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ABSTRACT

Objectives: The coronavirus disease 2019 (COVID-19) is a resource-intensive global pandemic. It is important

for healthcare systems to identify high-risk COVID-19-positive patients who need timely health care. This study

was conducted to predict the hospitalization of older adults who have tested positive for COVID-19.

Methods: We screened all patients with COVID test records from 11 Mass General Brigham hospitals to identify

the study population. A total of 1495 patients with age 65 and above from the outpatient setting were included

in the final cohort, among which 459 patients were hospitalized. We conducted a clinician-guided, 3-stage fea-

ture selection, and phenotyping process using iterative combinations of literature review, clinician expert opin-

ion, and electronic healthcare record data exploration. A list of 44 features, including temporal features, was

generated from this process and used for model training. Four machine learning prediction models were devel-

oped, including regularized logistic regression, support vector machine, random forest, and neural network.

Results: All 4 models achieved area under the receiver operating characteristic curve (AUC) greater than 0.80.

Random forest achieved the best predictive performance (AUC¼0.83). Albumin, an index for nutritional status,

was found to have the strongest association with hospitalization among COVID positive older adults.

Conclusions: In this study, we developed 4 machine learning models for predicting general hospitalization

among COVID positive older adults. We identified important clinical factors associated with hospitalization and

observed temporal patterns in our study cohort. Our modeling pipeline and algorithm could potentially be used

to facilitate more accurate and efficient decision support for triaging COVID positive patients.

Key words: COVID-19; machine learning; electronic health record; temporal patterns; hospitalization

INTRODUCTION

The recent outbreak of coronavirus disease 2019 (COVID-19) was

declared a public health emergency of international concern by the

World Health Organization on January 30, 2020.1 As of December

2021, there are more than 275 million COVID-19 cases conformed

worldwide, and over 5.35 million people have died.1 In the United

States, around 97 000 people are currently in the hospital due to

COVID-19.2 The high volume of patients during the pandemic has
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caused unprecedented pressure on healthcare systems. Many hospi-

tals in the United States are over capacity due to limited clinical

resources, including beds, intensive care units (ICUs), and ventila-

tors, which are crucial for the treatment of COVID-19 patients with

severe symptoms.3,4 Older patients are most susceptible to severe ill-

ness and have a higher mortality rate.5 It is critical for clinicians and

hospitals to provide appropriate clinical care to patients in the right

setting; for example, home for less severe COVID-19 cases while re-

serving hospital beds for the more severe cases requiring acute inter-

vention. Given potentially large infected populations during future

pandemic waves, it is important to develop accurate and efficient

clinical decision support for triaging COVID positive patients before

they are admitted to the hospital.6 There is an urgent need for an

individual-level risk prediction model that could predict people in

need of hospitalization to optimize this limited clinical resource.

With the wide adoption of electronic healthcare record (EHR) sys-

tems, machine learning predictive models have great potential to lever-

age the large volume of data and provide tools to support medical

decision-making.7 An EHR-based predictive tool can improve COVID

patient care by facilitating an informed, proactive decision-making

process, which can be particularly useful in managing large popula-

tions.8 During the pandemic, many studies were conducted to develop

machine learning-based models to predict COVID19 disease progres-

sion.9 However, most studies focused on predicting severe adverse out-

comes (such as ICU admission, mechanical ventilation, and death)

