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Abstract
Background: Research on venous thromboembolism (VTE) that relies only on the 
International Classification of Diseases (ICD) can misclassify outcomes. Our study 
aims to discover and validate an improved VTE computable phenotype for people 
with cancer.
Methods: We used a cancer registry electronic health record (EHR)–linked longitudi-
nal database. We derived three algorithms that were ICD/medication based, natural 
language processing (NLP) based, or all combined. We then randomly sampled 400 
patients from patients with VTE codes (n = 1111) and 400 from those without VTE 
codes (n = 7396). Weighted sensitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV) were calculated on the entire sample using inverse 
probability weighting, followed by bootstrapped receiver operating curve analysis to 
calculate the concordance statistic (c statistic).
Results: Among 800 patients sampled, 280 had a confirmed acute VTE during the 
first year after cancer diagnosis. The ICD/medication algorithm had a weighted PPV 
of 95% and a weighted sensitivity of 81%, with a c statistic of 0.90 (95% confidence 
interval [CI], 0.89–0.91). Adding Current Procedural Terminology codes for inferior 
vena cava filter removal or early death did not improve the performance. The NLP 
algorithm had a weighted PPV of 80% and a weighted sensitivity of 90%, with a c 
statistic of 0.93 (95% CI, 0.92–0.94). The combined algorithm had a weighted PPV of 
98% at the higher cutoff and a weighted sensitivity of 96% at the lower cutoff, with a 
c statistic of 0.98 (95% CI, 0.97–0.98).
Conclusions: Our ICD/medication-based algorithm can accurately identify VTE phe-
notype among patients with cancer with a high PPV of 95%. The combined algorithm 
should be considered in EHR databases that have access to such capabilities.
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Essentials

•	 Venous thromboembolism (VTE) is an important complication to study among patients with cancer.
•	 It is challenging to identify VTE in epidemiology studies using electronic health records.
•	 We validated a VTE phenotype algorithm using billing codes and natural language processing (NLP).
•	 The new algorithm combining billing codes and NLP radiology reports provided optimal prediction.

1  |  INTRODUC TION

A computable phenotype is defined as a clinical condition that 
can be ascertained by means of a computerized query using a de-
fined set of data elements and logical expressions without chart 
review or interpretation by a clinician.1 In the context of pragmatic 
clinical trials and epidemiology studies, defining and validating im-
portant computable phenotypes is both critical and challenging.2 
Specifically within the realm of hematology/oncology research, 
many have tried to create a computable phenotype for venous 
thromboembolism (VTE) using administrative claims data with 
varying success.3 Even fewer algorithms exist to identify acute 
VTE events among longitudinal cohorts with distinct index dates 
and repeated radiology scans such as those with incident cancer 
diagnosis.4

While most of the existing work in VTE phenotype relies on 
using diagnostic codes within administrative claims or billing 
data, the full reliance on International Classification of Diseases 
(ICD) codes in such data can lead to significant bias. Fortunately, 
advances in clinical informatics and integrated electronic data 
warehouses have provided us with an expanded armamentar-
ium. VTE is often recorded in patients’ electronic health records 
(EHRs) both as structured data (billing codes, radiology codes) 
and unstructured data (radiology reports, clinical notes). The 
vastness and complexity of these data provide a challenge for 
researchers in obtaining consistent results, particularly when at-
tempting to correctly identify and describe specific VTE events. 
The gold standard for this process is manual chart review, though 
this method presents a significant limitation when thousands of 
patient charts must be reviewed. The development of an algo-
rithm that is capable of rapidly and correctly identifying VTE in 
a modern EHR data environment (as opposed to administrative 
claims data) would be an important tool for patient identification 
and outcome ascertainment in pragmatic clinical trials.

In our current study, we present various algorithms that lever-
age both structured and unstructured data elements in an EHR da-
tabase linked to our local cancer registry. We demonstrate the use 
of ICD codes, medications, Current Procedural Terminology (CPT) 
codes, and natural language processing (NLP) algorithms to identify 
VTE events with high positive predictive value (PPV) and sensitiv-
ity in a longitudinal cohort of patients with cancer. We also present 

an internal validation study with random sampling to estimate the 
overall performance of the algorithm in comparison with other pre-
viously published studies.

