Skip to main content
. 2022 Jun;12(6):3276–3287. doi: 10.21037/qims-21-1089

Table 2. Performance of binary classification DL models.

Datasets Method Positives Negatives TP TN FP FN Sensitivity (%) Specificity (%) Accuracy (%) AUC
Internal validation set (n=396) PM1 238 158 190 134 48 24 88.8 73.6 81.8 0.84
AM1 229 167 194 147 35 20 90.7 80.8 86.1 0.89
PM2 225 171 175 132 50 39 81.9 72.5 77.8 0.83
AM2 213 183 176 145 37 38 82.2 79.7 80.8 0.87
Test set (n=142) PM1 85 57 59 43 26 14 80.8 62.3 71.2 0.73
AM1 78 64 65 56 13 8 88.4 80.5 84.5 0.86
PM2 79 63 57 47 22 16 78.1 68.1 73.2 0.72
AM2 73 69 58 54 15 15 79.5 78.3 78.9 0.82

DL, deep learning; TP, true positive; TN, true negative; FP, false positive; FN, false negative; AUC, area under the receiver operating characteristic curve; AM1, VGGNet-16-based AT model 1; AM2, ResNet-50-based AT model 2; PM1, pretraining VGGNet-16-based model 1; PM2, pretraining ResNet-50-based model 2; ResNet, residual network; VGGNet, Visual Geometry Group network.