include 

oxygen atoms linked to C2 and C4 and N3 in uracil (Figure 2a,b), all of which are 

equally present in ψ or m1ψ (Figure 2c). Precisely how these modified nucleotides affect 

immunogenicity and translational efficiency, whether it is directly or indirectly mediated by 

RNA sensors, and how much of these effects are due to their impact on the IVT reaction 

itself remain to be investigated. We believe that studying the molecular mechanism ofn this 

process will improve our understanding of how innate immunity distinguishes “nonself” 

from “self” RNAs.
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ATP adenosine triphosphate

CARD caspase activation and recruitment domain; bp, base pair

CDS coding sequence

CTD C-terminal domain

DC dendritic cell

dsRNA double-stranded RNA

eIF2α alpha subunit of eukaryotic translation initiation factor 2

HPLC high-performance liquid chromatography

IFN interferon

IRAK interleukin-1 receptor-associated kinase

IRF3 interferon regulatory factor 3

IVT in vitro transcription

MAVS mitochondrial antiviral-signaling protein

MDA5 melanoma differentiation-associated 5

MDDC monocyte-derived dendritic cell

MyD88 myeloid differentiation primary response 88

m1ψ N1-methylpseudouridine

m5C 5-methylcytidine

m6A N6-methyladenosine

NF-κB nuclear factor kappa B

nt nucleotides

OAS 2′,5′-oligoadenylate synthetase

OASL OAS-like protein

PAGE polyacrylamide gel electrophoresis

PKR protein kinase R

poly(A) polyadenylated

PRR pattern recognition receptor

RIG-I retinoic acid-inducible gene I

RLR RIG-I-like receptor
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ssRNA single-stranded RNA

s2U 2-thiouridine

TBK1 TANK-binding kinase 1

TLR toll-like receptor

TNF tumor necrosis factor

TRAF TNF receptor-associated factor

TRIF TIR-domain-containing adapter-inducing interferon-beta

UTR untranslated region

ψ pseudouridine

2–5A 2′,5′-oligoadenylate
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Figure 1. 
(a) Schematic of the domain organization of RIG-I and MDA5. (b) Top and side views of 

MDA5 (without 2CARDs): 12 bp dsRNA complex structure in the presence of the ADP 

analogue ADPNP. (c) Structures of MAVS CARD filament nucleated by RIG-I 2CARD 

oligomers. 2D and 3D models are shown on the right. (d) Cartoon model of filamentous 

RLRs nucleating MAVS to form filaments to activate downstream factors for IFN signaling. 

(b) Reprinted with permission from ref 1. Copyright 2013 Elsevier Inc. (c, d) Reprinted with 

permission from ref 2. Copyright 2014 Elsevier Inc.
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Figure 2. 
(a) View of UUU recognized by Macaca mulatta TLR7 (MmTLR7). (b) View of U 

recognized by human TLR8 (hTLR8). The structural formulas of uridine are highlighted 

to the right of each panel, and interacting atoms in the uracil base are indicated by arrows. 

(c) Structures of unmodified uridine, cytidine, and adenosine and their chemically modified 

versions. The carbon and nitrogen atoms in the base ring are numbered in red. The carbon 

atoms in the ribose ring are numbered in green and labeled with a prime (′). (a) Reprinted 
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with permission from ref 33. Copyright 2016 Elsevier Inc. (b) Reprinted with permission 

from ref 34. Copyright 2015 Nature Publishing Group.
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Figure 3. 
In the cytoplasm, RIG-I and MDA5 form filaments along the length of dsRNA to 

activate MAVS, whose aggregation functions as a platform to recruit TRAF proteins for 

IFN-I and NF-κB signaling activation. dsRNAs are also recognized by PKR to trigger 

global translation repression and by OAS for RNA degradation and translation shutdown. 

OAS–RNase L reprograms cellular translation to allow defense mRNAs, such as IFNβ 
mRNAs, to translate normally. In the endosome, dsRNAs are recognized by TLR3, and 

such binding activates the downstream adaptor TRIF. ssRNAs in the endosome bind to 

TLR7 or TLR8, activating MyD88, which further recruits IRAKs to form the Myddosome. 

Activated TRIF or Myddosome then recruits TRAFs for downstream activation. Red-colored 

strands represent RNA molecules, and green strands represent DNA molecules. “p” denotes 

phosphorylation.
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Figure 4. 
(a) Schematic view of 3′-end extension-mediated dsRNA production by T7 RNA 

polymerase. The promoter region in the template DNA is shown in blue. Downstream 

sequences are shown in green. The transcribed RNAs are shown in red. The orange arrow 

indicates the direction of transcription. (b) Transcripts were challenged with RNase III or 

RNase I treatment and subjected to native PAGE analysis. The RNAs were visualized using 

SybrGold and AO. In AO staining, dsRNA is stained in green and ssRNA in red. (c) Start 

and end sites of sense (512B) and antisense (c512B) strands of transcripts were determined 

by 3′ and 5′ rapid amplification of cDNA ends (RACE). The schematic illustration of the 

sequencing results is shown at the bottom. (d) Schematic view of dsRNA production by 

the mechanism of annealing of sense and antisense strands. After RNA transcription by the 

sense strand, the RNA polymerase initiates RNA transcription by the antisense strand. The 

orange arrow indicates the direction of transcription. (e) A luciferase assay was done in 
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HEK293T cells by cotransfection of RIG-I- or MDA5-expressing plasmids with luciferase 

reporters driven by IFNβ promoter, followed by transfection of stimulant RNAs indicated. 

CIP: calf intestinal phosphatase. (b), (c), and (e) Reprinted with permission from ref 4. 

Copyright 2018 Oxford University Press.
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Figure 5. 
(a) Native PAGE analysis of transcripts using unmodified or modified nucleotides for 

IVT. The purified dsRNA 512B:c512B was initiated by incubation of IVT products 

with RNase I to digest ssRNAs. (b) A luciferase assay was done in HEK293T cells 

by cotransfection of MDA5-expressing plasmids and luciferase reporters driven by IFNβ 
promoter, followed by unpurified (512B transcript) or purified (purified 512B:c512B) RNA 

transfection, respectively. (c) Native PAGE analysis of transcribed RNAs at 512 nucleotides 

(nt) using different Mg2+ concentrations for IVT. dsRNA byproducts were validated by AO 

staining. (d) Native PAGE analysis of transcribed RNAs with different 3′-end sequences and 

structures. Templates before (original) and after the Klenow reaction (Klenow), derivatives 

with indicated restriction sites at the 3′-end before digestion (-bd) and after digestion (-ad) 

are shown on the left and were used for IVT on the right. (a–d) Reprinted with permission 

from ref 4. Copyright 2018 Oxford University Press.
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Figure 6. 
Optimizations to reduce dsRNA contaminants include the use of different RNA 

polymerases, changes in experimental conditions (e.g., Mg2+ concentration or the use of 

selected modified nucleotides), and the use of manipulated-sequence-containing templates 

(e.g., deletion of U-rich sequence) during IVT. In the purification steps, HPLC or cellulose 

chromatography can be applied.
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