
Investigating new treatment opportunities for patients with
chronic kidney disease in type 2 diabetes: the role of finerenone

Rajiv Agarwal 1, Stefan D. Anker2, George Bakris3, Gerasimos Filippatos4, Bertram Pitt5, Peter Rossing6,7,
Luis Ruilope8,9,10, Martin Gebel11, Peter Kolkhof12, Christina Nowack13 and Amer Joseph14; on behalf of the
FIDELIO-DKD and FIGARO-DKD Investigators
1Richard L. Roudebush VA Medical Center and Indiana University, Indianapolis, IN, USA, 2Department of Cardiology (CVK) and Berlin
Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research Partner Site Berlin, Charité
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A B S T R A C T

Despite the standard of care, patients with chronic kidney disease
(CKD) and type 2 diabetes (T2D) progress to dialysis, are hospital-
ized for heart failure and die prematurely. Overactivation of the min-
eralocorticoid receptor (MR) causes inflammation and fibrosis that
damages the kidney and heart. Finerenone, a nonsteroidal, selective
MR antagonist, confers kidney and heart protection in both animal
models and Phase II clinical studies; the effects on serum potassium
and kidney function are minimal. Comprising the largest CKD out-
comes program to date, FIDELIO-DKD (FInerenone in reducing
kiDnEy faiLure and dIsease prOgression in Diabetic Kidney
Disease) and FIGARO-DKD (FInerenone in reducinG
cArdiovascular moRtality and mOrbidity in Diabetic Kidney
Disease) are Phase III trials investigating the efficacy and safety of
finerenone on kidney failure and cardiovascular outcomes from
early to advanced CKD in T2D. By including echocardiograms and
biomarkers, they extend our understanding of pathophysiology; by
including quality of life measurements, they provide patient-
centered outcomes; and by including understudied yet high-risk car-
diorenal subpopulations, they have the potential to widen the scope
of therapy in T2D with CKD.

Trial registration number: FIDELIO-DKD (NCT02540993)
and FIGARO-DKD (NCT02545049)

Keywords: albuminuria, CKD, clinical trial, diabetic kidney
disease, mineralocorticoid receptor antagonist

I N T R O D U C T I O N

Diabetes is the leading cause of chronic kidney disease (CKD)
[1, 2], is a risk factor for the progression of CKD to end-stage
kidney disease (ESKD) [3] and is costly [4]. In 2015, US
Medicare expenditures were in excess of $64 billion and $34 bil-
lion for CKD and ESKD, respectively, while the total UK expen-
ditures attributable to CKD were estimated at £1.45 billion in
2010 [4, 5]. CKD in type 2 diabetes (T2D) is also associated
with reduced life expectancy. A recent study of 512 700 patients
demonstrated that while diabetes itself can reduce life expec-
tancy by 10 years and early CKD by 6 years, early CKD with
T2D shortens life by 16 years [6]. Those with early CKD in T2D
are much more likely to die than progress to ESKD, yet are of-
ten excluded from randomized trials of kidney failure.
Furthermore, both diabetes and CKD are strongly associated
with cardiovascular (CV) disease [2, 7]. In particular, albumin-
uria, a marker of kidney damage, is an independent predictor of
CV and all-cause mortality [8, 9].

Over the last 2 decades, treatments to slow the progression
of CKD in T2D have primarily focused on the improved
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management of hyperglycemia and hypertension and the
use of angiotensin-converting enzyme inhibitors (ACEis) or
angiotensin II receptor blockers (ARBs) [10–12]. Since mid-
2019, the American Diabetes Association has recommended
sodium–glucose cotransporter-2 inhibitors (SGLT2is) in addi-
tion to an ACEi or ARB for the reduction of kidney and CV risk
in patients with T2D with albuminuria >30 mg/g if their esti-
mated glomerular filtration rate (eGFR) is�30 mL/min/1.73 m2,
particularly in those with albuminuria >300 mg/g [13].
However, despite the use of ACEis or ARBs and the concomitant
use of SGLT2is, there remains an unmet need to reduce both the
residual risk of progression to ESKD and CV morbidity and
mortality [11, 14].

