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Conspectus:

Enolate alkylation and conjugate addition into an α,β-unsaturated system have served as 

longstanding strategic disconnections for the installation of α or β-substituents on carbonyl-

containing compounds. At the onset of our efforts to develop C–H activation reactions for 

organic synthesis, we set our eye towards developing asymmetric β-C–H activation reactions 

of aliphatic acids, with the perspective that this bond-forming event could serve as a more 

flexible retrosynthetic surrogate for both canonical carbonyl-related asymmetric transformations. 

In this review, we describe our early efforts using strong-coordinating chiral oxazolines to probe 

reaction mechanism and the stereochemical nature of the C–H cleavage transition state. The 

characterization of key reactive intermediates through X-ray crystallography and computational 

studies suggested a transition state with C–H and Pd–OAc bonds being approximately coplanar 

for optimum interaction. We then moved forward to develop more practical, weakly-coordinating 

monodentate amide directing groups; a necessary advance towards achieving the β-C–H activation 

of weakly-coordinating native carboxylic acids. Throughout this journey, gradual deconvolution 

between a substrate’s directing effect and its intimate interplay with ligand properties has 

culminated in the design of new ligand classes that ultimately allowed the competency of 

native carboxylic acids in β-C–H activation. These efforts established the importance of 

ligand acceleration in Pd-catalyzed C–H activation, where the substrate’s weak-coordination is 

responsible for positioning the catalyst for C–H cleavage, while the direct participation from 

the bifunctional ligand is responsible for enthalpically stabilizing the C–H cleavage transition 

state. Building upon these principles, we developed five classes of chiral ligands (MPAA, MPAQ, 

MPAO, MPAThio, MPAAM) to enable enantioselective β-C–H activation reactions, including 

carbon–carbon and carbon–heteroatom bond formation. The accumulated data from our developed 

enantioselective C–H activation reactions indicate that ligands possessing point chirality are most 
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effective for imparting stereoinduction in the C–H activation step; the application of which 

enabled the desymmetrization and subsequent C–H functionalization of enantiotopic carbon 

and protons across a range of weakly-coordinating arylamides, and more recently, with free 

carboxylic acids. Progress in ligand design, in conjunction with the enabling nature of alkali 

metal countercations, led to the realization of a suite of β-methyl, and now methylene, C(sp3)–

H activation reactions. These advancements also enabled the use of economical oxidants, such 

as peroxides and molecular oxygen, to facilitate catalyst turnover. In the future, continued 

progression in designing more efficient bifunctional chiral ligands is likely to provide a myriad of 

enantioselective β-C–H activation reactions of readily-available native substrates.

Graphical Abstract

1. Introduction

Since its advent in the early 1800s, synthetic organic chemistry has enabled breakthroughs 

in medicine, agriculture, and materials science.5,6 Although modern chemists are well-

equipped to construct an immense range of complex molecules, organic synthesis still 

contains an abundance of unsolved problems. One of the most fundamental limitations of 

organic synthesis is its dependence on reactive functional groups to forge new chemical 

bonds. Because organic molecules are composed almost entirely of unreactive C–C and C–H 

bonds, the transformation of simple starting materials into intricate target molecules can 

often be circuitous to install or manage reactive functional handles that will ultimately be 

replaced or removed.

The field of C–H activation has accrued tremendous interest over the past several decades 

due to its potential to overcome the inefficiencies by redefining the inert C–H bond as a 

latent source of functionality.7 However, the ubiquity of C–H bonds in organic molecules 

poses one of the most formidable regiochemical challenges in transition metal-catalyzed 

C–H functionalization. To this end, leveraging Lewis basic groups to direct a metal catalyst 

is a commonly employed strategy to impart regioselection, precisely positioning the catalyst 

close to a target C–H bond and minimizing the entropic cost of activation required to select 
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for one of many C–H bonds.8 Over the years, advancements in directing group, catalyst and 

ligand design have enabled C(sp2)–H functionalization to become a well-established area 

of research, and also enabled the previously-elusive aliphatic C–H activation a possibility 

despite the distinct challenges posed by these systems.9

At the outset of our research program, we were particularly interested in developing robust 

strategies in the β-functionalization of aliphatic free acids, generating products analogous 

to enolate alkylation in β-methyl functionalization or conjugate addition for β-methylene 

functionalization (Scheme 1). This was motivated by their ubiquitous presence in chemical 

feedstocks and natural products, facile diversification, as well as their relative stability 

compared with carbonyl compounds of lower oxidation states. Such a β-C–H activation 

approach can widen the versatility of carbonyl functionalization reactions by circumventing 

the need for: (1) prefunctionalization, and (2) polarity-matching resultant from electronic 

