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Abstract 

Background:  Thermoinducible bioswitches are unique in that the all-or-none switch response is triggered by 
temperature, which is a global factor that impacts all biochemical reaction processes. To date, temperature-inducible 
bioswitches rely exclusively on special thermal sensing biomolecules of DNA, RNA, proteins and lipids whose confor-
mations are critically temperature dependent.

Method:  This paper extends the traditional thermal switch by utilizing purposely designed network topologies of 
biomolecular interactions to achieve the switching function. By assuming the general Arrhenius law for biochemical 
reactions, we explore the full space of all three-node genetic interaction networks to screen topologies capable of 
thermal bioswitches. Three target bioswitches, i.e., thermal-inducible Off–On, cold-inducible On–Off, and hybrid Off–
On-Off double switches, are considered separately.

Conclusions:  We identify the minimal and core network skeletons that are basic and essential for building robust 
high-performance bioswitches: three Off–On motifs, three On–Off motifs, and an incoherent feedforward motif for an 
Off–On-Off double switch. Functional topologies are implicitly preferential in choosing parameter values to achieve 
the target functions. The scenario of the topology-based bioswitch we propose here is an extension of molecule-
based bioswitches and would be valuable in aiding the rational design and synthesis of efficient high-performance 
thermal bioswitches.
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Background
Switch-like behaviour is a classic dynamic function com-
monly found in biological systems [1–13]. Upon the 
stimulation of an input signal, the switch of a biochemi-
cal signalling network transforms the external cue into 
an all-or-none response. In biological systems, this trig-
gering behaviour of binary processing of extra- or intra-
cellular stimuli can regulate critical processes such as 
the cell fate decision-making of cell proliferation and 
stem cell differentiation [6, 9]. In recent years, biologi-
cal signalling networks capable of switch-like behaviour 

have been extensively investigated. The mechanisms for 
accomplishing the switching function can be classified as 
ultrasensitive [2–4, 6–8] or bistable [5–7, 10]. Network 
topologies that robustly generate switch-like behaviour 
have been comprehensively analysed in the full space of 
two- and three-node networks of enzymatic and tran-
scriptional interactions, which were found to fit into a 
small number of topological motifs or minimal archi-
tectures [12]. Experimentally, switch motifs have been 
applied in synthetic biology to guide the rational design 
of ultrasensitive bioswitches [13].

Among various switches in biology, the thermoinduc-
ible switch (TIS) is unique in that temperature is used as 
an input cue to trigger the all-or-none cellular response 
[14, 15]. Temperature is a key environmental signal that 
globally affects biochemical reactions. High-performance 
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thermoswitches are attractive due to their promising 
applications in thermosensors and synthetic biology, 
particularly as a control scheme in metabolic industrial 
engineering [16]. To date, thermoswitches have been 
based on conformational changes in biomolecules of 
DNA, RNA, and proteins upon temperature variations 
[14–19]. For DNA thermosensitive switches [17], DNA 
curvature or supercoiling can be affected by temperature 
changes and subsequently influence transcription ini-
tiation. In RNA thermal switches, the three-dimensional 
structure of the 5’UTR in messenger RNA is temperature 
dependent [16, 18]. The ribosome binding site can thus 
be exposed or hidden in the secondary structure, which 
modulates the translation efficiency. Bioswitches can also 
be achieved by temperature-sensitive proteins acting as 
transcriptional regulators [19]. In this case, temperature 
changes influence the tertiary and quaternary structures 
of proteins, which affect their regulation of the DNA pro-
moter region of downstream genes.

To date, temperature-inducible bioswitches have been 
exclusively based on special biomolecules whose con-
formational change is thermally controlled [14–19]. 
Such thermal sensors based on DNA, RNA, proteins 
and lipids that respond directly to heat or cold shocks 
have either evolved in nature or have been engineered 
in the laboratory [16]. In contrast to a temperature sens-
ing mechanism based on the thermosensory elements of 
biomolecules [14], this paper explores another possibility 
of utilizing specific network topologies to achieve a ther-
moinducible switch (refer to Fig. 1A). In this scheme, the 
network topology is the focus—not specially designed 
biomolecules in a network purposely constructed as a 
thermal sensor. The reaction rate constants for reactions 
in the network simply follow the general Arrhenius law, 
and a sudden temperature shift brings step-like rises or 
drops in rate for all reactions. With the global influence 
of temperature changes, the network output should ful-
fil a switch-like response. Such switch-like behaviour 
triggered by temperature changes depends on network 
topologies, which act overall as thermosensory elements. 
Topology-dependent thermal sensors are different from 
normal dynamic switches based on ultrasensitivity and 
bistability in that a sudden temperature change in the for-
mer triggers a switch-like response, while such a change 
would thermally ruin the dynamic all-or-none response 
for the latter.