among hospitalized COVID19 patients.10–12 Few studies focused on

predicting hospitalization among patients with confirmed COVID19,

and the patient cohort used in those studies is now relatively old, span-

ning March 2020 to October 2020.6,13–19 Jehi et al16 developed a ro-

bust individualized prediction model among COVID positive patients

using data from 2020 and identified important risk factors of hospital-

ization. They also provided strategies to integrate the model into clini-

cal workflow and to link their informatics findings with clinical

practice. Given the rapid progress of the pandemic, studies with newer

data sets could be useful to reflect the current clinical status and fur-

ther validate and expand previous studies. In this study, we developed

and validated machine learning-based prediction models, using more

recent EHR data (between March 2020 and May 2021) from the

Mass General Brigham (MGB) Health system, to estimate hospitaliza-

tion in confirmed cases. The outcome of the models is whether older

COVID-19-positive patients are hospitalized within 14 days of the

COVID-19 positive test date. Different from Jehi’s study population,

we focused on the patient population aged 65 and above particularly

since older adults with multiple comorbidities have been shown to be

at an increased risk. Our current goal is to predict hospitalization

among COVID-19-positive patients using existing EHR information

in an outpatient population. The cause of hospitalization is very likely

to be COVID-19, as a hospital policy was in place at the time of study

limiting elective services (eg, nonemergency procedures and surgeries

were canceled or postponed) to ensure adequate beds were available

for COVID patients. With further validation and optimization, our

long-term goal is to provide a testable framework for subsequent vali-

dation and refinement towards a comprehensive prediction system to

facilitate timely and appropriate care for COVID-19 patients.

METHODS

Database and cohort development
We used clinical databases within the MGB Healthcare system,

which has a centralized clinical data warehouse for all types of clini-

cal information from multiple Harvard-affiliated hospitals. Avail-

able data items include patient demographics, diagnoses,

procedures, medications, laboratory tests, inpatient and outpatient

encounter information, and provider data. For the current study,

clinical data from 11 MGB hospitals were included.

Using the MGB database, we collected all patients with COVID

test records (304 113 patient visits). We further identified 11 348

patients aged 65 and above and a positive COVID test result. We

then removed inpatients and 6765 patients remained. After the re-

moval of patients with high missing values and low data quality,

1495 patients remained in the final study cohort (Figure 1).

Clinician-guided phenotyping and feature selection
We identified risk factors for the severity of COVID-19 manifesta-

tion using an iterative combination of literature review, qualitative

methods (interviews with clinical experts, physicians, who had expe-

rience in treating COVID-19 patients), and EHR data exploration

(clinical data review and feature engineering). As a first step, we

conducted a comprehensive literature review on previous COVID

studies focusing on prediction models. Based on the literature, we

developed a list of features used as predictors in COVID severity

prediction models. Second, we validated the features using an online

survey of clinicians treating COVID-19 patients from several hospi-

tals within the MGB system. The goal of the survey was to rank pre-

dictors of poorer COVID-19 outcomes based on clinical experience.

Third, we conducted a 1-hour interview with a group of physicians

who were actively treating COVID patients to provide additional in-

sight into top features based on clinical experience. The interview

focused on 4 main areas (1) The clinical relevance of top features

identified in the literature and validated in the survey. (2) Percep-

tions of factors indicative of COVID severity including early indica-

tors. (3) Recommendations for feature collection time windows. (4)

Perceived likelihood that these features are available for outpatients.

Time windows of outcome and input features
Our study design used the COVID test date as an objective proxy

(index date) for the disease onset time (Figure 2). We used a 1-

month time window (14 days before and 14 days after) surrounding

the test date to extract both outcomes (hospitalization) and time-

sensitive features (lab values), such that the model can represent the

timely status (both outcome and input features) of patient condi-

tions across the time window. The features of chronic conditions

were extracted from the preceding 5 years of patient history. The

definition of the model outcome is whether COVID positive patient

(age 65þ) will be hospitalized within 2 weeks before or 2 weeks af-

ter the COVID test date (Table 1).

Patients:  11,348
COVID test positive 

Patients:  6,765
Outpatients

Case: 459
Hospitalized

Control:1036
Non-Hospitalized

Patients:  4,583
Inpatient

Patients:  5,270
With missing values

Figure 1. Process of data cleaning and study cohort development.
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Model development and evaluation
Four hospitalization prediction models were developed using these

EHR-derived features, including regularized logistic regression (LR),

support vector machines (SVM), random forest (RF), and neural net-

work (NN). These 4 models have varied model capacity in modeling

complex relationships and are representative of the most popular

machine learning models for various prediction tasks in clinical set-

tings (summarized in Supplementary Table S1). To overcome the

overfitting issue, we tuned models through cross-validation to select

the best set of parameters and evaluated their performance on an in-

dependent test set.