There is growing evidence that pathophysiological overacti-
vation of the mineralocorticoid receptor (MR) leads to inflam-
mation and fibrosis and is a key driver of the progression of
CKD and its associated morbidity. Therefore blockade of the
MR is being investigated as a novel treatment approach to slow
the progression of CKD [15, 16]. Interventions in early CKD
[Kidney Disease: Improving Global Outcomes (KDIGO) stages
G1A2, G2A1 or G2A2] are more effective in delaying the pro-
gression of CKD and CKD-related morbidity and mortality [12,
17]. Reducing inflammation and fibrosis at the earliest possible
stage may therefore prove to be the most effective intervention.
Although the steroidal hormones that activate the MR—aldo-
sterone and cortisol—are familiar to most physicians, MR
antagonists (MRAs) are not indicated for use in patients with
CKD and T2D and are therefore not commonly used [18–21].
Furthermore, only limited data exist to support their use in this
patient population. The available steroidal MRAs, spironolac-
tone and eplerenone, are both effective in reducing mortality
and hospitalization in the treatment of heart failure [22, 23];
however, their role in reducing the rate of progression of kidney

disease to ESKD is unknown. Finerenone is a novel, nonsteroi-
dal, selective MRA that has a high affinity for the MR and a
unique binding mode that has been shown to reduce inflamma-
tion and fibrosis in animal models [16, 24–27]. In addition,
Phase II trials have demonstrated significant reductions in albu-
minuria with finerenone and adverse events comparable with
placebo, as well as less hyperkalemia compared with spironolac-
tone [28]. The FIDELIO-DKD (FInerenone in reducing
kiDnEy faiLure and dIsease prOgression in Diabetic Kidney
Disease) and FIGARO-DKD (FInerenone in reducinG
cArdiovascular moRtality and mOrbidity in Diabetic Kidney
Disease) trials are based on both biological plausibility of cardi-
orenal benefit and promising data from Phase II trials [16].
Here we explore the role of these trials in providing new treat-
ment opportunities for improving cardiorenal outcomes in
patients with CKD in T2D. We highlight the use of finerenone
as a new treatment approach to CKD in T2D. We explore the
rationale for having a randomized clinical trial program with
two independent and individually powered trials assessing the
renal and CV protective effects of finerenone compared with
placebo in addition to the standard background therapy.

T H E M E C H A N I S M O F A C T I O N O F
F I N E R E N O N E

The MR belongs to the superfamily of nuclear hormone recep-
tors and is predominantly expressed in the heart, kidneys, vas-
culature, brain, gut and myeloid cells [15]. It is well recognized
that MR gene expression controls fluid, electrolyte and
hemodynamic homeostasis [16, 29]. A lesser known fact is that
overactivation of the MR, implicated in chronic pathophysio-
logical disease states such as T2D and CKD, results in high
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levels of inflammation and fibrosis leading to end-organ dam-
age in cardiorenal disease (Figure 1) [15, 16].

