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Abstract. Schistosoma haematobium continues to pose a significant public health burden despite ongoing global
control efforts. One of several barriers to sustained control (and ultimately elimination) is the lack of access to highly sen-
sitive diagnostic or screening tools that are inexpensive, rapid, and can be used at the point of sample collection. Here,
we report an automated point-of-care diagnostic based on mobile phone microscopy that rapidly images and identifies
S. haematobium eggs in urine samples. Parasite eggs are filtered from urine within a specialized, inexpensive cartridge
that is then automatically imaged by the mobile phone microscope (the “SchistoScope”). Parasite eggs are captured at a
constriction point in the tapered cartridge for easy imaging, and the automated quantification of eggs is obtained upon
analysis of the images by an algorithm. We demonstrate S. haematobium egg detection with greater than 90% sensitivity
and specificity using this device compared with the field gold standard of conventional filtration and microscopy. With
simple sample preparation and image analysis on a mobile phone, the SchistoScope combines the diagnostic perfor-
mance of conventional microscopy with the analytic performance of an expert technician. This portable device has the
potential to provide rapid and quantitative diagnosis of S. haematobium to advance ongoing control efforts.

INTRODUCTION

At least 100 million individuals in Africa are infected with
Schistosoma haematobium, resulting in hundreds of thou-
sands of deaths each year.1 The disability-adjusted life years
(DALYs) lost and the economic burden of schistosomiasis
places it among the most devastating diseases on the conti-
nent.2 S. haematobium causes urogenital disease and is
responsible for a large spectrum of chronic illness, including
chronic pelvic pain, infertility, and bladder cancer. Parasite
control efforts consist largely of WHO-recommended mass
drug administration (MDA) of the anthelminthic drug prazi-
quantel.3 MDA is recommended when the community preva-
lence of infection is above preset thresholds; however, there
is a need for a more granular geographic understanding of
disease burden to help guide MDA programs. The paper-
based hematuria assays used to determine community prev-
alence are effective when results are aggregated, but they
have insufficient sensitivity and specificity to diagnose indi-
viduals. Screening strategies with tools such as urine filtration
and centrifugation for S. haematobium are time-consuming,
require skilled labor, and rely on functional laboratories that
may be distant from the site of sample collection. Newer
diagnostics include assays to detect circulating anodic anti-
gen (CAA) and circulating cathodic antigen (CCA). However,
CAA testing still requires considerable laboratory infrastruc-
ture,4,5 and CCA testing yields insufficient diagnostic perfor-
mance for S. haematobium.5,6

Urine microscopy is the most widely available diagnostic
technique with low enough type I and type II errors to diagnose

and screen for S. haematobium, but several factors limit its
widespread use. First, because the eggs in urine samples
may be in concentrations of one egg per milliliter or less,7

samples must undergo filtration,8 sedimentation,9 or centri-
fugation10 to increase their concentration before imaging on
a conventional microscope. The sample preparation and
imaging process is time-consuming and requires a trained
technician. Second, the required resources for conventional
microscopy are typically available in regional public health
laboratories or hospitals in larger urban centers, making
them less accessible to most people living in rural areas of
endemic regions. Even in regions served by public health
laboratories, the requisite time and transportation make
conventional microscopy an impractical technique for indi-
vidual diagnoses.
Here, we address these challenges by developing a mobile

phone–based microscope (the “SchistoScope”) using compact,
reversed lens optics.11 We modified a previous device, the Loa-
Scope, to incorporate brightfield and darkfield imaging and to
accept a specialized cartridge the captures and concentrates
S. haematobium eggs for imaging by the SchistoScope. After
validating the technology in laboratory testing, we evaluated the
sensitivity and specificity of this handheld, point-of-care micro-
scope in a pilot study in Ghana and Côte d’Ivoire.