For our purpose, we exploit simple genetic tran-
scription circuits that are capable of switch-like gene 
expression. We explore the full space of all three-com-
ponent gene regulatory networks to screen topolo-
gies that can robustly achieve temperature-induced 
switch-like behaviours. Three different types of TISs 
are considered: a high-temperature-induced Off–On 

type, a low-temperature-induced On–Off type, and 
an Off–On-Off double switch inducible in a narrow 
range at medium temperature. By randomly sampling 
the parameter space for each network, we systemati-
cally analyse robust functional circuits and identify the 
core and minimal networks that are essential for the 
switching functions. Three network motifs are found 
for Off–On and On–Off switches, while a single motif is 
found as the core architecture for the Off–On-Off dou-
ble switch. We find that the parameters in functional 
topologies commonly admit implicit preferential val-
ues to achieve TIS functions. In short, we offer a new 
approach for achieving thermoswitching in biology on 
the basis of the collective reaction of the whole network. 
This is in contrast to the traditional method that relies 
on a single-molecule response to temperature changes. 
These results extend the scope of bioswitches, which 
would be helpful for aiding a more efficient design and 
synthesis of high-performance thermal switches.

Model and method
We use the enumeration approach to explore functional 
networks as adopted in previous studies on various 
dynamical functions, such as adaptation [20], oscillations 
[21], and ultrasensitive switches [13]. The procedure for 
identifying simple topologies capable of robust thermal 
switching is summarized in Fig. 1B and C. To fully inves-
tigate small networks capable of TIS, we check all 3-node 
networks. The nodes are labelled “0”, “1”, and “2”, and node 
“0” is set as the output node of the network. The circuit 
topology is described by an adjacency matrix M . Each 
matrix element Mij takes values of -1, 0, and 1, corre-
sponding to inhibition of node j by node i, no interaction 
from node i to node j, and activation of node j by node 
i, respectively. Due to the symmetry of networks, multi-
ple adjacent matrices can represent the same topology. 
There are a total of 7428 distinct 3-node network topolo-
gies. We use ordinary differential equations to describe 
the dynamics of genetic interaction networks. The tran-
scriptional regulation of different genes is given by a mul-
tidimensional Hill function12. With the network topology 
represented by the adjacency matrix M , the ordinary dif-
ferential equations (ODEs) for the corresponding genetic 
interaction network are as follows:

where xi is the protein concentration expressed from 
gene i, bi is the basal expression rate, ri is the degra-
dation coefficient, Kji is the dissociation constant of 

(1)
dxi

dt
= bi − rixi +

∑
j(forMji=1)

vji
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Kji

�n

1 +
∑
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protein j for target gene i, vji is the maximal expres-
sion rate of gene i regulated by protein j, and n is the 
Hill coefficient, which is fixed as n = 2 in this paper. 
In Eq.  1, competitive binding of multiple transcrip-
tion factors for the regulatory DNA binding region is 
assumed. The numerator in Eq. 1 is a sum of terms con-
tributed by activation regulations. For the dynamics of 
a node with only repressive interactions, the numerator 
in Eq. 1 is a constant.

In general, biochemical reactions strongly depend 
on the temperature. A higher temperature gives more 
chance to overcome the energy barrier for a spe-
cific reaction and thus increases the reaction rate. 
Although in real biological systems, the biochemical 
reaction rate may have a sophisticated dependence on 
temperature13,14, we simply assume in our model that 
the reaction rate constants ri,Kij and vij appearing in 
Eq. 1 generally follow the Arrhenius law:

where T is the temperature, R is the gas constant, �G is 
the energy barrier of the chemical reaction, and A0 is the 
pre-exponential factor. Since the basal expression rate bi 
is relatively small, we assume a constant bi = 0.01, i = 0,1, 2 . 
The parameters related to rate constants ri , Kij and vij 
are determined by using the Latin hypercubic sampling 
approach in different ranges, with pre-exponential fac-
tors Kij0 ∈ [10−2, 102] , vij0 ∈ [100, 102] , ri0 ∈ [0.1,10] and energy bar-
riers ΔGK ∈ [−100KJ∕mol, 100KJ∕mol] , ΔGv ∈ [1KJ∕mol, 100KJ∕mol]

,ΔGr ∈ [1KJ∕mol, 100KJ∕mol] . For each network topology, we gen-
erate 10,000 parameter sets for Kij , vij , and ri and solve the 
coupled ODEs (Eq. 1) numerically.