2  |  METHODS

2.1  |  Study design and population

We performed a retrospective cohort study at Baylor College of 
Medicine (BCM) and Harris Health System (HHS), the largest safety-
net health care system that provides care for the underserved and 
uninsured patients in the Houston metropolitan area. To construct 
the cohort, we identified and linked ambulatory and hospitalized pa-
tients through unique identifiers from both the institutional Cancer 
Registry and Epic Clarity and Caboodle data warehouse. As shown 
in Figure 1, a patient was considered eligible if he/she had an inci-
dent cancer diagnosis with confirmed histology and invasive stag-
ing. Furthermore, the patient must have two or more cancer-related 
encounters and >30 days of continuous follow-up. Due to the lack 
of medical insurance in the majority of patients in this cohort, there 
was very little loss to follow-up or clinical visits outside of the HHS 
facilities. The study was approved by the BCM Institutional Review 
Board.

2.2  |  Definition of VTE phenotype gold standard

The gold-standard VTE phenotype was defined as radiologically 
confirmed, symptomatic or incidental diagnosis of acute sub-
segmental or larger pulmonary embolism (PE), proximal or distal 
lower-extremity deep vein thrombosis (LE-DVT), proximal or distal 
upper-extremity DVT (UE-DVT), or bland splanchnic vein throm-
bosis (excluding tumor thrombus) within 1 year of cancer diagnosis. 
There was no uniform institutional guideline for outpatient throm-
boprophylaxis, although most patients received inpatient VTE 
prophylaxis. Two trained reviewers (WLC, CG) performed blinded 
chart abstraction of all radiology reports, clinical notes, and dis-
charge summaries using keyword searches [(thromb) OR (embol) 
OR (filling defect) OR “DVT” OR “PE” OR “VTE”] in Epic within 
1  year after cancer diagnosis. Each record was independently 
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assessed by a second reviewer (EMM, AKA, KMK, FJN, MDP), and 
discrepancies were resolved by a third clinician reviewer with ex-
pertise in cancer-associated thrombosis (AL). Data were collected 
and stored using the REDCap electronic data capture tools hosted 
at BCM.5,6

2.3  |  Data source for the study

After extracting ICD diagnosis codes, we applied sequential filters 
to ensure the codes would match only relevant and meaningful 
clinical encounters (Figure S1). All available ICD, Ninth Revision, 
Clinical Modification (ICD-9-CM) and ICD, Tenth Revision, 
Clinical Modification (ICD-10-CM) codes (as of 2021) for acute 
PE, acute LE-DVT, acute UE-DVT, nonspecific VTE, chronic VTE, 
and history of PE/DVT were selected to be filtered in later steps 
(Table S1).

CPT codes and Healthcare Common Procedure Coding System 
were extracted from chargemaster tables. Both inpatient and out-
patient procedural codes were kept regardless of final billing or 
reimbursement status. Radiology procedures (including contrast-
enhanced computed tomography or magnetic resonance imag-
ing, ventilation/perfusion scans, Doppler ultrasound) for PE and 
DVT, inferior vena cava (IVC) filter placement, and thrombolysis/
thrombectomy were defined using CPT codes (Table S2). Final im-
pression reports of radiology studies were extracted, and those 
associated with relevant VTE-related CPT codes were kept for 
further analysis.

Medication details were extracted and extensively cleaned to re-
move duplicates, ordered but held, misspelled names, incorrect dos-
age, and frequency or route. Therapeutic anticoagulation at the time 
of VTE diagnosis was defined as the presence of an administered (in-
patient/infusion center) or prescribed (outpatient/discharge) direct 
oral anticoagulant (including rivaroxaban, apixaban, edoxaban, and 
dabigatran) (any dose), oral vitamin K antagonist (any dose), subcuta-
neous enoxaparin (>1.3 mg/kg if daily or >0.8 mg/kg for twice-daily 
frequency), subcutaneous fondaparinux (5–10 mg), intravenous hep-
arin (continuous drip only, excluding flushes or pushes), or subcuta-
neous heparin (>7500 mg) within 7 days before and 30 days after 
suspected VTE diagnosis.