properties (e.g. innately-nucleophilic enolates, or innately-electrophilic α,β-unsaturated 

systems). In effect, this reconceptualizes canonical d2/a3 synthons by avoiding the need 

for/generation of reactive nucleophilic reagents, while enabling broad compatibility with a 

range of mild nucleophiles and electrophiles.10

Over the decades, fervent research efforts have been devoted toward controlling the π-

facial selectivity of enolate or conjugate additions, leading to many established asymmetric 

variants for these processes. Despite these advancements, free acid asymmetric α-alkylation 

and conjugate addition into their α,β-unsaturated derivatives represent still to this day, an 

outstanding methodological gap in the synthetic canon. To this end, β-C–H functionalization 

provides a unique opportunity in addressing this synthetic shortfall. Contrasting the 

community’s extensive history in controlling π-facial selectivity, enantioselective C–H 

functionalization processes—where a chiral transition metal complex stereoselectively reacts 

with a prochiral C–H bond to generate a chiral organometallic intermediate—remained 

unknown when we initiated this program.11 These topological differences necessitate 

the establishment of new stereomodels, given that previously-privileged scaffolds for 

controlling π-facial selectivity (e.g. C2-symmetic motifs) may not be cross-transferable 

for the desymmetrization of tetrahedral sp3 centers. Specifically, β-C–H functionalization 

could be rendered enantioselective through two main categories: (1) desymmetrization 

of enantiotopic carbons (Scheme 2a), and (2) desymmetrization of enantiotopic protons 
(Scheme 2b). Given the synthetic importance of these carbonyl-related reactions, and 

in particular their asymmetric variants, we envisioned that the rigorous development of 

an alternative retrosynthetic disconnection can potentially reconceptualize how carbonyl 

substitutions are asymmetrically constructed, providing a unified aliphatic retron to access 

these diverse products.

However, these ambitions were notably challenging at the outset as the reactivity of 

Pd(OAc)2 for cleaving C(sp3)–H is poor and, at the time, was limited to cyclopalladation 

directed by nitrogen or sulfur atoms. Native functional groups are often ineffective directing 

groups for C–H activation owing to their suboptimal catalyst binding abilities, and therefore 

require the installation of exogenous directing groups to obtain the desired reactivity; the 

weak coordinative ability of aliphatic acids is no exception to this. Finally, we were also 

drawn to the potential of using the cyclopalladated intermediate as a linchpin towards its 
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conversion into a range of C–C or C–X bonds, but recognized that to do so required the 

development of new ligand scaffolds to enhance the reactivity of the Pd(II) species in order 

to enable native substrates such as aliphatic acids to direct C–H activation.

In this account, we chronicle the development of palladium-catalyzed β-C(sp3)–H activation 

reactions of aliphatic acid derivatives and its diverse reactivity evolution through the 

lens of ligand development. We begin our discussion with our group’s early examples 

employing chiral oxazolines, highlighting the mechanistic insight into both the redox 

catalytic cycle and the C–H cleavage transition states established from these initial studies. 

Next, we describe the progress made towards allowing the use of weakly-coordinating 

groups in β-C–H activation; a particularly important development towards our ultimate 

goal: functionalization of free acids. Finally, we cover emerging examples that successfully 

utilize free acids without requiring exogenous directing group installation—a culmination 

of a journey since 2002 in ligand design and reaction development. Interwoven through 

this account, we illustrate how changes in a substrate’s directing effect required synergistic 

modulations in ligand design, and the crucial developments that enable these scaffolds to 

achieve the required ligand acceleration required for enantioselective aliphatic β-C(sp3)–H 

functionalization.12 We note that this review is not designed to be comprehensive, but rather 

to summarize key developments and to emphasize ongoing challenges and opportunities for 

the field at-large.13

2. Oxazoline Directing Groups (2002–2007): Mechanistic Insights in 

Diastereoselective C–H Activation

In our early efforts to develop asymmetric β-C–H activation reactions (supported by a 

Royal Society Research grant in 2002), we envisioned that a σ-chelating acid-derived chiral 

auxiliary such as an oxazoline could promote the assembly of a square planar palladium 

complex poised for cyclometallation. In 2005, our laboratory reported early examples of 

β-C(sp3)–H functionalization employing oxazolines as auxiliaries for carboxylic acids.14 

In this report, the iodination of unactivated methyl and cyclopropane C–H bonds was 

effected under mild conditions, with the pivotal C–H cleavage step mediated by palladium-

bound acetates (Scheme 3).15,16 The C–H functionalization was selective for primary over 

secondary C–H bonds, and the use of a chiral oxazoline resulted in diastereoselective 

methyl C(sp3)–H iodination for substrates where R1≠R2. For diastereoselective variants, 

the oxazoline auxiliary could be cleaved to unveil chiral β-functionalized carboxylic 

acids in >99% ee. In the same year, we disclosed a related diastereoselective C(sp3)–