Both steroidal MRAs as well as novel, nonsteroidal MRAs
can be used to inhibit MR overactivation and reduce its deleteri-
ous effects by reducing proinflammatory and profibrotic gene
expression [16, 29]. Spironolactone and eplerenone have both
demonstrated effective reduction in CV morbidity and mortal-
ity in patients with chronic heart failure and reduced left ven-
tricular ejection fraction [15]. In addition, spironolactone has
been demonstrated to improve endothelial dysfunction and in-
crease nitric oxide bioavailability in patients with heart failure,
thereby reducing CV mortality [30]. However, this benefit was
not observed in patients with diabetes [31]. Importantly, steroi-
dal MRAs are not indicated for the treatment of patients with
CKD and T2D; their use is associated with hyperkalemia and,
for the nonselective MRA spironolactone, antiandrogenic
adverse effects such as gynecomastia (as indicated in the spiro-
nolactone USA and UK prescribing information) [18, 21].
Furthermore, studies have demonstrated an increase in cortisol
and glycated hemoglobin (HbA1c) levels in patients receiving
spironolactone [32, 33]. In contrast, no changes were observed
in HbA1c with finerenone in Phase II studies [34]. Eplerenone
is contraindicated in hypertensive patients with creatinine
clearance <50 mL/min, any patient with creatinine clearance
�30 mL/min or those with T2D and microalbuminuria (USA
and UK prescribing information) [19, 20]. Despite the class 1A
guideline recommendation in patients with heart failure, analy-
sis of registry data reveals that MRAs remain underused in these
patients, with their use decreasing with impaired renal function,
even in patients with creatinine clearance of 30–<60 mL/min,
where MRAs are not contraindicated [35].

Finerenone results in MR blockade that is at least as potent
as spironolactone (Figure 1) and more selective than eplerenone
[27]. Unlike spironolactone and eplerenone, finerenone has a
nonsteroidal structure that allows it to bind to the MR with a
unique mechanism to inhibit recruitment of transcriptional
cofactors involved in the expression of hypertrophic, pro-
inflammatory and profibrotic genes [36, 37]. In preclinical ani-
mal models, the kidney benefits of finerenone are manifested by
the following: reduced expression of proinflammatory and
profibrotic markers in the kidney, protection from glomerular,
tubular and renal vascular damage and an improvement in
proteinuria [24–26]. Also, when compared with an equinatriu-
retic dose of the steroidal MRA eplerenone, finerenone demon-
strated more effective reduction in cardiac hypertrophy,
proteinuria and inflammation and fibrosis in the kidneys in ro-
dent models [24, 37, 38].

An important question that emerges is whether novel MRAs
can protect the kidney while reducing the risk of hyperkalemia.
Preclinical studies demonstrate that it is possible to achieve car-
diorenal protection by MR blockade without causing hyperkale-
mia. Data from Huang et al. [29], using cell-type MR knockout
mice, suggest that decreased myeloid MR signaling can protect
the kidney without affecting urinary potassium levels.
Preclinical studies using BR-4628, a precursor to finerenone,
have also demonstrated an improvement in kidney structure

and function without substantial effects on urinary sodium and
potassium [39]. Finally, finerenone was shown to inhibit mac-
rophage infiltration into inflamed renal tissue by blockade of
myeloid MR in a rodent CKD model [26].

Emerging data from Phase II trials with finerenone in
patients with heart failure and patients with CKD and T2D
demonstrate that neither hyperkalemia nor reductions in kid-
ney function were limiting factors to its use [15]. The exact rea-
sons for the minimal effects of finerenone on serum potassium
levels are unclear. However, it may be related to the distinct
mode of MR antagonism of finerenone and subsequent tran-
scriptional cofactor recruitment, its short plasma half-life and a
lack of active metabolites and the tissue distribution characteris-
tics of finerenone, which has an equal distribution to the heart
and kidneys, in contrast to spironolactone and eplerenone,
which exhibit higher drug accumulation in the kidney [24]
(Figure 1).

F I N E R E N O N E P H A S E I I P R O G R A M

The Phase II ARTS (MinerAlocorticoid Receptor antagonist
Tolerability Study) program included in aggregate >2000
patients and was designed to test the safety and efficacy of
finerenone in patients with T2D and CKD or with heart fail-
ure with reduced ejection fraction with T2D and/or CKD
(Supplementary data, Table 1) [28, 40, 41]. The ARTS
Phase IIa study demonstrated that finerenone was associ-
ated with a significantly smaller increase in serum potas-
sium compared with spironolactone but was at least as
effective in decreasing cardiac biomarkers of hemodynamic
stress [B-type natriuretic peptide and N-terminal pro hormone
B-type natriuretic peptide (NT-proBNP)] and albuminuria in
patients with stable chronic heart failure [41]. Also, the incidence
of adverse events related to worsening of renal function was
lower with finerenone compared with spironolactone [41].