2.4  |  ICD and NLP algorithm derivation

The stepwise approach to algorithm discovery is shown in 
Figure 2. For the ICD algorithm, we reviewed 1000 patient charts 
with a positive ICD code for VTE after cancer diagnosis. We first 
examined the PPV for each of the included ICD-9-CM and ICD-
10-CM codes especially for those with nonspecific descriptions 
such as “embolism and thrombosis of unspecified vein.” We then 
examined how the “carryover” effect from historical VTE events 
impacted miscoding. Third, we assessed various means to mitigate 
the “rule-out” effect such as using two or more outpatient visits 
>30 days apart and one outpatient visit with therapeutic antico-
agulant within 7 days before and 30 days after VTE, similar to a 
previously study.7 Finally, we imposed other published rules such 
as IVC filter placement or death within 30 days according to an-
other previous study.4 We reported acute VTE concordance as a 
binary outcome in lifetime after index date or within 90 days of the 
first documented ICD code.

For the NLP algorithm, we selectively reviewed 1300 radiology 
reports (350 positive and 950 negative scans for VTE) in the dis-
covery set. We built a rule-based NLP pipeline using the CLAMP 
software (Melax Tech, Houston, TX, USA) that included built-in 
entity recognizer (VTE), assertion classifier, part-of-speech tagger, 
sentence detector, tokenizer, and Ruta rule engine.8 We then modi-
fied the dictionaries for VTE, negation, and preexisting tokens, along 
with appropriate semantic rules to optimize the performance of the 
pipeline. Specifically, a radiology report was predictive for VTE if it 
had a nonnegated and nonpreexisting VTE entity (either as a stand-
alone term or a deep venous site plus disorder) in the same sentence 
(Table S3).

2.5  |  Statistical analysis for algorithm validation

We performed an internal validation study using random sampling 
of the same overall population to account for the false-positive 
and false-negative cases, similar to previously published studies 
(Figure 3).9 Patients were split into two groups based on whether 
they had at least one acute VTE code after diagnosis (high vs low 
pretest probability for VTE). A total of 400 patients were then 

F I G U R E  1 Cohort construction and 
data sources. CPT, Current Procedural 
Terminology; HCPCS, Healthcare 
Common Procedure Coding System; ICD, 
International Classification of Diseases
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randomly sampled from each group for blinded chart review to 
determine VTE occurrence as described previously. Both ICD and 
NLP-based algorithms were applied and tested against the gold-
standard chart review VTE outcomes within 1  year of cancer 
diagnosis. We specifically tested four different algorithms: previ-
ous ICD/CPT/medication algorithm from Sanfilippo et al,4 current 
ICD algorithm, current NLP algorithm, and a combined ICD/NLP 
algorithm.

Weighted sensitivity, specificity, PPV, and negative predictive 
value (NPV), were calculated using the inverse probability weight-
ing (IPW) method, which is equivalent to the Begg and Greenes 
method to account for verification bias.10 The IPW used weights 
defined by the sampling rate within each stratum. Confidence in-
tervals (CIs; 95%) were calculated via bootstrapping 1000 times 
and were presented as bias-corrected CIs adjusting for the sam-
pling weights. Notably, the weights for each algorithm were differ-
ent slightly due to differential sampling based on initial ICD-based 
selection and more restrictive algorithms after the initial sampling. 
Receiver operating characteristics analysis was implemented, ad-
justing for sample weighting to assess the area under the curve/
concordance statistic (c statistic) for each algorithm. All analyses 
were performed using Stata 16.0 (StataCorp, College Station, TX, 
USA).

3  |  RESULTS

3.1  |  VTE computable phenotype algorithms 
derivation

A total of 8716 patients with newly diagnosed cancer over 9 years 
formed the population for the current study (Figure 1). Table 1 de-
picts the PPV for each category of the first ICD codes after the 
application of various exclusion filters among 1000 patients. The 
distribution of first documented ICD codes after cancer diagnosis 
were 32% (n = 324), 23% (n = 228), 10% (n = 98), 13% (n = 134), 17% 
(n = 173), 4% (n = 43) for acute PE, acute LE-DVT, acute UE-DVT, 
nonspecific VTE, historic VTE, and chronic VTE, respectively.