H acetoxylation reaction (Scheme 4a).17 A trinuclear palladium complex bearing an 

anti-configured arrangement was isolated and characterized by X-ray crystallography, an 

observation that eventually formed the basis of future ligand design for enantioselective β-

functionalization (Scheme 4b). We also found that the addition of Ac2O was vital to promote 

catalyst turnover, regenerating the active Pd(OAc)2 catalyst presumably via ligand exchange 

to afford Pd(IV) diacetate prior to the reductive elimination (Scheme 4c). Subsequent 

studies on the C–H cleavage step shed light that the Pd–OAc lay approximately coplanar 

with the target C–H bond, selecting for the C–H bond that minimized substrate steric 

interactions.18 These insights gathered from these early examples of aliphatic acid β-C–H 
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activation established important foundations in ligand and reaction development that guided 

our eventual successes in the free acid-directed lactonization and acetoxylation processes.

3. Weakly-Coordinating Amide Directing Groups as Acid Surrogates 

(2007–2020)

3.1 Overview and reactivity development

Amides are commonly employed as exogenous directing groups for the β-C(sp3)–H 

functionalization of carboxylic acids, and can be roughly divided into two categories: 

1) strongly-coordinating, bidentate amides (Figure 1),19,20 and 2) weakly-coordinating, 

monodentate amides.21 While widely employed in transition metal-catalyzed C–H 

functionalization reactions, strongly-coordinating bidentate amide directing groups are 

burdened with disadvantages.22 First, the thermodynamic stability of cyclometallated 

intermediates is a double-edged sword; although C–H activation is more favored due 

to the thermodynamic stability of the resulting cyclometallated intermediates, subsequent 

functionalization of these metallacycles can be challenging due to the a) lack of reactivity 

of stable strongly-bound intermediates, and b) lack of vacant coordination sites limiting 

the scope of coupling partners.22 The latter prohibits downstream transformations such as 

cross-coupling from being realized, as these intrinsically require two vacant coordination 

sites on the catalyst to allow transmetallation to occur. Second, employment of external 

chiral ligands for catalyst-controlled stereoinduction is often not feasible because the strong 

directing group coordination outcompetes catalyst binding. This critical limitation renders 

ligand acceleration—necessary for enantioselective catalytic functionalization—particularly 

challenging.

With our vision towards achieving the enantioselective β-C(sp3)–H functionalization 

of weakly-coordinating free acids, our laboratory moved away from the established 

reactivity of strongly-coordinating amides. As a steppingstone, we targeted the 

development of weakly-coordinating monodentate amide directing groups to facilitate C–

H functionalization. We envisaged that the extra vacant coordinating site on the catalyst 

might enable the use of chiral bidentate ligand scaffolds to impart enantioinduction while 

broadening transformation scope, thus directly addressing the shortcomings imposed by 

strongly-coordinating bidentate directing groups. The departure from established directing 

groups posed energetic challenges we needed to overcome, as the enthalpic contribution 

from the strong coordination, as well as the conformational restriction from these often-rigid 

directing groups, all assist in favoring the challenging process of C–H metallation. With only 

weak-coordination available from the directing motif, the requisite catalytically-relevant 

substrate-Pd(II) complex poised for cyclometallation is more transient or elusive. This 

means that a suitably-designed ligand is required to accelerate the C–H cleavage process via 

reducing the energy barrier (Figure 2). Such ligand acceleration is crucial for achieving 

asymmetric induction, as any competitive racemic pathway arising from a ligand-free 

process will erode enantioselectivity.

To this end, we discovered that N-methoxyamides were competent weak-coordinating 

groups, enabling the first example of β-cross-coupling of aliphatic acids with aryl 
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and alkyl boronic acids (2008, Scheme 5a).21a Critically, the shift to monodenticity 

facilitated cross-coupling, a previously inaccessible transformation, to proceed efficiently. 

Later, we identified that electron-deficient monodentate N-arylamides are privileged weak-

coordinating motifs surrogating free acids; particularly noting that the acidic amide proton 

behaves analogously to the acidic carboxyl proton. The innovations developed to meet 

the challenges imposed by weakly-directing motifs facilitated the broad discovery of 

novel transformations across diverse catalytic cycles. One such innovation was reported 

in 2009, where our laboratory reported the first example of a palladium-catalyzed 

β-C(sp3)–H arylation directed by weakly-coordinating N-arylamides (Scheme 5b).21b 

The use of CyJohnPhos (L-1) in conjunction with CsF enabled the first example of 

β-methyl C–H functionalization proceeding via a Pd(0)/Pd(II) catalytic cycle. Shortly 

thereafter, we designed a modified N-arylamide directing group that proved enabling 

in the discovery of diverse reactivities. Beyond enabling cross-coupling processes, the 

weakly-coordinating arylamide directing group proved instrumental in the pioneering 

discovery of a range of aliphatic β-functionalizations, reporting unprecedented examples in 

C(sp3)–H arylation,1,2,23 alkylation,24 olefination,2,23b,e,25 alkynylation,2,26 carbonylation,27 

borylation,28 amination,29 and halogenation30 (Scheme 5c).