RESULTS

Isolation of S. haematobium eggs with a novel
cartridge design. Although mobile phone microscopy has
sufficient resolution to resolve S. haematobium eggs (�150
mm in length),12 a sample preparation protocol simple and
efficient enough to be performed at the point of care has
been lacking. Normally, sample preparation involves at least
two steps: concentration of eggs into a small volume
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and transfer of that volume onto a glass slide or other sam-
ple holder for imaging. We aimed to develop a single-step
sample preparation protocol that concentrated a significant
portion of the eggs from a 10-mL urine sample into the �1
mL in-focus volume of the SchistoScope. We achieved this
by producing a plastic cartridge that serves both as the filter
and the slide for imaging. The diagnostic workflow using
the cartridge and a mobile phone microscope is shown in
Figure 1.
To concentrate S. haematobium eggs for imaging, the car-

tridge is designed with a port at one end to attach to a
syringe containing 10 mL of urine and an outlet at the other
end, such that the urine can be pushed through the single
linear channel within the cartridge (Figure 2A). The channel is
3 mm wide and decreases from 200 mm to 20 mm tall over a
30-mm length, allowing particles of decreasing size to be
captured against the clear, flat, top face for imaging (Figure
2B). Particles larger than 200 mm are prevented from enter-
ing the channel, and those below 20 mm pass through the
outlet. The gradient in channel height helps to spatially sepa-
rate S. haematobium eggs from other contaminants in urine.
In laboratory tests, the cartridges consistently capture

�21% of S. haematobium eggs resuspended in 10 mL of
saline solution within the SchistoScope field of view (Figure
2C), based on eggs counted manually from SchistoScope
images. In field experiments, this capture rate was compara-
ble to the traditional filtration and imaging. The remaining
79% of eggs are caught on the plastic surfaces of the collec-
tion cup, the syringe, or in a small trough that runs along the
perimeter of the channel and protects the channel during
solvent bonding of the cartridges. (A future iteration of the
cartridge design will eliminate the trough.) Cartridges that
contain no visible eggs from the prepared solutions of eggs
in saline are considered a false negative produced by the
sample preparation process. The measured rate of these
occurrences is shown for varying egg concentrations in
Figure 2D. By this metric, 100% sensitivity for the sample
preparation process is observed at concentrations . 4.5
eggs/mL and 89% sensitivity. 1.5 eggs/mL.
Imaging of S. haematobium eggs with the SchistoScope.

The SchistoScope was adapted from a previous mobile
phone-based diagnostic device,13,14 where it was used to

detect Loa loa microfilaria in peripheral whole blood. This
device uses the built-in CMOS sensor and lens of a mobile
phone, coupled to an additional lens on the outside of the
phone. The additional lens is identical to the built-in lens but
reversed, creating a microscope where a pixel-sized area on
the sample is imaged directly onto a pixel of the phone’s
camera sensor. The reversed lens approach to mobile
microscopy has the advantage of providing highly corrected
optics over a large field of view and costs only a few U.S.
dollars to produce. The result of this configuration is a micro-
scope with , 5-mm resolution over the 12-mm2 area
required to image the majority of the schistosome eggs cap-
tured in the cartridge.
The device was altered to use an Apple iPhone 8 for its

smaller pixel pitch and faster processor compared with the
iPhone 5S used in the original device. The microscope is
easily adaptable to other phone models in future iterations.
Pilot studies with the SchistoScope in Ghana and Côte

d’Ivoire. The SchistoScope was evaluated in two pilot stud-
ies of school-age children in S. haematobium endemic areas.
Sixty-three patients from Sorodofo-Abaasa town, north of
Cape Coast, Ghana, and 142 patients from Azagui�e region
of southern Côte d’Ivoire provided urine samples as part of
surveillance for an ongoing MDA program. Locations of the
field studies are shown in Figure 3A. There was a combined
55% prevalence of S. haematobium in these urine samples.
Additionally, a significant amount of debris was visualized,
which was not present in the reconstituted samples used for
bench testing. The debris included clothing fibers, mites,
blood, crystals, and epithelial tissue (Figure 3B).
The SchistoScope demonstrated a sensitivity of 90.9%

and specificity of 91.1% for S. haematobium diagnoses com-
pared with the field gold standard, consisting of conventional
urine processing and light microscopy. The mismatch
between the SchistoScope and gold standard is presented in
Figure 3C, where false negatives of the two techniques are
summed for different egg concentrations, using the opposite
method as ground truth information for concentration. Over-
all, the SchistoScope produced comparable or slightly fewer
false negatives compared with the gold standard. Although
testing of the SchistoScope in the laboratory shows that it is
possible to detect one egg per milliliter, a larger study will be

FIGURE 1. Diagnostic workflow for Schistosoma haematobium eggs using the SchistoScope. (A) Urine is drawn from a collection cup into a
syringe. (B) The cartridge is attached to the syringe and the urine is pushed through, trapping the eggs. (C) The cartridge is inserted in the Schisto-
Scope, where microscopic images of eggs are captured by the phone’s camera, coupled to an external reversed lens.