In the ARTS-HF (ARTS-Heart Failure) Phase IIb trial in
patients treated within 7 days of a hospitalization for worsening
heart failure, finerenone reduced NT-proBNP levels to a similar
degree compared with eplerenone [40]. However, the explor-
atory composite endpoint of death from any cause, CV hospi-
talization or emergency presentation for worsening heart
failure occurred less frequently with finerenone compared with
eplerenone, with smaller mean increases in serum potassium
observed (Supplementary data, Table 1) [40].

The ARTS-DN (ARTS-Diabetic Nephropathy) Phase IIb
study of 823 patients with T2D and albuminuria [urine
albumin:creatinine ratio (UACR) �30 mg/g] on stable therapy
with an ACEi or ARB evaluated the safety and efficacy of differ-
ent once-daily doses of finerenone (up to 20 mg) compared
with placebo [28]. Among these T2D patients with CKD, finer-
enone demonstrated a dose-dependent reduction in UACR (the
primary outcome) of 25–38% compared with placebo in the
finerenone 10-, 15- and 20-mg once-daily groups over 90 days.
Minimal adverse effects on potassium and renal function and a
limited effect on reducing blood pressure were demonstrated. No
meaningful correlation was observed between the dose-dependent
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Table 1. Baseline characteristics in the FIDELIO-DKD and FIGARO-DKD trials and in combination

Characteristics FIDELIO-DKD FIGARO-DKD Total
(n¼ 5674) (n¼ 7354) (N¼ 13 028)

Age (years), mean (SD) 65.6 (9.1) 64.1 (9.8) 64.8 (9.5)
Gender (male), n (%) 3984 (70.2) 5107 (69.4) 9091 (69.8)
Race, n (%)

White 3738 (65.9) 5408 (73.5) 9146 (70.2)
Asian 1434 (25.3) 1451 (19.7) 2885 (22.1)
Black/African American 267 (4.7) 258 (3.5) 525 (4.0)
Other 235 (4.1) 237 (3.0) 472 (3.6)

Region, n (%)
Europe 2358 (41.6) 3504 (47.6) 5862 (45.0)

Western 1251 (22.0) 1485 (20.2) 2736 (21.0)
Eastern 1107 (19.5) 2019 (27.5) 3126 (24.0)

North America 944 (16.6) 1109 (15.1) 2053 (15.8)
Latin America 593 (10.5) 841 (11.4) 1434 (11.0)
Asia Pacific 1579 (27.8) 1625 (22.1) 3204 (24.6)
Other 200 (3.5) 275 (3.7) 475 (3.6)

BMI (kg/m2), mean (SD) 31.1 (6.0) 31.4 (6.0) 31.3 (6.0)
Duration of diabetes (years), mean (SD) 16.6 (8.8) 14.5 (8.5) 15.4 (8.7)
HbA1c (%), mean (SD) 7.7 (1.3) 7.7 (1.4) 7.7 (1.4)
Systolic blood pressure (mmHg), mean (SD) 138 (14) 136 (14) 137 (14)
Diastolic blood pressure (mmHg), mean (SD) 76 (10) 77 (10) 76 (10)
eGFR (mL/min/1.73 m2), mean (SD) 44.3 (12.6) 67.8 (21.7) 57.6 (21.7)
eGFR (mL/min/1.73 m2), n (%)
�60 656 (11.6) 4540 (61.7) 5196 (39.9)
�45–<60 1900 (33.5) 1535 (20.9) 3435 (26.4)
�25–<45 2981 (52.5) 1251 (17.0) 4232 (32.5)
<25 135 (2.4) 27 (0.4) 162 (1.2)