Realizing such a range of transformations validated that diverse functionalization can be 

enabled by weak substrate coordination. In addition, the shift to a monodentate directing 

group provided the crucial opportunity for the use of previously inaccessible chiral bidentate 

ligand scaffolds bearing internal base motifs.31 These internal base motifs participate in and 

accelerate C–H cleavage, enabling the catalyst to outcompete against potential background 

reactivity in the enantiodetermining step.1,2 The ability for bifunctional chiral bidentate 

ligands to directly participate in C–H cleavage transition state then allowed us to achieve 

a range of enantioselective β-C(sp3)–H activation reactions, with the bidentate binding 

providing the required spatial organization to enable facile C–H cleavage and the requisite 

stereoenvironment for enantioinduction despite direction by a weakly-coordinating motif.

In the following section, we highlight the number of enantioselective transformations 

directed by weakly-coordinative amide directing groups, categorizing by the nature of 

desymmetrization (i.e. desymmetrization of enantiotopic carbons or enantiotopic protons 

on the same carbon) during the C–H activation process. These representative examples 

demonstrate the broad scope of transformations achieved, and highlight key ligand 

developments that guided our eventual success in achieving free acid functionalization.

3.2 Desymmetrization of Enantiotopic Carbon Atoms

The discovery of bifunctional MPAA ligands—which not only modulate the stereo and 

electronic environments of the Pd(II) center,32 but also participate in the C–H cleavage 

step directly —paved the way for subsequent bidentate ligand design.33 Beginning in 2011, 

our group developed several examples of amide-directed asymmetric C–H functionalization 

via desymmetrization of enantiotopic carbons. First, we established the enantioselective 

C–H arylation, alkylation, and alkenylation of cyclopropanes through cross-coupling with 

a variety of boronates directed by a weakly-coordinating N-arylamide (Scheme 6).34 

Systematic tuning of chiral ligands, especially using the N-TcBoc-based protecting group 

Lucas et al. Page 6

Acc Chem Res. Author manuscript; available in PMC 2023 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that was likely involved in the C–H cleavage step, led to the development of a new 

bidentate MPAA ligand (L-2) crucial for high enantioselectivity. Later, our group reported 

an enantioselective β-C(sp3)–H arylation of cyclobutanes (Scheme 7),35 utilizing the 

same weakly-coordinating N-arylamide directing group but employs a chiral N-protected 

bidentate hydroxamic acid ligand (L-3).36 In addition, a small number of acyclic amides 

were also competent to afford chiral β-aryl amides in moderate yields and ee’s.

The desymmetrization of isopropyl groups represents a far more formidable challenge than 

our previously reported desymmetrative activated β-methylene C–H functionalization due to 

the more flexible nature of the substrate (Scheme 8a). In 2017, our laboratory established 

the enantioselective β-C–H arylation, alkenylation, and alkynylation of isobutyramide 

substrates, directed by a weakly-coordinating perfluorotolyl N-arylamide group (Scheme 

8b).2 Inspired by our early studies in oxazoline directing groups, we found success using 

chiral bidentate mono-protected aminomethyl oxazoline (MPAO) ligands. The rigidity and 

previously-established strong-binding conferred by the oxazoline unit was important to 

achieve high reactivity and enantioselectivity for this process, with the (S,S)-configuration 

in L-4 proving optimal for enantioinduction. Importantly, the proposed stereomodel was 

enabled by our early observations with chiral oxazoline-directed C–H activation, leveraging 

the anti-disposed nature of the substrate and the oxazoline unit to impart enantioinduction. 

By instead employing a chiral benzoyl-protected MPAO ligand, in conjunction with a 

weak-coordinating N-methoxyamides directing group, 2-aminoisobutyric acid derivatives 

also underwent enantioselective C–H arylation to afford synthetically valuable chiral α,α-

dialkyl α-amino acids. Notably, the prevailing stereomodel proposed for the transformation 

was enabled by our early observations with chiral oxazolines, noting that sterically-large 

groups are preferentially anti-disposed across the metal catalyst. The remaining α-methyl 

group in the products could undergo an additional C–H arylation, alkynylation, alkylation, 

bromination, or borylation to afford diverse α-chiral carboxylic acids.