To detect switch-like behaviours as the tempera-
ture is changed continuously, the dependence of 
the network output as a function of T is obtained 
numerically. To balance the computational cost and 
the ability to capture switch-like dynamics in these 
numerous networks, we tune the temperature from 
25 ℃ to 40 ℃ and then back. Thus, two concentra-
tion-temperature dependence curves are obtained 
that normally overlap with each other. Only in very 
rare cases is bistability found as the temperature 
is tuned. In this study, we do not consider bistabil-
ity and only focus on the networks with monosta-
ble concentration-temperature dependence. As 
shown in Fig.  1C, the output can typically grow or 
fall monotonically as the temperature is increased. 

(2)A = A0e
−�G

RT ,

Nonmonotonic dependences are possible, where 
the output first rises and then descends or vice 
versa. Although it is rare, wavy output temperature 
dependence is possible. The three types of switches, 
i.e., Off–On, On–Off, and Off–On-Off, are depicted 
in Fig. 1C. To screen out the functional networks, we 
adopt the switch ratio F as a criterion. For the Off–
On and On–Off switches with monotonic concentra-
tion-temperature dependencies, F is defined as the 
ratio of the maximal output to the minimal output in 
the temperature range from 25 ℃ to 40 ℃,

Similarly, the ratios for the Off–On-Off double switch 
are defined as F1,2 = Omax

Omin1,2
 . The switching range is 

defined as the temperature change �T  near the threshold 
that increases (or decreases) the response from 10 to 90% 
(or from 90 to 10%) of the maximum,

In our simulations, high-performance Off–On and 
On–Off switches are screened by requiring a high 
switch ratio with F ≥ 100 and a narrow switching range 
�T ≤ 4◦C . The criterion is softened for the Off–On-Off 
double switch, with F1,2 > 4 and with no limit on �T .

All possible network topologies are generated and 
checked for the target TIS functions. A total of 10,000 
parameter sets are randomly sampled and assigned 
to each network. To evaluate the robustness of a net-
work for the function, we characterize the overall per-
formance of each topology in terms of the Q-value, 
which is defined as the number of parameter sets 
capable of targeting the TIS function in 10,000 ran-
dom parameter sets. For the screened functional net-
work topologies, a hierarchical clustering approach 
is used to check the topological characteristics of the 
TIS networks.

Results
Robust network topologies for Off–On and On–Off 
switches
Most network topologies, when combined with ran-
domly sampled parameter values, only generate flat 
concentration-temperature curves that are slow to 
rise or slow to fall, with low fold F values and large 

(3)F =
Omax

Omin
.

(4)�T = |T90% − T10%|.

Fig. 1  A Image for comparison between a traditional switch based on temperature-sensitive biomolecules and our scheme based on appropriately 
designed network topologies of biomolecular interactions governed by the Arrhenius law. B-C Flowsheet for screening functional TIS networks. The 
enumerated topologies, the adjacent matrix, and the corresponding rate equations (B). Schematic diagram for random sampling of the parameter 
space (top left) and target functional concentration-temperature dependencies for the Off–On, On–Off, and Off–On-Off TIS switches (C)

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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transition temperature ranges. Figures 2A and 3A show 
heatmaps depicting the performance of all 3-three node 
networks in the F-�T  space for the targeted Off–On 
and On–Off switching functions, respectively. Both 
types of TIS show similar distributions, with the most 
heated regions located in the bottom right corner of 
the F-�T  map. Only a small fraction of the circuit is 
capable of high-performance switch-like behaviour, 
characterized by both a high value of fold F ≥ 100 and 
a narrow transition temperature range �T ≤ 4 , and 
marked with a red dashed box at the top left corner 
of the heatmaps. In our simulations, we find 3929 and 
5002 network topologies having Q-values > 0 for the 
Off–On and On–Off switching functions, respectively. 
These topologies capable of high-performance switch-
ing, as marked in Figs. 2A and 3A, are resolved in the 
space of Q-value and edge number (refer to Figs.  2B 
and 3B). Most of these functional topologies have a 
Q-value less than 10. The topologies with the fewest 
edges, marked with a black box in Figs. 2B and 3B, are 
prominent, as they represent the simplest circuits capa-
ble of high-performance switching functions. Topologi-
cal simplicity is particularly attractive when considering 
the lowest cost of synthesizing a TIS circuit in the lab-
oratory. As listed in Figs.  2C and 3C, circuits with at 
least two edges are needed to achieve the Off–On and 
On–Off TIS functions. Three nodes are linked with two 

