Skip to main content
. 2022 Jun;12(6):3151–3169. doi: 10.21037/qims-21-846

Table 3. Evaluation of DRUNet comparing with different layers and different networks.

Networks PSNR SSIM Tenengrad
T1WI T2WI T1WI T2WI T1WI T2WI
DRUNet-34 34.19±2.07 33.43±1.11 0.96±0.04 0.96±0.06 17.85±2.87 19.82±3.67
DRUNet-50 34.23±2.02 33.44±1.12 0.97±0.04 0.97±0.04 18.10±2.94 19.57±3.40
DRUNet-101 34.25±2.06 33.50±1.08 0.97±0.03 0.98±0.05 17.03±2.75 19.76±3.54
U-Net (17) 34.08±2.16 27.61±0.06 0.90±0.06 0.73±0.12 13.62±2.36 21.79±0.70

DRUNet-X, double ResNet-U-Net with double X convolutional layers; PSNR, peak signal-to-noise ratio; SSIM, structural similarity; Tenengrad, Tenenbaum gradient; T1WI, T1-weighted images; T2WI, T2-weighted images.