Taking the success of the MPAO ligand scaffold, our group developed the first 

enantioselective C(sp3)–H borylation platform, capable of desymmetrizing methylene C–

H bonds in achiral cyclobutylamide substrates using Chiral (S,R)-configured bidentate 

MPAO ligand L-5 and O2 as the sole oxidant (Scheme 9a).28b Enantioinduction was 

proposed to occur through minimizing steric repulsion between the cyclobutyl ring and 

the ligand substituents on both MPAO stereocentres (Scheme 9b). Notably, cyclic amides 

of various ring sizes engaged in the C–H borylation and substrates containing α-tertiary 

and quaternary carbon centers were tolerated. This study highlights the enabling nature 

of MPAO ligands in discriminating prochiral carbons for this substrate class given the 

structural similarity between the isopropyl and cyclobutyl motifs (which can be seen as a 

constrained isopropyl unit). At the same time, these results illustrated the profound effects 

on enantioinduction imparted by subtle differences in ligand configuration; the (S,R)-MPAO 

diastereomer effective for cyclobutyl substrates was found to be ineffective for isopropyl 

desymmetrization.

In 2018, our group extended the applicability of MPAO ligands to enantioselective β-

C(sp3)–H arylation and vinylation of cyclobutylamides using L-6 (Scheme 10).23e This 

new transformation overcame several of the key limitations associated with our earlier 
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work (Scheme 7, vide supra). First, cyclobutane substrates possessing α-hydrogen atoms 

were now compatible, and vinylation reactions were performed in addition to arylation. To 

demonstrate the utility of the transformation, sequential C–H arylation and vinylation were 

carried out to rapidly construct substituted chiral cyclobutanes bearing three contiguous 

stereocenters challenging to construct using traditional means.

In addition to examples developed by our laboratory, the Colobert group has also reported 

amide-directed enantioselective β-C(sp3)–H activation reactions. Inspired by their previous 

work utilizing chiral sulfoxides as auxiliary directing groups,37 the Colobert group recently 

designed a new family of bidentate chiral N-protected aminosulfoxide ligands (L-7) 

for enantioselective β-C(sp3)–H activation (Scheme 11).38 N-Arylamide derivatives of 

cyclopropanecarboxylic acid underwent enantioselective C–H arylation in good yields and 

enantioselectivities utilizing a broad scope of aryl iodides. The proposed stereochemical 

model invokes key π-stacking interactions between the substrate and ligand, as well as 

minimized steric interactions between the aryl substituent and N-Ac moiety on the ligand.

3.3 Desymmetrization of Enantiotopic Protons

Compared to the desymmetrization of enantiotopic carbons, the enantioselective activation 

of enantiotopic protons represents a far greater challenge, owing both to the precision 

required to select for only one of two target protons (rather than differentiating 

sets of several protons), as well as the higher energetic barrier of methylene C–H 

activation especially for unactivated aliphatic substrates. In 2016, our group developed 

the enantioselective β-C(sp3)–H arylation of aliphatic amides, enabled by the discovery 

of chiral bidentate acetyl-protected aminoethyl quinoline (MPAQ) ligands (L-8, Scheme 

12).1,39 The design of MPAQ ligands was inspired by combining features from quinoline 

ligands, previously employed by our group to stabilize and reliably speciate the active 

catalyst,23a,33 and MPAA ligands, previously utilized to accelerate C(sp3)–H activation and 

imbue enantioselection.31,32 In a similar manner, the quinolyl motif was incorporated to 

provide strong σ-coordination to the metal catalyst, positioning the internal base to favorably 

cleave the target C–H bond. Extensive ligand evaluation revealed that scaffolds that 

generated a six-membered Pd chelate was crucial for reactivity. This was later rationalized 

computationally noting that the five-membered chelate favors the formation of a catalytically 

incompetent dimeric Pd species, as well as accruing disfavored steric interactions between 

the arylamide unit with the quinoline ligand due to restricted conformational freedom of 

the smaller chelate.40 With the optimized MPAQ ligand (L-8), this transformation tolerated 

a broad scope of aryl iodides and aliphatic amides, proceeding in excellent yields and 

enantioselectivities.