edges in a feed-forward direction, both in relays and in 
parallel. As displayed in Fig. 3C, high-performance TIS 
functions can even be achieved with two nodes forming 
a simple positive feedback loop.

The robust functional topologies with top Q-values 
( ≥ 20 ) are highlighted in Figs. 2B and 3B with grey boxes. 
They have moderate complexity, with three nodes linked 
by 3 to 6 edges. The top Q-value drops in topologies 
with more than 6 edges, indicating that the Off–On and 
On–Off TIS functions are supported by certain network 
topologies and that extra interactions may weaken the 
robustness and even ruin the TIS functions. The network 
topologies with the best robustness are listed in Figs. 2D 
and 3D, with 6 and 8 topologies for the Off–On and On–
Off functions, respectively. Most of these networks have 
(coherent or incoherent) feed-forward topologies but are 
interlinked with extra edges that form feedback loops.

To check the backbone and the underlying design prin-
ciple of these functional topologies, we perform clus-
tering analyses of robust networks with high Q-values. 
There are 81 topologies with Q-values ≥ 11 for the Off–
On type and 73 networks with Q ≥ 19 for the On–Off 
type. The two groups of networks are clustered separately 
and depicted in Figs.  2E and 3E. Three motifs for each 
type of TIS network are found to be the most common 
structure shared by the best networks, i.e., M1, M2 and 
M3 for Off–On TIS and M1, M4, and M5 for On–Off TIS. 

Fig. 2  Screening Off–On switches. A The performance distribution of all circuits in F −�T  space for the target Off–On TIS function. The red dashed 
box marks the circuits with criteria F ≥ 100 and �T ≤ 4

◦
C , corresponding to 3929 network topologies. B The distribution of high-performance 

circuits with Q-values ≥ 0 (marked in (A)) in the space of Q-value and edge number. The black dashed box marks the simplest functional networks, 
and the grey dashed box represents the best networks with Q-values ≥ 20. C The functional topologies with the fewest links marked in (B) with the 
black box. D The list of top robust functional topologies selected from networks in the grey box. E Hierarchical clustering analysis of 81 functional 
network topologies with Q-values ≥ 11. Motifs M1, M2 and M3 are shown on the right side
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The motifs are all feed forward, with two in relay and one 
in parallel, and all are listed in Figs. 2C, D and 3C, D as 
the simplest and the most robust functional topologies, 
respectively. The coherent M1 motif is double-functional. 
It is capable of either Off–On or On–Off TIS functions 
depending on the specific parameters adopted. Generally, 
the simple motifs serve as guides for synthesizing net-
work-based thermal bioswitches in the laboratory. Start-
ing from the simplest networks and motifs, it is possible 
to achieve robust and high-performance TIS switches by 
building more complex topologies.

In Fig. 4, we depict the structural relationships for all 
functional networks with Q-values ≥ 10 for both Off–On 
(Fig.  4A) and On–Off (Fig.  4B) switches. The networks 
are resolved according to their number of links. A dot 
denotes a functional network whose size is proportional 
to the Q-value. Any two networks are connected if they 
can be transformed to each other by adding or remov-
ing a single link. The majority of the functional networks 
are connected. Simple topologies can evolve in different 
ways to form complex functional networks, as demon-
strated by highlighted examples with green dots and 
links in the diagrams. In Fig. 4A, the simplest network is 
labelled LH. N1 is indirectly connected to motifs M1 and 
M3 and can also evolve by adding extra edges to more 
robust and complex functional networks. In Fig. 4B, the 
simple network is HL. N1 is indirectly related to motifs 
M1 and M5 and can evolve to robust functional networks 
with six links.