Before training any of the models, we randomly split the data

into 80% training and 20% test set. To ensure that our results

would be generalizable, we repeated this random splitting process

30 times and reported the average model performance on the test set

over the 30 splits. For a given split, we further divided the 80%

training data into 5 equal-sized folds (stratified by class to ensure

the minority class is present in equal proportion across all folds for

hospitalization outcome). We trained the model on 4 folds and eval-

uated its performance on the fifth fold (validation set). We repeated

this process 5 times while each time a different fold served as the val-

idation set. Model performance was averaged across the 5 folds to

determine the best hyperparameters.

To evaluate model performance, we used the area under the re-

ceiver operating characteristic curve (AUC), accuracy, sensitivity,

specificity, precision, and F1 score. All metrics were calculated using

the test set. The mean and standard deviation of each evaluation

metric across the 30 test sets were reported.

LR, RF, and SVM were implemented using the scikit-learn li-

brary (0.21.3), and the NN was implemented using the Keras library

(2.3.1) in Python (3.7.4). The hyperparameters we tuned for each

model are given below. Parameters not mentioned were the same as

the default set by the libraries.

• LR: The regularization parameter C is tuned from 10�4 to 104

evenly on a log scale with base 10.
• RF: The number of trees n_estimators is tuned from 100 to 800

with an increment of 100. The maximum number of levels in a

tree max_depth is tune from 10 to 90 with an increment of 5.

The minimum number of samples required to split a node min_-

samples_split is tuned with values in references 2,5,12,17,20.

The minimum number of samples required min_samples_leaf is

tuned with values in references 1,2,4,10.
• SVM: The regularization parameter C is tuned from 0.1 to 100

evenly on a log scale with base 10. The kernel coefficient gamma

is tuned from 10�3 to 1 evenly on a log scale with base 10.
• NN: The number of data points for each optimization cycle

batch_size is tuned from 10 to 50 with an increment of 10. The

number of times the entire training set is passed through epochs

from 50 to 200 with an increment of 50. The number of nodes in

the hidden layer neurons is tuned from 10 to 50 with an incre-

ment of 10. The dropout rate is 0.2. The activation function for

the hidden layer is rectified linear unit. The activation function

for the output layer is sigmoid. The loss is cross-entropy. The op-

timizer is “adam.”

This study was approved by the Institutional Review Boards

(IRBs) at MGB (IRB Protocol# 2015P002472).

RESULTS

Cohort development and feature engineering/clinical

phenotyping process
In the final study cohort, the case group (n¼459) had a record of hos-

pitalization (with a hospital stay for more than 24 h after admission)

during a 4-week window of the COVID-19 test date (14 days prior to

and 14 days post COVID-19 test) and the control group (n¼1036)

had no record of hospitalization (Figure 1). Similar age distributions

were observed between case and control groups, although the case

group was slightly older, more likely to be male, and slightly more

likely to be a smoker (Supplementary Table S2).

We conducted a 3-stage clinician-guided feature engineering pro-

cess (Table 2). First, we generated a list of 80 variables based on pre-

vious studies on COVID severity models. All these variables were

used as predictors at least once. Second, we modified this list based

Figure 2. Time windows for features/outcomes.