UACR (mg/g), median (IQR) 851 (446–1634) 312 (110–744) 519 (200–1147)
UACR category (mg/g), n (%)
<30 25 (0.4) 198 (2.7) 223 (1.7)
30–300 685 (12.1) 3385 (46.0) 4070 (31.2)
�300 4960 (87.4) 3762 (51.2) 8722 (66.9)

Serum potassium (mEq/L), mean (SD) 4.4 (0.5) 4.3 (0.4) 4.3 (0.4)
ACEis, n (%) 1942 (34.2) 3130 (42.6) 5072 (38.9)
ARBs, n (%) 3727 (65.7) 4198 (57.1) 7925 (60.8)
Beta-blockers, n (%) 2963 (52.2) 3524 (47.9) 6487 (49.8)
Diuretics, n (%) 3210 (56.6) 3486 (47.4) 6696 (51.4)

Loop diuretics 1618 (28.5) 1172 (15.9) 2790 (21.4)
Thiazide diuretics 1356 (23.9) 1802 (24.5) 3158 (24.2)

Statins, n (%) 4213 (74.3) 5172 (70.3) 9385 (72.0)
Platelet aggregation inhibitors, n (%) 3222 (56.8) 4063 (55.2) 7285 (55.9)
Glucose-lowering therapies, n (%) 5526 (97.4) 7180 (97.6) 12 706 (97.5)

Insulin 3636 (64.1) 3977 (54.1) 7613 (58.4)
Metformin 2486 (43.8) 5053 (68.7) 7539 (57.9)
Acarbose 323 (5.7) 334 (4.5) 657 (5.0)
Sulfonylurea 1329 (23.4) 2059 (28.0) 3388 (26.0)
DPP-4 inhibitors 1521 (26.8) 1748 (23.8) 3269 (25.1)
GLP-1 agonists 395 (7.0) 548 (7.5) 943 (7.2)
SGLT2 inhibitors 258 (4.5) 613 (8.3) 871 (6.7)

Arterial hypertension, n (%) 5505 (97.0) 7046 (95.8) 12 551 (96.3)
Diabetic retinopathy, n (%) 2657 (46.8) 2265 (30.8) 4922 (37.8)
History of CV disease, n (%) 2602 (45.9) 3400 (46.2) 6002 (46.1)

Coronary artery disease 1693 (29.8) 2273 (30.9) 3966 (30.4)
Peripheral artery disease 920 (16.2) 1168 (15.9) 2088 (16.0)
Myocardial infarction 765 (13.5) 1251 (17.0) 2016 (15.5)
Ischemic stroke 685 (12.1) 819 (11.1) 1504 (11.5)
Carotid endarterectomy 71 (1.3) 94 (1.3) 165 (1.3)
Heart failure 423 (7.5) 556 (7.6) 986 (7.6)

BMI, body mass index; DPP-4, dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1.

1017The role of finerenone in CKD in T2D



reductions in UACR and small reductions in blood pressure or
eGFR reported (that were not dose-dependent). This may suggest
that the effect of finerenone on albuminuria was independent of
measured hemodynamic effects [28]. In addition, no changes
were observed in HbA1c levels with finerenone [34]. The findings
of ARTS-DN provided the rationale for initiating a large-scale
Phase III program with finerenone to investigate kidney and CV
outcomes in T2D patients with all stages of CKD.

Hyperkalemia with MRAs and treatment-emergent
hyperkalemia in the finerenone Phase II program

In 2014, a Cochrane Database Systematic Review reported
the use of MRAs on top of ACEi or ARB for 27 studies in
1549 patients [42]. Hard endpoints such as ESKD or major ad-
verse CV effects were not noted in these trials. Steroidal MRAs
doubled the risk of hyperkalemia versus placebo (data from
11 studies, 632 patients), with a risk ratio (RR) of 2.00 [95%
confidence interval (CI) 1.25–3.20] and the number needed to
treat for an additional harmful outcome of 7.2 (95% CI 3.4–1).