Network topologies capable of Off–On‑Off switches
We used the same procedure to analyse networks for 
the target function of the Off–On-Off double switch, 
which is a hybridization of Off–On and On–Off 
switches. Figure  5A depicts the heatmap for the per-
formance of all 3-three node networks in the F1-F2 fold 
space. The distribution profile is similar to that of an 
inverse proportional function, indicating that most 
network topologies have a strong bias to Off–On or 
On–Off switches. It is generally hard for a network to 
achieve a high-performance double Off–On-Off switch 
with both high ratios F1 and F2. The circuits enclosed 
in the red-lined box in Fig. 5A are for topologies with 
Q-values > 0, i.e., F1, F2 ≥ 4, and the distribution of 
these networks in the Q-value and edge number spaces 
is shown in Fig.  5B, with significantly lower Q-values 
than the Off–On and On–Off cases. As indicated with 
black dashed-line boxes in Fig. 5B, there are 3 simplest 
functional topologies, one with 2 links (also appearing 
in Fig.  2C for Off–On switch), and two with 3 links, 
which are listed in Fig. 5C. Nine top-ranked topologies 
with Q-values ≥ 8 are depicted in Fig. 5D. The cluster-
ing analysis for Off–On-Off functional networks with 
Q-values ≥ 4 (including 72 topologies) is demonstrated 
in Fig.  5E. The unique motif M6, which is commonly 
shared in these best topologies, is a three-node inco-
herent feed-forward approach. Apparently, motif M6 
is the backbone of all the best topologies, as shown in 
Fig. 5D.

Fig. 3  Topologies for On–Off switches. A The performance distribution of all circuits for the target On–Off TIS function in F −�T  space. The red 
dashed box indicates the 5002 network topologies with Q-values ≥ 0. B The distribution of high-performance circuits marked in (A) in the space of 
the Q-value and edge number. The black box marks the simplest functional networks, and the grey box marks the best networks with Q-values ≥ 
20. C The simplest functional topologies. D Eight top robust functional topologies. E Hierarchical clustering analysis of 73 functional topologies with 
Q-values ≥ 19, with motifs M1, M4 and M5 listed aside
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Parameter preference in TIS functional topologies
The network output is the stable steady state of the 
coupled dynamics described by Eq.  1. It is normally 
hard to analytically obtain the output as a function of 
temperature. To understand the mechanism underlying 

the thermal switches we simulated, we checked the 
parameter distributions for the functional topologies. 
We found that the parameters in functional topologies 
commonly admit implicit preferential values to achieve 
TIS functions. Taking motif M1 as an example, the 

Fig. 4  Structural diagrams of all functional networks with Q-values ≥ 10 for illustrating their mutual topological relationships; (A) for Off–On 
switches, and (B) for On–Off switches. The networks are organized along the vertical axis with respect to the number of links in the topology. Each 
dot denotes a network whose Q-value is proportional to the dot size. The topologies that differ only with one edge are connected. The green dots 
and links are highlighted topologies and their connections, illustrating the evolution paths starting from the simplest topology to the top robust 
network
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dynamics of motif M1 in Fig.  2E are described by the 
following ODEs:

Owing to the simplicity of the M1 topology, the stable 
fixed point of output x∗0 is given by

(5)
dx0

dt
=

v20(x2/K20)
2

1+ (x2/K20)
2 + (x1/K10)

2
− r0x0

(6)
dx1

dt
= ve1 − r1x1

(7)
dx2

dt
=

ve2

1+ (x1/K12)
2
− r2x2
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·


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(8)= A0e
−
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20e
−
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[

(
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−
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20e
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]

The rate constants in Eq. 8 uniformly following the Arrhe-
nius law are merged in the forms of the Arrhenius law, with 
v20
r0

≡ A0e
−

�G0
kT  , ve2

r2K20
≡ A20e

−
�G20
kT  , ve1

r1K10
≡ A10e

−
�G10
kT  , and

 
ve1

r1K12
≡ A12e

−
�G12
kT  . It is evident from Eq. 8 that for positive 

values of �G20 and �G0 and negative values of �G10 and 
�G12 , motif M1 is capable of Off–On TIS behaviour. Con-
versely, negative values of �G20 and �G0 and positive values 
of �G10 and �G12 ensure that motif M1 is the On–Off 
switch function. This is true, as seen in Fig. 6A and B, where 
the distributions for �G0 , �G10 , �G12 , and �G20 are 
demonstrated for Off–On (Fig. 6A) and On–Off (Fig. 6B) 
TIS functions. We show that the bias of �Gij (and �G0 ), 
as defined in vki