Extending this finding, we developed an enantio- and diastereoselective methylene C–H 

arylation of unstrained cycloalkylcarboxamides enabled using analogous bidentate MPAQ 

ligands (Scheme 13),23f which represents the first example of diastereoselective C–H 

activation through catalyst rather than substrate control. By selecting the optimal N,N-ligand 

(L-9, L-10) differing in its stereochemical nature, the reaction enabled the selective C–H 

cleavage of any of the four possible β-C–H bonds in the cycloalkylcarboxamides substrate, 

selectively generating any of the four possible stereoisomers of the 2-arylated products.
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4. β-C(sp3)–H Activation Reactions of Free Carboxylic Acids

4.1 Overview

So far, bespoke directing groups previously discussed have been crucial for the advancement 

of aliphatic C–H activation, though separate installation and often-adverse removal 

conditions hamper their tractability. While the direct functionalization of free acid is 

a desirable venture, their weak coordination diminishes the amount of catalyst-bound 

substrate present, thus abating reactivity.41 Additionally, competition between κ1 and κ2 

coordination modes is problematic, as the κ2-bound complex does not possess adequate 

geometry required for cyclometallation. Taking lessons learned from studies incorporating 

weak-coordinating amides, we discuss the developments that has led to the successful 

β-C(sp3)–H functionalization of native carboxylic acids without exogenous directing groups.

The first example of native acid-directed aliphatic C–H activation was reported by the Sen 

group in 1991 (Scheme 14a).42 This C–H oxidation reaction was stoichiometric in platinum 

and required superstoichiometric amounts of the substrate. Despite these shortcomings, 

this work served as an early proof-of-concept that free carboxylic acids could direct a 

transition metal-catalyzed C–H functionalization reaction at the β-position of an aliphatic 

substrate. In 2007, our laboratory reported the first catalytic carboxylic acid-directed β-

C(sp3)–H activation reaction under ligand free conditions (Scheme 14b).43 A key finding 

we discovered was the dramatic acceleration in reactivity through the use of alkali metal 

carboxylate-derivatives of free acids; noteworthily, the use of a preformed palladium 

carboxylate substrate in the absence of an alkali metal cation was not reactive.43,44 This 

remarkable effect in reactivity was later ascribed to the alkali metal preferentially binding 

to the carboxylate in a κ2 manner, facilitating carboxylate-catalyst binding in a productive 

κ1 fashion.45 This finding was a major enabler for subsequent reaction development, with 

nearly all future discoveries requiring a source of alkali metal cation to promote reactivity. 

Simple α-quaternized aliphatic acids were functionalized with arylboron reagents with good 

mono selectivity under ligand-free conditions, albeit in low yields. β-Functionalization was 

also achieved with aryl iodides as coupling partners in good yields and with moderate 

selectivity for monoarylation. In addition, one example was demonstrated for the arylation 

of a cyclopropyl C–H bond, notable due to the rarity of methylene C–H activation reactions 

at the time.

4.2 Carboxylic acid directed methyl functionalization (2017–present)

Carboxylic acid-directed aliphatic β-C–H activation remained dormant until a decade later, 

when several examples of β-C(sp3)–H arylation of substrates without α-quaternary centers 

were developed. In 2017, our laboratory disclosed the β-C–H arylation of α-amino acids 

employing aryl iodides as coupling partners (Scheme 15a and b),46 where a strongly-

coordinating pyridine-type ligand L-11 was crucial for the success of our C–H arylation 

reaction. Zhao group found that our bidentate MPAA ligand could also effect this arylation 

reaction.47 In the same year, the van Gemmeren group reported the β-C(sp3)–H arylation 

of simple, unfunctionalized carboxylic acids with aryl iodides to afford hydrocinnamic 

acid derivatives (Scheme 15c).48 This transformation again employed a bidentate β-MPAA 
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ligand, tolerated a wide variety of aryl iodides, and performed well with carboxylic acids 

bearing α-secondary, tertiary, and quaternary centers.

Over the years, cumulative advances have broadened the scope of free acid functionalization 

to include olefination, carbonylation, alkynylation, acetoxylation, lactonization, and 

acyloxylation reactions, with these reactions uniformly enabled by bidentate MPAA and 

related ligands.3,49–54 In 2018, our laboratory reported the β-C(sp3)–H olefination, and 

subsequent lactonization, of aliphatic carboxylic acids to afford γ-lactones (Scheme 16a).3 

This transformation was enabled by the development of a new class of bifunctional acetyl-

protected aminoethyl phenyl thioether ligand (L-12), with the thioether motif anchoring the 

catalyst through strong σ-coordination to favorably position the NHAc internal base for 

C–H cleavage. The use of this novel ligand later also permitted the carboxylic acid-directed 

β-C(sp3)–H carbonylation to afford acid anhydrides, giving a rapid entry point to a range 

of β-carboxylated products (Scheme 16b).49 Alongside our initial disclosure in 2018, the 

van Gemmeren group developed the β-C(sp3)–H acetoxylation of aliphatic carboxylic acids 

(Scheme 16b).50 This transformation, though scalable to 5 mmol, was mostly limited to 

carboxylic acids bearing α-quaternary centers, although one example with an α-tertiary 

center was demonstrated in low yield.