Figure 2 shows the percentage of patients with a treatment-
emergent adverse effect of hyperkalemia, defined as serum po-
tassium �5.6 mEq/L in Phase II finerenone trials. The event
was reported as hyperkalemia, defined as serum potassium
�5.6 mEq/L in each of the three Phase II randomized trials:
ARTS, ARTS-HF pooled with ARTS-HF Japan and ARTS-DN
pooled with ARTS-DN Japan. In two of the trials, an active
comparator was used: spironolactone in the ARTS and eplere-
none in the ARTS-HF [40, 41]. In the ARTS, compared with
spironolactone, the incidence of a treatment-emergent adverse
event of hyperkalemia with finerenone was lower. In the ARTS-
HF, the incidence of treatment-emergent adverse event of
hyperkalemia was comparable to eplerenone. Although the in-
cidence of adverse events of hyperkalemia was low in the

ARTS-DN (pooled incidence with finerenone 2.1% versus 0%
with placebo), there was a statistically significant change from
baseline to Day 90 in serum potassium for each of the doses of
finerenone [28].

F I N E R E N O N E P H A S E I I I P R O G R A M

FIDELIO-DKD and FIGARO-DKD are large-scale (n¼ 5674
and n¼ 7354, respectively) international, randomized, double-
blind, placebo-controlled trials investigating the efficacy and
safety of finerenone in reducing CKD progression and CV
mortality and morbidity in patients with CKD and T2D [43,
44]. The studies enrolled patients from 48 countries and territo-
ries across 6 continents (Figure 3 and Supplementary data,
Figure 1) [43, 44].

FIDELIO-DKD and FIGARO-DKD are independent event-
driven trials that individually, with the total number of primary
endpoints accrued, provide a minimum of 90% power to detect
a 20% relative risk reduction in their respective primary end-
points with finerenone compared with placebo. The trials were
designed to include common and reciprocal primary and key
secondary endpoints consisting of important and relevant
renal and CV outcomes (Figure 3). The FIDELIO-DKD pri-
mary endpoint is a composite of time to first occurrence of kid-
ney failure, defined as either the initiation of chronic dialysis
over 90 days or renal transplantation (ESKD) or a sustained
eGFR <15 mL/min/1.73 m2over at least 4 weeks, a sustained
decrease in eGFR of �40% from baseline over at least 4 weeks
or renal death, whereas the key prespecified secondary endpoint
is a composite of CV death, nonfatal myocardial infarction,
nonfatal stroke or hospitalization for heart failure [43]. The
FIGARO-DKD primary endpoint is the composite of CV death,
nonfatal myocardial infarction, nonfatal stroke or hospitalization
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for heart failure, with the key prespecified secondary endpoint
replicating the primary composite endpoint of FIDELIO-DKD
(Figure 3) [43, 44].

Other secondary endpoints include deaths and hospitaliza-
tions from any cause. Exploratory endpoints such as annualized
eGFR slope will also be studied. In addition, the trials will
prospectively assess the change in health-related quality of life,
which will be evaluated in all patients using the 36-item Kidney
Disease Quality of Life and 5-level European Quality of Life 5-
Dimensions questionnaires. Moreover, the trials will include
echocardiography and biomarker substudies, thereby
contributing a depth of insight that considers pathophysiology
as well as patient-centered outcomes, aspects that have not been
previously addressed to this extent in this patient population.

Comparing FIGARO-DKD and FIDELIO-DKD popula-
tions with other trials in CKD with T2D

Patients with preserved eGFR are often excluded from CKD
with T2D trials. Previously understudied patient groups with re-
spect to renal and CV outcomes, such as those with high albu-
minuria (UACR 30–<300 mg/g) or very high albuminuria
(UACR >300 mg/g) and eGFR >60 mL/min/1.73 m2(Figure 4A
and Table 1) is now well represented. In total, 39.9% (5196/
13 028) of patients included in both trials corresponded to this
population with preserved eGFR.