riKij
≡ Aije

−
�Gij
RT  (and in vj0r0 ≡ A0e

−
�G0
kT  ) for 

Fig. 5  Network topologies for Off–On-Off switch. A Heatmap for all three-node networks in F1-F2 fold space. The red dashed-lined box marks the 
functional circuits with F1 and F2 ≥ 4 . B Distribution of all functional networks in the Q-value and edge number spaces. Black dashed-line boxes 
mark the simplest networks, and grey-lined dashed boxes are for best networks with Q-values ≥ 4 . C The simplest functional networks as marked in 
(B). D The best functional topologies with Q-values ≥ 8 . E Hierarchical clustering analyses for 72 functional networks with Q-values ≥ 4
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positive and negative values, is uniformly found in func-
tional network topologies, as illustrated in Fig. 6A and 6B for 
motifs M2, M3, M4, M5 and for the On–Off complex topol-
ogy in Fig.  6C. Occasionally, there are also parameters 
whose distributions are unbiased to positive or negative val-
ues, such as in the cases of �G22 , �G11 , and �G10 for motifs 
M3 and M5 and for the complex topology in Fig. 6C, respec-
tively. We show that the biased free energy changes �Gij 
and �G0 for the rate constant combinations vkiriKij

 and vj0r0  con-
tribute essentially to the Off–On and On–Off switching 

functions. For network topologies capable of Off–On-Off 
double switching, a fraction of the free energy change �Gij 
typically takes on bimodal distributions. As depicted in 
Fig. 6D, for the backbone motif M6, �G10 and �G12 are dis-
tributed roughly evenly on both sides of the neutral axis but 
clustered separately into doublet distributions. As the free 
energy �Gij determines the temperature dependence of the 
regulation of node i to node j, the regulation strength would 
be enhanced or weakened depending on whether �Gij takes 
positive or negative values. Our results indicate that 

Fig. 6  Parameter preference in functional topologies. The histograms of free energy changes �Gij (defined in the text) for Off–On functional motifs 
M1, M2, and M3 (A), On–Off functional motifs M1, M4, M5 (B), a high Q-value complex topology with 6 links (C), and for Off–On-Off functional motif 
M6 (D). The distributions were generated from functional parameters that are screened from 1,000,000 Latin hypercubic samplings in the parameter 
space for each topology
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specially designed topologies and the implicit preferences of 
parameter values jointly contribute to achieving the target 
TIS functions.

Discussion
In summary, we exhaustively enumerated a total of 
7428 3-node networks, each with 10,000 sampled 
parameter sets, to explore robust network topologies 
capable of thermally inducible bioswitches. Depending 
on the different temperature dependencies of the out-
put, three types of switches, i.e., Off–On, On–Off, and 
Off–On-Off double switches, have been examined in 
our simulations. The minimal and core network topolo-
gies that are essential to achieve robust target functions 
have been found. These include three network motifs 
M1, M2, and M3 for the Off–On type switch and motifs 
M1, M4, and M5 for the On–Off type switch. Network 
topologies capable of Off–On-Off double switching 
share a common backbone, i.e., motif M6, which has an 
incoherent feed-forward structure. From the parameter 
distributions of functional topologies, we found that 
the networks need to admit implicitly preferential val-
ues for the abbreviated free energy changes �Gij and 
�G0 to achieve different TIS functions. This imposes 
restrictions both on network topology and dynamic 
parameters to accomplish switch-like behaviours as 
temperature undergoes a sudden change. Here, we did 
not consider networks consisting of more than three 
nodes due to the overwhelming computational cost. 
Although the minimal networks and motifs are simple 
topologies with only three nodes, they can serve as the 
skeletons of complex functional networks. In our simu-
lations, we have chosen a temperature range of 25–40 
℃. Actually, the upper temperature can exceed 42 ℃ in 
biorelated processes. The range that we chose here was 
based on previous experimental studies on the temper-
ature dependence of protein synthesis in E. coli [22, 23], 
in which the synthesis rate well follows the Arrhenius 
law in a temperature range of 25–40 ℃. For tempera-
tures exceeding this range, the Arrhenius law deviated. 
Considering that E. coli is one of the most commonly 
used prokaryotic model systems, we chose 25–40 °C as 
the temperature range in our simulations.