Recently, our laboratory discovered a carboxylic acid-directed β-C(sp3)–H lactonization to 

afford β-lactones using an inexpensive tert-butyl hydroperoxide (TBHP) oxidant enabled 

by β-MPAA ligand L-13 (Scheme 17a).51 This provided a modular synthetic route toward β-

substituted carboxylic acids by nucleophilic ring-opening of β-lactones to construct diverse 

C–C and C–X bonds. This C–H lactonization could be carried out on gram scale, catalyst 

loading could be lowered to 1% and the β-lactone product could be isolated with a simple 

aqueous wash without chromatography. Modification of these conditions next enabled 

the discovery of carboxylic acid-directed β-C(sp3)–H acyloxylation and intramolecular 

lactonization (to generate γ-, δ-, and ε-lactones), enabled by a new cyclopentane-based β-

MPAA ligand (L-14).52 Such conditions also facilitated a free acid-directed dehydrogenative 

cross-coupling reaction, whereby an initial methyl β-C(sp3)–H activation generates a weakly 

bound alkylpalladium species that could then activate and cross-couple with a second aryl 

C–H bond (Scheme 17b).53 This discovery enabled a range of tetralin, chromane and indane 

motifs to be generated, and facilitated a four-step total synthesis of (±)-russujaponol F. 

Coming full circle, the use of inexpensive TBHP oxidant in conjunction with Ac2O was 

inspired by our early mechanistic studies in oxazoline-directed C–H acetoxylation; both 

requiring a similar combination of peroxide oxidant with Ac2O for their success.

4.2. Current Challenges: Enantioselective and β-Methylene Functionalization 
Functionalization of Carboxylic Acids

Beyond its weak directing ability, the utilization of free carboxylic acids as directing 

groups for enantioselective C–H activation is especially challenging due to the flexibility 

of the metal-carboxylate complex, demanding the design of new chiral ligands to promote 

the desired reactivity and stereoselectivity. The first examples of carboxylic acid-directed 

enantioselective β-C(sp3)–H activation reactions via differentiation of enantiotopic carbon 

have been reported by our laboratory. In 2018, we reported the carboxylic acid-directed 
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C(sp3)–H arylation of cyclopropanes, enabled by a new chiral mono-protected aminoethyl 

amine (MPAAm) ligand L-15 (Scheme 18a);55 the replacement of the planar azines (e.g. 

L-8) with the sterically more hindered dialkylamino group was crucial for achieving 

enantioselectivity. More recently, we reported the carboxylic acid-directed cross-coupling 

of cyclopropanes and cyclobutanes to introduce β-aryl or vinyl groups, enabled by chiral 

MPAAm (L-16) and MPAA ligands (L-17, Scheme 18b).56 In light of these promising 

results and the challenges highlighted above, the development of diverse enantioselective 

carboxylic acid-directed functionalizations of unbiased methylene C(sp3)–H bonds forms an 

ongoing ambition within our laboratory.

Advancing bifunctional ligand design and incorporating peroxide-mediated reaction 

conditions inspired from our early stoichiometric studies enabled a growing number 

of functionalizations directed by free acids. However, these successes tend to be 

limited to substrates bearing β-methyl or highly activated β-methylene groups, even 

though deuteration of β-methylene C–H bonds has been observed using MPAAm 

type ligands.57 As unactivated methylene C–H bonds are more recalcitrant towards 

cyclopalladation, an enduring challenge relates to their effective β-methylene C–H activation 

and downstream functionalization. Building on its enabling ability in free acid-directed 

C(sp2)–H oxygenations,58 we discovered that a new class of pyridine-pyridone (PyriPyri) 

ligand scaffold (L-18 and L-19) uniquely enabled the β-methylene dehydrogenation of free 

acids in the presence of other enolizable motifs (Scheme 19).4 Through this discovery, 

we further demonstrated that this dehydrogenated intermediate can be intercepted with 

alkynyl bromides as a second coupling partner, generating diverse butenolide scaffolds. 

These emerging results augur hope that diverse β-methylene C(sp3)–H functionalization of 

native carboxylic acids is indeed possible, and we project that further development along this 

enabling class of ligand could unveil new reactivities, and achieve enantioselection, for free 

acid-directed unactivated methylene C(sp3)–H activation.