POC S. HAEMATOBIUM SAMPLE PREP AND MOBILE PHONE MICROSCOPY 1443



required to determine the SchistoScope’s limit of detection in
patient samples.
Automated detection of S. haematobium eggs using

machine learning. We used machine learning algorithms
for S. haematobium egg detection from images captured
using the SchistoScope on samples collected in field set-
tings. Several algorithms have been developed for object
detection on a mobile device.15,16 As a starting point, we
chose to compare a set of popular object detection archi-
tectures for egg detection. Using transfer learning, we
compared RetinaNet,17 MobileNet,18 and EfficientDet19

architectures that had been trained on the COCO 2017
dataset,20 retaining the feature extraction layers and
fine-tuning the dense layers of these models to detect S.
haematobium eggs as a single class. We evaluated model
performance at detecting eggs in the patient data (see
Materials and Methods).
Detected regions within an image by each architecture are

enclosed by bounding boxes and returned with a probability
of containing the desired class, which we refer to as the
detection score. Objects having a detection score above a
certain threshold are deemed positive for the desired class.
We evaluated the influence of the detection threshold on the
sensitivity and specificity of egg detection for the RetinaNet
architecture (Materials and Methods; Figure 4A). A detection
threshold of 55% resulted in the best compromise between
sensitivity (86%) and specificity (80%), and therefore we
used this threshold to compare the performance of the
RetinaNet architecture with different model dimensions,
MobileNet and EfficientDet. We first tested the performance
of RetinaNet implemented with different numbers of residual
layers (ResNet-50, ResNet-101, ResNet-15221). The RetinaNet

architecture had improved egg detection performance with a
higher number of residual layers, with values coming close to
those obtained by the trained user with manual egg counting
(ResNet-101 sensitivity 91%, specificity 85%, ResNet-152
sensitivity 82%, specificity 90%; Figure 4B). In contrast, our
implementation of the MobileNet and EfficientDet architectures
were comparatively not as sensitive or specific (MobileNet
sensitivity 77%, specificity 70%, EfficientDet sensitivity 32%,
specificity 65%).
Although the machine learning algorithms could achieve

reasonable sensitivity and specificity, the total eggs counted
by all the models tested was poor, capturing only 40% to
50% of the total eggs labeled in the ground truth. To investi-
gate this further, we examined instances where the algorithm
failed to identify eggs correctly within a sample. There were
two main instances when eggs were not detected by the
algorithm (Figure 4C–E). First, in very high load samples,
eggs sometimes aggregated in large clumps with other
debris, causing the algorithms to miss them. Second, in
these high load samples, eggs could become stuck at the
edge of the channel wall, also causing the algorithm to miss
them. The algorithm performed best at detecting single iso-
lated eggs, which made up most of the patient and training
data. Even in the high load instances, the sample often
(�98% of cases) contained eggs that were well separated
and positioned in the sample channel for detection. There-
fore, although egg clumping and edge effects affected the
overall egg count accuracy, it had a limited impact on the
overall sensitivity and specificity of the algorithms. This sug-
gests that machine learning can be an effective method for
analyzing SchistoScope images, especially as larger training
datasets are collected.

FIGURE 2. Design and laboratory testing of the Schistosoma haematobium egg capture cartridges. (A) Wireframe drawing of the cartridge.
(B) Cartoon of the channel that captures eggs to be imaged inside the cartridge (not drawn to scale). (C) Manual counts of eggs captured in car-
tridges from titrated solutions of S. haematobium eggs in saline. The dotted line represents 21% of nominal egg concentrations. (D) Measured
false-negative rate of sample preparation process (no eggs captured).
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DISCUSSION

The lack of high-performance, rapid, point-of-care diag-
nostic and screening tools for S. haematobium presents a
barrier to deworming efforts in endemic settings. Diagnosis
of individuals, rather than local populations, is especially
vital for regions that have relatively mild worm burdens,
often where MDA campaigns are active. In such settings,
high-sensitivity diagnostics are imperative to implement indi-
vidual test-and-treat control measures and are also useful
to rapidly screen regions to determine whether prevalence
thresholds favor MDA. Additionally, wide-scale administra-
tion of praziquantel may contribute to the development of
drug resistance, and more judicious use of MDA programs in
carefully screened regions may minimize the chances of this
developing.22