A detailed stepwise approach for optimizing the ICD algorithm is 
shown in Figure 2 and Table 1. Before any exclusion filters, 662 vali-
dated acute new VTE events were confirmed in 1000 patients with any 
VTE codes (PPV 66%) and 595 of them were within 90 days of the first 
ICD code (PPV 60%). Among them, chronic VTE codes had 60% PPV 
for acute VTE within 90 days but with very few events. Nonspecific 
and historic VTE codes had relatively low PPV for predicting acute 
VTE outcomes (PPV 31%-35%). Among the nonspecific codes, 451.2, 
451.84, 451.89, 451.9, 453.1, 453.9, I80.8, I80.9, and I82.1 had low PPV 
(<50%; see Table S4 for details). After excluding these low-PPV codes 

F I G U R E  2 Study design for 
computable phenotype derivation. ICD, 
International Classification of Diseases; 
NLP, natural language processing; 
POS, part-of-speech; VTE, venous 
thromboembolism

F I G U R E  3 Study design for 
computable phenotype validation. ICD, 
International Classification of Diseases; 
NLP, natural language processing; VTE, 
venous thromboembolism
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(exclusion filter 1), the remaining first ICD codes had 68% PPV for 
acute VTE within 90 days. As many of the false-positive events were 
related to “carry-over” effect from the historic VTE events mistakenly 
coded as acute VTE, we further excluded patients with acute VTE ICD 
codes anytime before cancer diagnosis or those receiving therapeu-
tic anticoagulation within 1 month before cancer diagnosis (exclusion 
filter 2). This change improved the overall PPV of acute VTE within 
90 days to 75%. Finally, we applied additional exclusion criteria to con-
sider an ICD code from an outpatient encounter only if it had two or 
more codes >30 days and <180 days apart (the “rule-out” criterion) 
unless the patient was prescribed or received therapeutic anticoagu-
lation within 30 days after the VTE ICD code (exclusion filter 3). With 
an improved PPV of acute VTE within 90 days to 85%, we chose this 
to be our final algorithm for validation testing. Notably, adding IVC fil-
ter or death in addition to anticoagulation within 30 days marginally 
improved the PPV (89%) but captured significantly fewer VTE events 
(exclusion filter 4).

Similar to the ICD algorithm creation, we optimized the NLP algo-
rithm performance within the discovery set of 1300 radiology impres-
sion reports. Specifically, we locked the pipeline once the sensitivity 
was 97% (340/350 true positives) and PPV was 98% (340/346 pre-
dicted positives) for predicting acute VTE event on the radiology re-
port (Table S5). Notably, this did not account for serial scans or missing 
scans, and the validation performance was expected to be less optimal.

3.2  |  VTE computable phenotype algorithm 
validation via random sampling

After excluding those with acute VTE codes (n = 122) or receiving 
therapeutic anticoagulation (n  =  87) before cancer diagnosis, 400 
patients were randomly sampled from 1111 with acute VTE codes 
(sampling weight 36.0%), and 400 were sampled from 7396 without 
VTE ICD codes (sampling weight 5.4%) (Figure 3).

TA B L E  1 Performance of the ICD-based algorithms after each exclusion filter in derivation data set

ICD Categorya

No exclusionb Exclusion 1c Exclusion 2d

Total PPV VTE, n (%) PPV ±90d, n (%) Total PPV VTE, n (%) PPV ±90d, n (%) Total PPV VTE PPV ±90d

Acute PE 324 270 (83) 252 (78) 374 307 (82) 279 (75) 289 258 (89) 241 (83)

Acute LE-DVT 228 146 (64) 139 (61) 284 180 (63) 167 (59) 202 142 (70) 134 (66)

Acute UE-DVT 98 81 (83) 78 (80) 119 96 (81) 88 (74) 100 85 (85) 78 (78)