Table 1. Summary of input variables and outcome for model train-

ing

Role Definition EHR measures

Outcome Hospitalization 14 days prior to COVID

test and 14 days post-

COVID test

Input variables Demographic Age, Gender

Vital signs/assessments BMI, Smoking Status,

SPO2, Temperature

Diagnoses Diabetes, Alzheimer Dis-

ease, Cancer, Cardio-

myopathy, Cerebrovas-

cular Disease, Chronic

Kidney Disease,

Chronic Respiratory

Disease, Coronary Ar-

tery Disease, Cystic Fi-

brosis, Dementia,

Dyslipidemia, Heart

Failure, HIV/AIDS,

Hypertensive Disease,

Immunodeficiency,

Liver Disease, Meta-

static Solid Tumor,

Sickle Cell Disease,

Solid Organ Trans-

plant

Lab values Albumin, White Blood

Count, Blood Urea Ni-

trogen, Lymphocyte

Count

Temporal variable 15 binary test date indica-

tors for each month

from March 2020 to

May 2021

Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 10 1663

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac083#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac083#supplementary-data


on feedbacks from an online survey from 36 clinicians and generated

a list with 45 variables. Third, through a clinician group interview

and data quality assessment in the MGB database, we developed a

final list with 29 variables, including demographics (age, gender), vi-

tal signs (such as SpO2 and temperature), lab tests (such as albu-

min), and chronic diseases (such as respiratory disease and heart

failure) (Table 1 and Supplementary Table S3).

We extracted the duration of hospital stay from the database

and used 24-hour hospital stay as the definition of “hospitalization”

based on clinicians’ recommendation (Table 1).

Temporal pattern analysis and temporal variables
We investigated case and control patients’ distributions by binning

the cohort based on month (15 months in total) (Figure 3). We ob-

served a similar distribution of case and control patients over time.

There were 2 peaks over time at the months of April 2020 and De-

cember 2020, which could reflect the accumulated infection trend in

our study cohort.

In addition, we created temporal variables to include in model

training. Specifically, in accordance with the COVID test date, each

month (15 months in our study duration) was encoded as a binary

variable (0 for patients that not tested for that specific month and 1

for patients that tested for that specific month) for each patient from

March 2020 to May 2021 (Table 1).

Model performance
We combined 29 clinical variables and 15 temporal variables (44

variables in total) as the model input. All predictive models have

AUC > 0.80 (Table 3), indicating a good prediction was achieved

with all 4 models, among which random forest, SVM had

AUC¼0.83, while the other 3 models had AUC of 0.81 and 0.82.

We did not observe a statistically significant difference in terms of

AUC among the 4 models.

Most important factors associated with hospitalization
Among the statistically significant factors associated with hospitali-

zation from the logistic regression model (Table 4), albumin, a

plasma protein which is an important index for nutritional status,

was found to have the most impact on the outcome. Multiple EHR

variables, including vital signs, lab values, and chronic diseases,

were also important for the prediction. Two temporal variables, Au-

gust 2020 and May 2021 were also identified as important associ-

ated factors.