Here, we have presented inexpensive and effective techni-
ques for sample preparation, imaging, and analysis of sam-
ples. To simplify the sample preparation protocol and enable
S. haematobium egg concentration at the point of care, we
developed a cartridge with the ability to collect and concen-
trate schistosome eggs from low concentration solutions
in urine. After loading, the cartridge is then automatically
imaged by the SchistoScope, followed by egg identification
and quantification by expert technicians or a machine
learning algorithm. With further improvements in cartridge
manufacturing and an expanded training set for the machine
learning algorithm, the SchistoScope could provide a rapid
and effective strategy for individual-level quantitative diag-
nosis for S. haematobium. The high sensitivity and specificity
yielded by the technique in these early field studies are

FIGURE 3. Field testing of the SchistoScope for Schistosoma haematobium egg detection. (A) Two sites were chosen for field studies:
Sorodofo-Abaasa town, north of Cape Coast, Ghana, and the Azagui�e region of southern Côte d’Ivoire. (B) Examples of additional objects cap-
tured by the cartridges and imaged by the SchistoScope. (i) Struvite crystals, (ii) epithelial tissue (iii), unidentified mite (iv), schistosome miracidium,
(v) unidentified mite, and (vi) uric acid crystals. All scale bars 5 200 mm (C) False-negative rates of the diagnostic techniques for the population of
205 patients with 55% S. haematobium prevalence. (i) The measured false-negative rate of the SchistoScope using field gold standard technique
as ground truth. (ii) The measured false-negative rate of the field gold standard technique (filtration followed by conventional microscopy) using the
SchistoScope as ground truth. Eggs were counted manually in both cases. False negatives were counted as instances where one method isolated
at least one egg and the other did not.
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promising for the viability of the technique to provide a new
point-of-care test of S. haematobium and to justify additional
studies with optimization and thousands of patient samples.
Using the cartridge to concentrate S. haematobium eggs

for microscopic imaging significantly reduces the complexity
of sample preparation compared with existing field filtration
and centrifugation techniques and likely represents a very
time efficient manner to process samples at the point of
sample collection. Similarly, a mobile phone–based micro-
scope offers a cost-effective method to conduct surveillance
that can be performed without the need for a regional labo-
ratory.23 Like the existing point-of-care diagnostics, the con-
sumable products (cup, syringe, cartridge) are sterile and
disposable. The cost of materials at volume is expected to
be less than US$1, which compares well with existing diag-
nostic techniques. We do not yet have sufficient data on the
failure modes and frequencies of the mobile phone micro-
scopes to estimate their cost per test, but it is our goal in
designing a mass-produced version of the SchistoScope
that it should process at minimum 100,000 patient samples
before failure, making its amortized cost per test less than
US$0.01.
Multiple diagnostic tests have been used to detect schis-

tosomiasis, with a range of performance, cost, and availabil-
ity (Table 1). Compared with conventional light microscopy
as the field gold standard, the SchistoScope demonstrated
a sensitivity of 90.9% and specificity of 91.1% for the man-
ual detection of S. haematobium eggs. It is important to

note, however, that gold standard measurements do not
have perfect specificity, especially when conducted on a sin-
gle sample by a single microscopist. Most (or all) of the
SchistoScope samples that classified as “false positives”
(i.e., determined by an expert to be positive on the Schisto-
Scope but found to be negative using the field gold stan-
dard) were likely true positives that were simply missed by
the gold standard preparation.24 Cartridges with these sam-
ples were subsequently analyzed under light microscopy to
validate the true presence of S. haematobium eggs, so the
true specificity of the SchistoScope is likely comparable to,
or better than, the traditional sample preparation and evalua-
tion via light microscopy.
One strategy to improve the efficiency of screening at the

point of sample collection is to automate the analysis of
images on the mobile phone device, especially considering
the paucity of trained laboratory technicians and microbiolo-
gists in rural areas where schistosomiasis is endemic.
Machine learning algorithms for object detection provide a
precise way to detect and classify complex objects in
images, which can remove the need for an expert user for
data analysis at the point of care. Training a machine learn-
ing algorithm from scratch requires a large amount of train-
ing data labeled by an expert to obtain a high accuracy
model. To explore the possibility of using machine learning
to detect S. haematobium eggs, we used transfer learning
of preexisting object detection models, retaining their fea-
ture detection layers and fine-tuning the dense layers for