Non-specific 
VTE

134 59 (44) 47 (35) 78 53 (68) 46 (59) 62 42 (68) 36 (58)

Historic VTE 173 75 (43) 53 (31)

Chronic VTE 43 31 (72) 26 (60)

Total 1000 662 (66) 595 (60) 855 636 (74) 580 (68) 653 527 (81) 489 (75)

ICD Categorya

Exclusion #3e Exclusion #4f

Total PPV VTE PPV ±90d Total PPV VTE PPV ±90d

Acute PE 255 237 (93) 223 (87) 235 227 (97) 217 (92)

Acute LE-DVT 158 137 (87) 132 (84) 133 116 (87) 113 (85)

Acute UE-DVT 94 86 (91) 79 (84) 68 64 (94) 63 (93)

Non-specific 
VTE

40 36 (90) 33 (83) 27 22 (81) 21 (78)

Historic VTE

Chronic VTE

Total 547 496 (91) 467 (85) 463 429 (93) 414 (89)

Abbreviations: ICD, International Classification of Diseases; IVC, inferior vena cava; LE-DVT, lower-extremity deep vein thrombosis; PE, pulmonary 
embolism; PPV, positive predictive value; UE-DVT, upper-extremity deep vein thrombosis; VTE, venous thromboembolism.
aSee Table S1 for detailed list of code included.
bNo exclusion: use first ICD code after date of cancer diagnosis. Column “PPV VTE” indicates how many patients had acute VTE after cancer 
diagnosis regardless of timing; column “PPE ±90d” indicates how many patients had acute VTE within 90 days of first given ICD code.
cExclusion 1 (wrong ICD code): use first ICD code after excluding chronic VTE codes, history VTE codes, and a subset of nonspecific VTE codes from 
consideration of “acute VTE” (see Table S4).
dExclusion 2 (carryover effect): use first ICD code after excluding patients with known ICD codes for VTE (any time) or received therapeutic 
anticoagulation (up to 90 d) before date of cancer diagnosis + exclusion 1.
eExclusion 3 (rule out effect): use first ICD code after excluding patients with outpatient encounter UNLESS having 2+ codes >30 d and <180 d apart 
or receiving therapeutic anticoagulation at time of encounter (−7 d to +30 d) + exclusion 1 + exclusion 2.
fExclusion 4 (anticoagulation, IVC filter and death): use first ICD code that had anticoagulation, IVC filter placement, or death within 30 d regardless 
of inpatient or outpatient encounter +exclusion 1 + exclusion 2.
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Table 2 presents the observed numbers for VTE by algorithm for 
the unweighted and weighted VTE populations, in addition to the 
weighted test characteristics. Among 800 randomly selected pa-
tients, 280 had a confirmed acute VTE that occurred during the first 
year after cancer diagnosis. The current ICD algorithm with two or 
more outpatient or anticoagulation criteria had a PPV of 94.5% and a 
sensitivity of 80.8% (c statistic, 0.90; 95% CI, 0.89-0.91). In compar-
ison, the Sanfilippo algorithm with additional IVC filter CPT codes or 
death within 30 days (applied to all encounters, not only outpatient 
encounters) had the highest PPV (96.7%) but the lowest sensitivity 
(71.7%) (c statistic, 0.86; 95% CI, 0.84-0.87). On the contrary, the 
current NLP algorithm had the best sensitivity of 89.5% but the low-
est PPV of 79.5% (c statistic, 0.93; 95% CI, 0.92-0.94).

The ICD/NLP combined algorithm using two-point cutoffs of-
fered the best prediction, with a c statistic of 0.98 (95% CI, 0.97-
0.98). Approximately 87% of the population was not predicted to 

have VTE by both ICD and NLP (concordant negative), and the sen-
sitivity was 96.1% and NPV was 99.5%. Approximately 8% of the 
population was predicted to have VTE by both ICD and NLP, and the 
PPV was 97.5% and the specificity was 99.8%.

