Skip to main content
. 2022 Jun;12(6):3364–3378. doi: 10.21037/qims-21-1117

Table 2. The classification performance of our proposed method for 14 diseases.

Disease Accuracy Precision Sensitivity F1 score
Atelectasis 0.722±0.004 0.613±0.007 0.733±0.008 0.669±0.004
Cardiomegaly 0.865±0.003 0.727±0.014 0.810±0.013 0.766±0.011
Effusion 0.796±0.010 0.695±0.009 0.835±0.016 0.758±0.010
Infiltration 0.593±0.006 0.551±0.009 0.787±0.007 0.648±0.007
Mass 0.858±0.008 0.471±0.010 0.694±0.014 0.561±0.011
Nodule 0.850±0.005 0.622±0.012 0.664±0.012 0.642±0.010
Pneumonia 0.798±0.013 0.271±0.014 0.490±0.009 0.349±0.008
Pneumothorax 0.867±0.012 0.638±0.007 0.766±0.009 0.696±0.005
Consolidation 0.581±0.009 0.234±0.019 0.776±0.010 0.360±0.012
Edema 0.933±0.010 0.229±0.018 0.467±0.010 0.307±0.012
Emphysema 0.926±0.004 0.312±0.012 0.960±0.007 0.471±0.008
Fibrosis 0.886±0.005 0.153±0.012 0.367±0.018 0.216±0.016
Pleural thickening 0.867±0.007 0.275±0.008 0.630±0.014 0.383±0.012
Hernia 0.849±0.010 0.119±0.001 0.970±0.001 0.212±0.001
Mean 0.814±0.003 0.422±0.010 0.714±0.008 0.503±0.006

The results of mean ± standard deviation are reported by randomly splitting the training and validation sets for ten times.