FIGURE 4. Automated Schistosoma haematobium egg detection using transfer learning. (A) By varying the detection threshold for a single
region of interest, the sensitivity (blue dots) and specificity (magenta triangles) of the algorithm as a whole can be tuned. The example is shown for
RetinaNet (ResNet-50) with the optimal detection threshold at 55%. (B) The ability of different neural networks to detect the presence of schisto-
some eggs in an image is quantified using sensitivity and specificity, with expert counts as the ground truth. (C and D) The algorithm performs well
at detecting isolated eggs and rejecting other debris from a crowded field of view but does not identify eggs that are clustered with debris (black
arrowheads). (E) At the edges of the cartridge, many eggs are not identified by the algorithm. In this image, an air bubble is incorrectly classified as
an egg, albeit with lower probability. All scale bars5 200 mm.
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egg detection. This strategy requires significantly less train-
ing data and could therefore be implemented using our cur-
rent dataset (�200 patient samples). The sensitivity and
specificity that we obtained with this approach were close
to, albeit less than, the values obtained by a trained expert
with manual egg detection. Our implementation of the Reti-
naNet (ResNet 101) architecture yielded the best results
with a single frame specificity of 91% and sensitivity of
85%. This network also ran rapidly on a Google Pixel 4, tak-
ing �6 seconds to perform inference on a 640 3 640 pixel
region. The total time to perform the diagnostic test is there-
fore reasonable for a point of care diagnostic, returning a
positive or negative result within minutes.
Taken together, the high sensitivity and specificity of the

machine learning algorithm combined with the fast inference
time show that a machine learning algorithm can substitute
for a trained technician at the point of contact, should a
technician not be available. With the addition of more train-
ing data obtained in future field studies, we anticipate that a
fully trained model would have increased specificity and sen-
sitivity versus the current model implemented using transfer
learning, with feature extraction layers that are specific for
the egg detection problem. In addition, the current algorithm
has been optimized for the detection of a single class
(S. haematobium eggs) but could easily be retrained to
detect other classes, such as epithelial tissue or various
types of crystals that were present in the field-collected
samples and are either debris or hallmarks of other patholo-
gies (Figure 3B). A multiclass object detection model of this
type has the potential to diagnose different diseases based
on our simple sample preparation and imaging platform. Fur-
thermore, the use of multiple contrast methods, such as
darkfield and brightfield, to detect S. haematobium eggs has
the potential to improve object detection accuracy.
Looking ahead, the general strategy of inexpensive size-

based filtration coupled with mobile phone imaging is prom-
ising. The addition of flow and filtration steps in the protocol
described here may open the door to point-of-care diagnos-
tics for additional diseases. An obvious next target is Schis-
tosoma mansoni and soil-transmitted helminths, which share
large regions of coendemicity with S. haematobium. Conve-
niently, S. mansoni is treated with the same drug, praziquan-
tel.8 Because the eggs of S. mansoni are primarily shed
through stool rather than urine, formation of a fecal slurry
and upstream filtration before capturing eggs in the car-
tridges would likely be necessary. Combined with further
advances in machine learning algorithms, the use of a com-
pact mobile phone–based microscope with disease-specific
cartridges has the potential to address multiple disease dia-
gnostic needs with a single device.

MATERIALS AND METHODS

Cartridge. The cartridges were produced in two halves:
one half including the bottom and side faces of the channel,
linked to a syringe port and an outlet hole. Around the chan-
nel is a flat datum surface to locate the second half of the
channel during bonding. Within the datum surface, there is a
small recess that runs along the perimeter of the channel, to
prevent the propagation of solvent during bonding. This half
of the cartridge was injection molded in clear polycarbonate.
The second half of the cartridge is a flat piece laser cut from
600 mm thick clear polymethylmethacrylate. Solvent bonding
was achieved by applying a drop of dichloromethane at the
seam between the two parts while the parts are held in con-
tact. After the solvent propagates into the seam, the parts
are held in contact for 30 seconds and left in ambient condi-
tions for 48 hours. After 48 hours, the parts were flushed
with deionized water from a syringe and dried with a stream
of air. Bench testing of the cartridges was performed using
S. haematobium eggs provided by the National Institutes of
Health–National Institute of Allergy and Infectious Diseases
Schistosomiasis Resource Center, which were isolated
with hamsters. The eggs were diluted into 13 phosphate-
buffered saline and mixed by inversion before 10 mL were
pushed through each test cartridge.
Machine learning. We split the field data into a training