4  |  DISCUSSION

In the current study, we optimized and internally validated an acute 
VTE computable phenotype after a predetermined index date using 
a combination of structured (ICD/medication) and unstructured data 
(NLP/radiology) from a large Epic EHR database linked to the local 
cancer registry. We found that while ICD codes could identify VTE, 
full reliance without appropriate exclusion filters was associated 
with an unacceptably low PPV. In contrast, a systematically derived 
algorithm that combined both ICD/medication and NLP/radiology 

TA B L E  2 Performance of ICD and NLP-based algorithms in validation data set

Unweighted 
VTE 
(n = 800)

Weighted 
VTE 
(n = 8507)e

Weighted 
Sensitivity, %

Weighted 
Specificity, %

Weighted PPV, 
%

Weighted NPV, 
%

Weighted c 
statisticNo Yes No Yes

Previous ICD algorithma

Predicted no (0) 512 51 7604 253 71.7 (68.9-74.6) 99.7 (99.6-99.8) 96.7 (95.2-97.7) 96.8 (96.4-97.2) 0.86 
(0.84-0.87)Predicted yes (1) 8 229 22 641

Current ICD algorithmb

Predicted no (0) 505 22 7584 172 80.8 (78.1-83.1) 99.4 (99.3-99.6) 94.5 (92.9-96.2) 97.8 (97.4-98.1) 0.90 
(0.89-0.91)Predicted yes (1) 15 258 42 722

Current NLP algorithmc

Predicted no (0) 497 28 7420 94 89.5 (87.1-91.2) 97.3 (96.9-97.6) 79.5 (77.1-81.9) 98.7 (98.5-99.0) 0.93 
(0.92-0.94)Predicted yes (1) 23 252 206 800

ICD + NLP algorithmd

Predicted no (0) 488 7 7356 35 96.1 (94.7-97.2) 97.0 (96.6-97.3) 78.8 (76.2-81.2) 99.5 (99.3-99.7) 0.98 
(0.97-0.98)Predicted yes (1) 26 36 218 203 74.3 (71.5-77.1) 99.8 (99.6-99.9) 97.5 (96.0-98.4) 97.1 (96.7-97.5)

Predicted yes (2) 6 237 16 640

Note: Acute VTE ICD-9-CM and ICD-10-CM codes are listed in Table S1 (after excluding certain nonspecific, historic, and chronic codes). Therapeutic 
anticoagulation is defined as the presence of an administered (inpatient/infusion center) or prescribed (outpatient) direct oral anticoagulant 
(DOAC) (any dose), oral warfarin (any dose), subcutaneous enoxaparin (>1.3 mg/kg if daily or >0.8 mg/kg for twice-daily frequency), subcutaneous 
fondaparinux (5-10 mg), intravenous (IV) heparin (continuous drip only excluding flushes or pushes), or subcutaneous heparin (>7500 mg) within 
7 days before and 30 days after suspected VTE diagnosis. IVC filter is defined by CPT codes 37191, 37620, 36005, and 36010. Relevant radiology 
reports are defined as any contrast scan or Doppler ultrasound with CPT codes listed in Table S2.
Abbreviations: ICD-9-CM, International Classification of Diseases, Ninth Revision, Clinical Modification; ICD-10-CM, International Classification of 
Diseases, Tenth Revision, Clinical Modification; NLP, natural language processing; NPV, negative predictive value; PPV, positive predictive value; 
VTE, venous thromboembolism.
a Previous ICD algorithm (Sanfilippo et al,4 ICD-9-CM converted to ICD-10-CM): first of (any inpatient or outpatient acute VTE code) with 
(therapeutic anticoagulation or IVC filter or death −7 d to +30 d) within 365 d.
b Current ICD algorithm: first of (any inpatient acute VTE code) or (2+ outpatient acute VTE code >30 d and <180 d) or (any outpatient acute VTE 
code with therapeutic anticoagulation −7 d to +30 d) within 365 d.
c Current NLP algorithm: first relevant radiology impression predicted to be positive for VTE based on rule-based NLP prediction.
d ICD +NLP algorithm: 1st of either ICD or NLP algorithm within 365d. Predicted no (0) indicates both algorithms did not identify VTE; predicted yes 
(1) indicates one of the two algorithms identified VTE; predicted yes (2) indicates both algorithms identified VTE.
e Weighted events are slightly different due to decimal rounding.
Number ranges in paratheses refer to 95% Confidence Intervals (CI) for the weighted estimates.
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provided the optimal PPV and sensitivity trade-off, although ei-
ther the simplified ICD algorithm (higher PPV) or the NLP algorithm 
(higher sensitivity) alone was likely sufficient for most clinical stud-
ies. While our analysis was limited to the cancer population, the de-
sign concept applies to any closed population cohort with a clear 
index date. As Epic accounts for the EHR experience of nearly half 
of the hospitals in the United States, our computable phenotype 
algorithms are likely generalizable to many other large health care 
systems that have adequate capture of inpatient and outpatient 
encounters.11