To better quantify cardiorenal risk in the FIDELIO-DKD
and FIGARO-DKD patient populations we used a validated
tool. The KDIGO CKD working group uses a combination
of eGFR and UACR categories in its risk stratification tool for
predicting CKD and CV outcomes [12]. The results are shown
in Figure 4B. Across the two trials, moderate, high and very
high KDIGO risk scores were noted in 10, 41.1 and 48.3% of
patients, respectively; �90% had at least a high risk of a major
clinical outcome.

To further compare the FIDELIO-DKD and FIGARO-DKD
patient populations with other trials we plotted the summary
estimates of baseline UACR and eGFR data enrolled in recent
CKD in T2D trials investigating CV and/or renal outcomes
(Figure 5; Supplementary data, Figure 2 and Supplementary
data, Table 2). The high albuminuria population is underrepre-
sented in other trials but is well represented in the FIDELIO-
DKD and FIGARO-DKD program, where 4070 (31.2%)
patients have high albuminuria at baseline (Figure 5;
Supplementary data, Figure 2 and Supplementary data, Table
2). Albuminuria is an independent risk marker for CV and all-
cause mortality, even at levels within the upper normal range
[8, 9]. Accordingly, this high-risk CV population should allow
for greater insight into the possible benefit of finerenone for re-
ducing CV outcomes in this group of patients with earlier stages
of CKD.

Despite the pooled trial population being at high risk of CV
events and having a lower mean eGFR at baseline compared
with the CREDENCE (Canagliflozin and Renal Events in
Diabetes and Nephropathy Clinical Evaluation) trial of canagli-
flozin in patients with T2D and CKD (Table 1; Supplementary
data, Table 2 and Supplementary data, Figure 2), the FIDELIO-
DKD and FIGARO-DKD population was well controlled rela-
tive to the CREDENCE trial with respect to lower baseline
HbA1c and systolic blood pressure (Table 1; Supplementary
data, Table 2). Evaluating a well-controlled patient population
minimizes variation and confounding factors within the trial
outcomes. Furthermore, it allows validation of the potential car-
diorenal benefit of finerenone in addition to the best standard
of care for glycemic control and CV risk.

The FIDELIO-DKD and FIGARO-DKD trials are designed
to investigate the effect of finerenone on reducing the risk of
CV disease in FIGARO-DKD as well as CKD progression in
FIDELIO-DKD, but cross-validating the findings within one
trial program. No previous trial program has been designed this

FIGARO-DKDFIDELIO -DKD

eGFR slope New onset atrial fibrillation New onset heart failure HRQoLRegression of albuminuria

Clinical efficacy
primary endpoint

Key secondary
endpoints

Other secondary
endpoints

Exploratory
endpoints

Composite endpoint: time to
onset of kidney failure*, sustained
decrease of eGFR ≥ 40% from
baseline, or renal death

Composite endpoint: time to CV
death, nonfatal MI, nonfatal stroke
or hospitalization for HF

Same as primary endpoint in
FIGARO-DKD

Same as primary endpoint in
FIDELIO-DKD

All-cause
mortality

All-cause
hospitalization

Change
in UACR

Composite:
Onset of kidney failure

57%   eGFR
Renal death

FIGURE 3: FIDELIO-DKD and FIGARO-DKD endpoints. aKidney failure defined as occurrence of ESKD (initiation of chronic dialysis for
�90 days or renal transplantation) or sustained eGFR <15 mL/min/1.73 m2. HF: heart failure; HRQoL: health-related quality of life; MI:
myocardial infarction.
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way. As with other trials, FIDELIO-DKD and FIGARO-DKD
investigated patients receiving the approved standard of care
with the maximum tolerated labeled doses of ACEi or ARB
(Table 1). In addition, �7% of patients included also received
SGLT2is and glucagon-like peptide-1 receptor agonists at base-
line (Table 1). Although the population receiving SGLT2is in
the FIDELIO-DKD and FIGARO-DKD trials is comparatively
small, this subgroup may provide insights into the effects of re-
ceiving both finerenone and SGLT2i.