and test set to train and evaluate the performance of differ-
ent object detection algorithms. Initial image preprocessing
was added to the analysis pipeline and consisted of the fol-
lowing steps. The field of view of the phone covers the entire
width of the cartridge channel. Images were cropped to
regions of interest of 640 3 640 pixels and converted to
RGB jpeg format. In some instances, there were differences
in the white balance of the images collected from different
devices, which were normalized for throughout the training
and test sets by scaling the intensity of the green color chan-
nel by 5% to 8%. The training set was then labeled for
instances of eggs with bounding boxes and used for transfer
learning. Transfer learning was implemented using Tensor-
Flow 2 object detection API and Keras using models trained
on the COCO 2017 dataset.16,20 The feature extraction
layers of the different models were retained and the weights
of the dense layers fine-tuned for egg detection. Object
detection models such as RetinaNet have separate networks
for classification and bounding box regression. In our imple-
mentation, we only retrained the dense layers of the classifi-
cation network for a single class. As part of the model train-
ing, we added data augmentation including random flipping
and rotation of the images, and random hue, contrast, satu-
ration, and brightness adjustments. Training was

TABLE 1
Comparison of existing diagnostics for Schistosoma haematobium, including the mobile phone microscopy technique reported here

Test POC availability Sensitivity Specificity Material cost per test (USD)

Hematuria dipstick Yes 0.65–0.8125 0.8925 , $0.50
POC-CCA antigen test Yes 0.415 0.915 $3.1526

CAA antigen test (UCAA2000) No 0.9727 0.9027 N/A
Conventional microscopy No 0.90 �1.00 $1.0926

SchistoScope, manual count Yes 0.91 $ 0.91 $0.50–1.00
CAA 5 circulating anodic antigen; CCA 5 circulating cathodic antigen; N/A 5 not applicable (the CAA antigen test is not commercially available at the time of this writing); POC 5 point of care;

USD5 U.S. dollars.
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implemented with a batch size equal to the number of train-
ing images and a learning rate of 0.01 using the stochastic
gradient descent optimizer with momentum set to 0.9. To
evaluate the performance of the trained network on the
mobile device we converted the models to the TensorFlow
Lite format and implemented inference on the phone using
Android Studio. Values for the inference speed were evalu-
ated on a 640 3 640 frame being streamed from the mobile
phone camera.
We used three metrics to evaluate the performance of the

different model architectures. True positives, true negatives,
false positives, and false negatives were evaluated at the
frame level. In addition, we quantified the total percentage of
eggs that was correctly detected by each of the models
across the entire test set

Sensitivity Frameð Þ

5
# True Positive Frames

# True Positive Frames1# False Negative Frames

Specificity Frameð Þ

5
# True Negative Frames

# True Negative Frames1# False Positive Frames

Egg Count %ð Þ5 # Eggs detected
# Eggs ground truth

Sample collection and field protocol. This study was
integrated with preexisting studies and control efforts, and
institutional review board approval was granted; CNESVS
#IRB000111917 (Côte d’Ivoire), UCCIRB/EXT/2017/33 (Uni-
versity of Cape Coast, Ghana), REB 14-8128 (University
Health Network, Toronto, Canada). Urine was collected
between 10:00 and 14:00 and processed the same day.
Urine samples were first shaken, and then 20 mL was
removed: 10 mL for evaluation by conventional microscopy
and 10 mL by the SchistoScope. For conventional micros-
copy, 10 mL was pressed via a syringe through filter with
20-mm pores, and the filter was then removed, placed on a
glass slide with a drop of Lugol’s iodine, and evaluated
under 203 and 403 lenses by a trained laboratory techni-
cian. Ten percent of samples were randomly selected for
quality control by a microbiologist.
The other 10 mL of urine was pressed via a syringe through

the cartridge over 10 seconds, with care to eliminate air bub-
bles in the syringe. Ten seconds was chosen to avoid
extreme pressure on the syringe; increasing the flow rate dra-
matically can elastically deform the plastic in the cartridge
window, while increasing the drag force on the eggs, allowing
eggs to escape through the outlet. The total time for the sam-
ple preparation, from a cup of urine to a microscopy-ready
cartridge was about 30 seconds per sample.
Statistical analysis of field data. In the field study, we

estimated the sensitivity and specificity of the SchistoScope,
with visual interpretation, compared with conventional light
microscopy serving as a reference standard. We calculated
exact binomial 95% confidence intervals for each metric. All
analyses were performed using R (version 4.0.5).
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