It is important to consider the relevant test characteristics of an 
algorithm for a phenotype with a low prevalence. While sensitivity, 
specificity, PPV, and NPV are often discussed as equally important 
metrics, sensitivity and PPV (or recall and precision in data science) 
often supply the most variable and important information on an al-
gorithm’s misclassification error. Assuming the error is nondifferen-
tial between different exposure risk groups, an algorithm with low 
PPV will lead to an attenuated risk ratio (important for etiologic as-
sociation testing), while one with low sensitivity will lead to an atten-
uated absolute risk difference (important for incidence estimation 
and causal inference).12 Therefore, an optimal phenotype prediction 
algorithm should strive for a combination of high PPV and sensitivity. 
Furthermore, we must use an appropriate sampling method when 
designing validation studies. Since it is impossible to know the true-
positive and -negative VTE cases in a large data set, most studies (in-
cluding ours) rely on random sampling from positive versus negative 
predicted strata. With this approach, it is easy to estimate the PPV. 
However, to estimate the true sensitivity in the overall population, 
we must overweigh every single false-negative event 20 times if the 
sampling fraction was 5%; otherwise, we would have incorrectly re-
ported a sensitivity of 92% instead of 81% for our ICD-based algo-
rithm. This approach was conducted in some previous studies but 
not others9,13 and also highlights the reason why most studies only 
reported PPV over sensitivity.3

The accuracy of using ICD codes to predict VTE events has al-
ways been a topic of debate. In a systematic review in 2012, Tamariz 
et al3 found that that the PPV of relevant ICD-9-CM codes from ad-
ministrative claims data varied between 65% and 95%, depending 
on the study population. Furthermore, most of the studies relied on 
validation of administrative codes at the time of discharge and did 
not account for the longitudinal nature of a patient’s clinical course. 
More recent publications using EHR data confirmed that overreli-
ance on administrative data could lead to significantly misclassified 
finding.14 In one example, the Cardiovascular Research Network 
Venous Thromboembolism study in 2017 reported PPV as low as 
65% for inpatient and 31% for outpatients when assessed in a co-
hort setting.15 Sanfilippo et al4 published one of the best existing 
VTE algorithms using a longitudinal cancer cohort from the Veterans 
Affairs database. We tested this algorithm in our validation study 
and reached a similar conclusion (PPV 91% and sensitivity 72% 
in the original study, PPV 95% and sensitivity 72% in the current 
study). In contrast to this previous study, we found that the addition 
of IVC filter CPT codes or death within 30 days to all inpatient and 

outpatient encounters did not drastically improve the performance 
of the algorithm. This could partially be explained by the decreased 
use of IVC filters over the past decade after the 2010 US Food and 
Drug Administration Advisory safety warning.16 Our revised and 
simplified ICD algorithm relied only on ICD coding selection (if one 
inpatient or two or more outpatient) and therapeutic anticoagula-
tion (if one isolated outpatient) to achieve a similar PPV of 95% and 
an improved sensitivity of 81%. Notably, we used both prescribed 
(outpatient) and administered (inpatient) anticoagulant medications 
and carefully defined “therapeutic dose” based on the frequency of 
the drug administration.