C O N C L U S I O N S

The FIDELIO-DKD and FIGARO-DKD studies comprise the
largest CKD outcomes program to date and will determine the
effect of a novel approach to the treatment of CKD in T2D that
targets the underlying disease processes. This approach extends
the CKD patient reach by including previously understudied
and high-risk cardiorenal subgroups. As such, the trials deliber-
ately included patients with high and very high albuminuria at

high cardiorenal risk despite the best standard of care for glyce-
mic control and control of CV risk factors (Table 1). Also, the
trials are powered to demonstrate both efficacy and safety on
the major kidney and CV outcomes in this high-risk popula-
tion. Finally, the FIDELIO-DKD and FIGARO-DKD trials are
prespecified superiority studies as opposed to safety trials and
evaluate a treatment that does not have a glucose-lowering ef-
fect. These trials have the potential to reduce CKD progression
and afford cardiorenal protection in patients with T2D across
the CKD continuum. The trials are anticipated to complete in
2020 and 2021, respectively.

S U P P L E M E N T A R Y D A T A

Supplementary data are available at ndt online.

A C K N O W L E D G E M E N T S

The FIDELIO-DKD and FIGARO-DKD trials were spon-
sored by Bayer AG, the manufacturer of finerenone. Medical

10 (< 0.1%) 198 (1.5%) 1110 (8.5%)

57 (0.4%) 1025 (7.9%) 2791 (21.4%)

76 (0.6%) 1391 (10.7%) 1965 (15.1%)

66 (0.5%) 1215 (9.3%) 2220 (17.0%)

14 (0.1%) 241 (1.8%) 635 (4.9%)

• UACR 30 to < 300 mg/g and
  eGFR ≥ 25 to < 60 mL/min/1.73 m2

• Or UACR ≥ 300 mg/g and eGFR
  ≥ 25 to < 75 mL/min/1.73 m2

• UACR 30 to < 300 mg/g and
  eGFR 25 to ≤ 90 mL/min/1.73 m2

• Or UACR ≥ 300 mg/g and eGFR
  ≥ 60 mL/min/1.73 m2

GFR categories
Description and range

(mL/min/1.73 m2)

Albuminuria categories
Description and range

(mg albumin/g creatinine)

G1
Normal or high

G2
Mild

G3a
Mild–moderate

G3b
Moderate–severe

G4
Severe

≥ 90

60–89

45–59

30–44

15–29

A1
Optimal and
high–normal

A2
High

A3
Very high and

nephrotic
0–29 30–299 ≥ 300

FIGARO-DKD

FIDELIO -DKD

A

GFR categories
Description and range

(mL/min/1.73 m2)

Albuminuria categories
Description and range

(mg albumin/g creatinine)

G1  High and optimal

G2  Mild

G3a  Mild–moderate

G3b  Moderate–severe

G4  Severe

≥ 90

60–89

45–59

30–44

15–29

A1
Optimal and
high–normal

A2
High

A3
Very high and

nephrotic
0–29 30–299 ≥ 300

B

Total by KDIGO risk

Low risk
67 (0.5%)

Moderate risk
1299 (10.0%)

High risk
5358 (41.1%)

Very high risk
6290 (48.3%)

FIGURE 4: (A) Overlap of patient populations according to inclusion values for UACR and eGFR in the FIDELIO-DKD and the FIGARO-
DKD trials. (B) Pooled data showing the baseline KDIGO risk categories of patients included in the FIDELIO-DKD and FIGARO-DKD trials
(KDIGO score risk category data were missing for 4 patients in the FIDELIO-DKD trial and 10 patients in the FIGARO-DKD trial). Values
are presented as n (%).
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