Table 2. Performance of binary classification DL models.
Datasets | Method | Positives | Negatives | TP | TN | FP | FN | Sensitivity (%) | Specificity (%) | Accuracy (%) | AUC |
---|---|---|---|---|---|---|---|---|---|---|---|
Internal validation set (n=396) | PM1 | 238 | 158 | 190 | 134 | 48 | 24 | 88.8 | 73.6 | 81.8 | 0.84 |
AM1 | 229 | 167 | 194 | 147 | 35 | 20 | 90.7 | 80.8 | 86.1 | 0.89 | |
PM2 | 225 | 171 | 175 | 132 | 50 | 39 | 81.9 | 72.5 | 77.8 | 0.83 | |
AM2 | 213 | 183 | 176 | 145 | 37 | 38 | 82.2 | 79.7 | 80.8 | 0.87 | |
Test set (n=142) | PM1 | 85 | 57 | 59 | 43 | 26 | 14 | 80.8 | 62.3 | 71.2 | 0.73 |
AM1 | 78 | 64 | 65 | 56 | 13 | 8 | 88.4 | 80.5 | 84.5 | 0.86 | |
PM2 | 79 | 63 | 57 | 47 | 22 | 16 | 78.1 | 68.1 | 73.2 | 0.72 | |
AM2 | 73 | 69 | 58 | 54 | 15 | 15 | 79.5 | 78.3 | 78.9 | 0.82 |
DL, deep learning; TP, true positive; TN, true negative; FP, false positive; FN, false negative; AUC, area under the receiver operating characteristic curve; AM1, VGGNet-16-based AT model 1; AM2, ResNet-50-based AT model 2; PM1, pretraining VGGNet-16-based model 1; PM2, pretraining ResNet-50-based model 2; ResNet, residual network; VGGNet, Visual Geometry Group network.