We also explored the value of an independent NLP algorithm 
based on radiology reports. Comparing to the NLP protocol from 
the eMERGE Mayo Group phenotype published on PheKB,17 while 
we used similar concept of defining VTE using either “standalone” 
or “site” plus “disorder,” the existing protocol was neither sensitive 
nor specific in our population of cancer patients. Our modified 
NLP protocol specifically used negation to mitigate the false pos-
itives related to “septic thrombi,” “tumor thrombi,” or “superficial 
thrombi.” We also distinguished acute from potentially preexisting 
events such as “history of DVT” or “persistent clot.” The perfor-
mance characteristics of the NLP pipeline on individual radiology 
reports (discovery set) was expectedly better than its application 
in a longitudinal cohort setting (validation set) because patients 
often had multiple reports over time and might have missing re-
ports from outside their hospital. Upon further review of the events 
captured by NLP but missed by VTE, many of them were nontumor 
splanchnic vein thromboses incidentally detected in gastrointesti-
nal malignancies and not anticoagulated. The performance of our 
NLP algorithm (sensitivity 90% and PPV 80%) is similar in perfor-
mance to other NLP based VTE algorithms that relied on more het-
erogeneous clinical notes and problem lists. For example, one VTE 
NLP algorithm from Vanderbilt University had a sensitivity of 95% 
and PPV of 85% if the patients also had a concurrently positive ICD 
code.18 We believe the current NLP radiology algorithm is simpler 
and more representative as we sampled patients with both positive 
and negative ICD codes for VTE.

Finally, the combined ICD/NLP algorithm benefited from unique 
elements from each protocol to correctly classify the majority of 
the population as having true VTE (8%) or no VTE (87%). If applied 
appropriately, this combined algorithm could obviate the needs to 
chart review 95% of the cohort. Among the remaining 5% of people 
with discordant predictions (ICD positive but NLP negative or vice 
versa), approximately half of them had real VTE events. The only 
accurate way to assess the true outcome for this group is clinical 
chart review—the real VTE events detected by NLP but missed by 
ICD were more likely to be intra-abdominal splanchnic vein throm-
bosis. The ones detected by ICD but missed by NLP were more likely 
to be radiology procedures done at outside emergency department 
without available radiology reports.

There are limitations associated with the study. First, the VTE 
computable phenotype in the current study was derived and vali-
dated in a cancer population with a relatively high VTE incidence of 
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≈10% at one year; the predictive values of our algorithms may differ 
if they were applied to a noncancer population. Furthermore, unique 
efforts were taken in the current study to differentiate between 
bland venous thrombi and tumor thrombi. Second, the generaliz-
ability from Epic Clarity/Caboodle database to a non-Epic database 
(ie, Cerner or Sunquest) has not been studied and we could only in-
ternally validate our algorithms; however, health care systems with 
a preexisting electronic data warehouse can likely implement our 
search strategies. Third, the algorithms here would only work in a 
health care system with integrated EHR for inpatient and outpatient 
care. As such, academic hospitals with various contracted private 
practice physician groups likely would not have the consolidated 
data source readily available to them. Fourth, any NLP algorithm 
will require additional modifications depending on how the radiol-
ogy impression reports are extracted. We recommend fastidious 
data selection (keep appropriate contrast-  or Doppler-enhanced 
scans only with appropriate CPT codes) and data cleaning (remove 
indication for the scan and line-by-line description to only keep the 
final attending impression or interpretation) to improve the gen-
eralizability of the NLP algorithm to different institutions. Finally, 
since we reviewed a high proportion of charts to determine the best 
strategy for PPV optimization, 200 patients overlapped in both the 
initial discovery and the random sampling validation cohort in the 
ICD-positive group; there was no overlap in the ICD-negative group. 
We believe the use of a random sampling technique should mitigate 
some of the selection bias.

In summary, our ICD medication algorithm alone had a high PPV 
of 95% for correctly predicting acute VTE after cancer diagnosis. 
This can be further improved by combining with an NLP radiology 
algorithm to reach a weighted c statistic of 0.98. We recommend 
VTE researchers to use the ICD-based algorithm first after appro-
priate patient exclusion, and supplement it with the NLP algorithm 
if the institution has the appropriate data infrastructure and clinical 
informatics capability.
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