In our simulations, we used the Q value for each net-
work topology to measure its resistance to the varia-
tion in parameters over a relatively large scope. In the 
presence of small perturbations on the parameters, the 
switching behaviour is also robust. We did not systemati-
cally simulate all the networks in this case but checked a 
few typical networks for each type of switch and found 
that the switching function is resistant to perturbations 
on the parameters. We show most of the network dynam-
ics are monotonically stable as the temperature is tuned 

as a control parameter, with only a small fraction of bista-
ble states or oscillations. We have focused on a monosta-
ble behaviour that is globally attracted to the fixed point 
and is inherently resistant to local perturbations.

In this paper, we have established a mapping between 
the function of a thermal switch and the core network 
topology. The scheme we adopted here for the mapping is 
similar to that used in previous works [13, 20, 21], which 
is basically an enumeration process of simple networks 
and an examination of target function dynamics. This 
approach has been used often in recent studies of the 
design principle of a particular biological function. The 
difference between this work and previous related studies 
lies in the fact that we adopted a similar scheme to inves-
tigate a new scenario to realize thermally inducible bios-
witches. The scenario is based on the general Arrhenius 
law and relies on the network topology. As a whole, this is 
distinct from the traditional approach in which thermal 
bioswitches are exclusively based on special biomolecules 
whose conformational change is thermally controlled.

Temperature is a key environmental factor that globally 
affects biochemical processes in living systems. Numer-
ous temperature-induced pathways have been reported 
in biology [24, 25]. For instance, heat shock proteins 
respond to sudden temperature upshifts, which play an 
important role in assisting the refolding of heat-dam-
aged proteins and preventing protein aggregation [26, 
27]. In contrast, cold shock proteins are induced at low 
temperature to increase membrane fluidity and regulate 
transcription and translation rates [28, 29]. In metabolic 
industrial engineering, temperature has been used as 
a control strategy to decouple cell growth and produce 
target products [30–32]. Traditionally, thermal sensors 
or switches in biology rely on biomolecules of DNA, 
RNA, and proteins with a special structure whose con-
formations are highly sensitive to temperature changes. 
The results presented here indicate that thermal sens-
ing or bioswitches are also possible based on purposely 
designed network topologies in which all biochemical 
reactions uniformly follow the normal Arrhenius law, 
without special molecule-based thermal sensors in the 
network. This topology-based thermal bioswitch extends 
the scope of traditional molecule-based bioswitches. The 
simple functional network motifs presented here would 
be valuable in aiding a rational design and efficiently syn-
thesizing high-performance thermal sensors or thermal 
bioswitches that are based on specific networks without 
specially designed components.

For possible experimental realization of the topology-
based thermal bioswitches we proposed, the gene cir-
cuits with proper topology need to adopt appropriate 
parameter values, as indicated in our simulations. The 
nodes represent the genes in the circuits that regulate 
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the transcription of each other, and the parameter pref-
erence requires that the energy barrier �G in the Arrhe-
nius law needs to adopt either a high or a low value 
depending on the regulation details. The energy barrier 
�G is closely related to the binding affinity between the 
regulatory protein and its DNA-binding site, which is 
measured by the equilibrium dissociation constant (K 
in Eq.  1). When engineering novel gene circuits, while 
DNA or proteins with thermally controlled conforma-
tions need not be delicately designed, the binding affini-
ties between the ligand and its binding partner must 
be purposely tuned, which might be a simplified task 
in experiments. Traditional thermally inducible bios-
witches are often gene circuits. For example, Zheng 
et  al. designed a cold-induced bioswitch in Escherichia 
coli and Halomonas bluephagenesis [16]. As shown in 
Fig. 7A, the circuit, which is an On–Off thermal switch, 
consists of two modules with a network topology very 
similar to the M1 network we found here. In another 
study [33], a thermal bandpass filter, which is an Off–
On-Off thermal switch, was constructed with two dif-
ferent transcription factors whose topology resembles 
one of the three simple Off–On-Off networks we found 
here (refer to Figs. 5C and 7B). Real-world examples of 
traditional thermal bioswitches were designed delicately 
and relied on molecular conformations sensitive to the 
thermal signal. From our results, high-performance 
thermal switches might also be constructed from the 
same topology of these traditional circuits by appro-
priately adjusting the affinities for the binding between 
regulators and DNA-binding sites.

Abbreviation
TIS: Thermo-inducible switch.
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