DISCUSSION

In this study, we developed a clinician-guided machine learning pre-

dictive algorithm to identify high-risk COVID positive patients by

using EHR-defined “hospitalization” as the outcome and HER-

derived variables (input). We used a multihospital study cohort and

an iterative feature engineering process for model development. Our

final input variable list was based on considerations of previous

studies, expert opinions, and the quality of the EHR-based clinical

data set. Feedback from clinicians played an important role in opti-

mizing the input variables for model training. For example, sugges-

tions like “fever (especially prolonged fever) may be an early

indicator” and “measure for frailty/vulnerable baseline state (such

as albumin) would be useful” helped us to narrow down and finalize

the feature list. More importantly, during the survey and interview

with clinicians, valuable knowledge of the practical advantages/dis-

advantages of each input variable was carefully reviewed. Since we

are focusing on the outpatient setting, there is less information avail-

able and data quality is more unstable compared with inpatient set-

tings. Selecting useful and more clinically available features was an

important task during our feature engineering process and reflected

in the final feature list. In general, guidance from the clinical team

Table 2. Summary of the 3-stage feature engineering process

Number of

features

Features selected

Stage 1. Initial feature selection based on previous studies

80 Age, Gender (Higher in Males), BMI, High Maternal Age,

Hypertension, CVD, Obesity, Diabetes Mellitus, Coro-

nary Heart Disease, Cerebrovascular Disease, COPD,

Kidney Disease, Malignancy, Respiratory Issue/Disease,

Stroke, Dyslipidemia, Fever, Cough, Dyspnea, Myalgia,

Shortness of Breath, Headache, Chest Pain, Sore Throat,

Diarrhea, Rhinorrhea, Anosmia, Weakness, Arthralgias,

Confusion, Hemoptysis, Nausea, Abdominal Pain, Vomit-

ing, Loss of Appetite, Fatigue, O2 Saturation, Tempera-

ture, Anorexia, Malnutrition, Acute Kidney Injury, Blood

Pressure, Olfactory Dysfunction, Smoking, Abnormal

Liver, UP Cholesterol, UP WBC, UP Neutrophil, UP CRP,

UP Ferritin, DOWN Eosinophil, DOWN Albumin,

DOWN lymphocyte (CD4, CD8 T cell counts), DOWN

CD3 CD19, UP IL-6, UP IL-10, UP Glucose, UP D-dimer,

DOWN hemoglobin, UP BUN, UP Bilirubin, UP ALT, UP

AST, Prolonged Prothrombin Time (PT), UP procalcito-

nin, DOWN Platelets, Change in Red Blood Cell Distribu-

tion, UP fibrinogen, UP erythrocyte sedimentation rate,

UP LDH, UP Creatinine, UP Troponin, UP Serum Amy-

loid A (SAA), UP TNF-alpha, UP INF-gamma, UP NT-

proBNP, DOWN Antithrombin, UP FDP, DOWN

Thrombocytes, UP Anti-phopholipid Antibodies

Stage 2: Feature modification based on feedback of online clinician

survey

45 Age, Gender, BMI, Smoking Status, O2 status, Temperature,

Diabetes, Alzheimer Disease, Cancer, Cardiomyopathy,

Cerebrovascular Disease, Chronic Kidney Disease,

Chronic Respiratory Disease, Coronary Artery Disease,

Cystic Fibrosis, Dementia, Dyslipidemia, Heart Failure,

HIV/AIDS, Hypertensive Disease, Immunodeficiency,

Liver Disease, Metastatic Solid Tumor, Sickle Cell Dis-

ease, Solid Organ Transplant, Albumin, White Blood

Count, Blood Urea Nitrogen, Lymphocyte Count, Obe-

sity, Procalcitonin, Fibrinogen, Neutrophil Count, Creati-

nine, INF-gamma, C-Reactive Protein, Interleukin-6,

Ferritin, Thrombocyte Count, Glucose, TNF-alpha, D-Di-

mer, Erythrocyte Sedimentation Rate, Lactate Dehydroge-

nase, Prothrombin Time

Stage 3: Feature finalization based on clinician interview and data

quality assessment

29 Age, Gender, BMI, Smoking Status, SPO2, Temperature, Di-

abetes, Alzheimer Disease, Cancer, Cardiomyopathy, Ce-

rebrovascular Disease, Chronic Kidney Disease, Chronic

Respiratory Disease, Coronary Artery Disease, Cystic Fi-

brosis, Dementia, Dyslipidemia, Heart Failure, HIV/

AIDS, Hypertensive Disease, Immunodeficiency, Liver

Disease, Metastatic Solid Tumor, Sickle Cell Disease,

Solid Organ Transplant, Albumin, White Blood Count,

Blood Urea Nitrogen, Lymphocyte Count
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enabled our model to represent real clinical settings and significantly

improved our models’ performance and practical value.