6. Summary and Outlook

Over the past two decades, significant advances have been made towards the diverse β-

functionalization of aliphatic acids and their derivatives. These transformations typically 

circumvent the need for prefunctionalization, generation of reactive intermediates and 

polarity-matching constraints that characterize traditional enolate or conjugate addition 

transforms, highlighting the potential flexibility of C–H activation as an alternative 

retrosynthetic strategy. The early oxazoline β-C(sp3)–H activation reaction reported by our 

laboratory in 2005 provided a valuable framework for subsequent reaction and chiral ligand 

design. To overcome the limitations posed by the well-established reactivity of strongly-

coordinating bidentate directing groups (e.g. unreactive cyclometallated intermediates and 

limited use of external ligands), our group first developed β-C–H activation reactions that 

employ weakly-coordinating N-arylamide directing groups as free acid surrogates. These 

studies establish that the combination of weak substrate coordination and bifunctional ligand 

acceleration is a promising approach for advancing C(sp3)–H activation, which is essential 

for realizing the β-C–H activation/functionalization of aliphatic acid substrates.
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Central to these advances are the concomitant development of new ligand topologies, 

enabled both by increased mechanistic understanding and a shift to substrate monodenticity. 

Through this, specific ligand motifs were engineered to enable productive ligand 

participation at various steps within the catalytic cycle. Through these developments, 

we broadened the range of coupling partners possible through diverse catalytic cycles, 

and established the ability to impart ligand acceleration in these processes. The latter 

providing the framework necessary for the development of enantioselective variants, where 

we designed chiral ligands to facilitate enantioselective β-C(sp3)–H activation reactions. 

Transformations which desymmetrize both enantiotopic carbon atoms and protons have 

been established, though the latter remaining less developed. To date, emerging examples 

show that challenging free acid-directed methylene and enantioselective transformations 

are possible, though significant research effort is necessary to broaden substrate and 

transformation scopes for these reactions. Through gaining insight into their reactivity, 

continued advances will be reliant on the development of new ligand scaffolds to address 

current shortfalls, which we project can improve the practicality, imbue stereoselectivity, 

surpass the current site-selectivity and enable further iterative functionalizations for diverse 

free acid-directed transformations (Scheme 20). These achievements can allow C(sp3)–H 

functionalization of free acids to firmly stand beside or even exceed enolate and conjugate 

addition as a venerable strategy for the facile synthesis of diversely β-substituted carbonyl 

compounds.
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Figure 1. 
Examples of strongly-coordinative bidentate amide directing groups commonly used for 

β-C(sp3)–H functionalization
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Figure 2. 
Challenges associated with strongly-coordinating bidentate directing groups and rationale 

for moving towards weakly-coordinative monodentate directing groups
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Scheme 1. 
β-C–H functionalization provides an alternative disconnection for the synthesis of 

functionalized carbonyl derivatives that avoids reactive reagents. FG: Functional group; FGI: 

functional group interconversion.
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Scheme 2. 
Desymmetrization of (a) enantiotopic carbon atoms vs. (b) enantiotopic protons
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Scheme 3. 
Oxazoline-directed diastereoselective β-C(sp3)–H iodination reaction
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Scheme 4. 
Oxazoline-directed diastereoselective β-C(sp3)–H acetoxylation reaction
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Scheme 5. 
Overview of pioneering transformations facilitated by weak coordination-enabled C–H 

functionalization
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Scheme 6. 
Enantioselective C–H Arylation, Alkenylation, and Alkylation of Cyclopropanes
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Scheme 7. 
Enantioselective C–H Arylation of Cyclobutanes
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Scheme 8. 
Enantioselective C–H Arylation, Alkenylation, and Alkynylation of Isobutyric Acid 

Derivatives
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Scheme 9. 
Enantioselective C–H Borylation of Cyclobutanylamides
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Scheme 10. 
Enantioselective C–H Arylation and Vinylation of Cyclobutanes
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Scheme 11. 
Weakly-coordinative Amide-Directed Enantioselective β-C(sp3)–H Arylation Reaction 

Developed by the Colobert Group
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Scheme 12. 
Intermolecular Amide-Directed Enantioselective β-C(sp3)–H Activation Reactions
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Scheme 13. 
Enantio- and Diastereoselective C–H Arylation of Cycloalkylcarboxamides
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Scheme 14. 
Pioneering Examples of Carboxylic Acid-Directed β-C(sp3)–H Activation Reactions
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Scheme 15. 
β-C(sp3)–H Arylation of Carboxylic Acids Without α-Quaternary Centers
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Scheme 16. 
Diverse Carboxylic Acid-Directed β-C(sp3)–H Activation Transformations
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Scheme 17. 
Carboxylic Acid-Directed β-C(sp3)–H Activation Transformations Using Inexpensive 

Peroxide Oxidants
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Scheme 18. 
Carboxylic Acid-Directed Enantioselective β-C(sp3)–H Activation Reactions
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Scheme 19. 
Carboxylic Acid-Directed β-Methylene C(sp3)–H Activation Enables Dehydrogenation and 

Further Functionalization
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Scheme 20. 
Future ambitions for the development of free acid-directed C(sp3)–H functionalization
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