One important goal of our study is to identify risk factors for se-

vere COVID patients. Our results suggest that albumin could be a

strong factor associated with hospitalization (protector) of hospitali-

zation risk, which is consistent with previous studies.8,20,21 Our

study further validated that albumin is an important factor associ-

ated with COVID-related hospitalization, along with SPO2 and

temperature. Since albumin tests are commonly conducted among

patients and can be easily obtained from EHR data set,22 it can po-

tentially serve as a useful marker for severe COVID patients. Be-

cause all of our input variables are routinely available patient

features, we expect that the algorithm can be adjusted and applied

in other health care systems in the current and potential future pan-

demic. Moreover, we expect the proposed algorithm could help

health care providers to identify those at high risk who need timely

in-patient services among COVID-19-positive patients in the com-

munity to optimize the use of the limited clinical resources.

Gaining a deeper understanding of “Long COVID” generally used

to describe the long-term effects of COVID infection is an increasingly

important topic.23,24 “Hospitalization,” as an objective and compre-

hensive indication of patient status, could be a very useful phenotype

for this kind of study. Also, how to utilize fast-growing large-scale

clinical data sets to develop practical COVID tools is a challenge for

the informatics field. We believe that the integrated model leveraging

informatics/clinical components presented in this study provide a use-

ful framework for other researchers and future studies. For example,

the database with national-level information (eg, National COVID

Cohort Collaborative (N3C))25 will be a good target to further test

and improve the algorithm in the future.

In addition, a better understanding of the temporality of COVID

is a very important topic. Different COVID strains may have played

a role in pandemic progression and the mechanisms of the disease

could have dynamic changes. We did not include COVID strain in-

formation in this study due to the lack of data, but this is an impor-

tant topic for future research. We did however, explore the temporal

patterns of the disease from 2 angles (1) we visualized the trend of

hospitalization and identified 2 peak time during the study period

consistent with the trend of accumulated infection events in MGB

system; (2) we included time components in the prediction model

and estimated their strength in predicting hospitalization. For exam-

ple, 2 particular months were important associated factors, and

both months corresponded with the downward duration of the

COVID infection trend. This could be informative for future studies

to provide a better understanding of the relationship between time

and COVID-related outcomes. A good example is that in the poten-

tial future waves, 3–6 months after onset would be an appropriate

time point for developing severity models.

The current study has several limitations. First, our study focused

on patients age 65 and above. A large number of COVID positive pa-

tient ages 64 and below were removed during the cohort development

stage. Also, we are focusing on the outpatient setting. Many features

in the initial feature list (Table 1) have high missing rates for outpa-

tients, for example, Medication records (eg, hospitalized patients had

more complete records). Therefore, we did not include medications

and other data types with high missingness in our model. We also re-

Figure 3. Temporal patterns of COVID positive patients in our study cohort.

Table 3. Prediction model performance

AUC (sd) Sensitivity (sd) Specificity (sd) Accuracy (sd) Precision (sd) F1 score (sd)

Logistic regression 0.82 (0.02) 0.77 (0.08) 0.76 (0.06) 0.76 (0.03) 0.59 (0.06) 0.66 (0.04)

Random forest 0.83 (0.02) 0.78 (0.06) 0.75 (0.06) 0.76 (0.03) 0.59 (0.05) 0.67 (0.04)

Support vector machine 0.82 (0.03) 0.76 (0.08) 0.76 (0.08) 0.76 (0.04) 0.60 (0.08) 0.66 (0.04)

Neural network 0.81 (0.02) 0.75 (0.08) 0.76 (0.08) 0.75 (0.04) 0.59 (0.07) 0.65 (0.03)

Table 4. Top features from logistic regression

Top 12 significant factors associated with hospitalization (based on logistic regression)

Albumin (Standardized coefficient ¼ �1.01); SPO2 (�0.41); Temperature (�0.22); Cancer (�0.17); Cystic Fibrosis (0.15); Nitrogen (0.14); HIV/AIDS

(0.08); Diabetes (0.06); 2020–2008 (�0.05); Metastatic Solid Tumor (�0.05); 2021–2005 (�0.05); Solid Organ Transplant (0.05)

Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 10 1665



moved significant number of patients with high missing values to de-

velop the final study cohort, which allows us to have high-quality data

set for model training, but also could create a certain level of bias for

our study population. Second, only structured data were used for the

current study, unstructured data (clinical notes) may provide addi-

tional predictive power. Third, we did not observe a statistically signif-

icant difference in terms of AUC among the 4 models. This

observation that more advanced machine learning models did not per-

form better compared to regularized logistic regression could be due

to the relatively small sample size and presence of a few strongly pre-

dictive features (eg, albumin, SpO2, and temperature), under which

the power of machine learning models in handling large and complex

data could not be fully leveraged. Fourth, our study cohort mainly

comes from a prevaccine stage (March 2020 and May 2021), so we

did not include vaccine status in our model. Due to this characteristic

of the study population, this model will be more closely applicable to

a nonvaccinated population. In addition, studies have shown that dif-

ferent COVID variants can have different responses to current vac-

cines. Omicron is about 2.7–3.7 times more infectious than Delta in

vaccinated and boosted people.26 This will be an important topic for

our future studies as more vaccination data is becoming available.

Fifth, we extracted both model outcome (hospitalization) and time-

sensitive input features (lab values) from the 4-week time window sur-

rounding the COVID test date, leading to the possibility the outcome

might precede the inputs. This could bias the relationship between in-

put and outcome in our model and limit its prediction ability. Our cur-

rent model design is based on known limitations of outpatient EHR

data sets and the undetermined relationship between COVID test date

(known) and COVID actual onset time (unknown). Several data chal-

lenges existed over the course of the pandemic including limited under-

standing of COVID progression and incubation period, limited testing

capacity and delayed results reporting, limited medical resources, and

the inconsistent workflows and EHR documentation patterns in out-

patient settings. These limitations are not unique to our project but

rather limitations of the availability of testing and the speed at which

tests were processed at different periods during the COVID pandemic.

Based on available data, we used the test date to approximate the on-

set time and the difference between these 2 time points can vary

depending on different COVID incubation periods and testing sys-

tems. During our study period (especially in the early days of the pan-

demic), COVID tests were difficult to get and it took relatively longer

for patients to get results after COVID testing. Therefore, some

patients were sick with COVID but were not tested until they were

hospitalized. Today COVID tests are widely available and patients

can get the results within 24 hours. But with increasing home-based

testing, this may continue to be a problem with data sets since the

results of home tests are not consistently reported. Therefore, a

COVID positive patient (home test) may not have an EHR-

documented COVID test result until hospitalization. We used a 14-

day time window surrounding the COVID test date (before and after)

to capture the potential COVID incubation period. This is based on

clinical expert opinion and published standards (WHO: 0–14 days

and ECDC: 2–12 days).27 We used a fixed time window to standard-

ize the model pipeline. As part of our future studies, we are working

on improving the model by refining the input and outcome time win-

dows and using newer data sets, to make the algorithm more accurate.

But this also requires a deeper understanding of the basic science of

COVID, which is slowly evolving. This knowledge will lead to a better

definition of the COVID onset time point. Lastly, the current study is

only using data from the MGB site, which could limit the generaliz-

ability and utility of the final algorithms. We are currently conducting

the second stage of this project by getting comparable data from an in-

dependent site, which would allow testing of the generalizability of

this algorithm with an extended data set and further validation of the

key features identified here.

CONCLUSION

In the current study, we developed prediction models for general

hospitalization among older COVID positive patients. Our input

variables are routinely available patient features, and the model de-

velopment was guided by a group of clinicians with direct experi-

ence on the front lines of COVID treatment. Our modeling pipeline

and algorithm can be used to facilitate an accurate and efficient

decision-making system for triaging COVID positive patients before

they are admitted to the hospital.
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