Skip to main content
. 2022 Apr 21;62(10):2301–2315. doi: 10.1021/acs.jcim.1c01510

Table 2. Prediction Performance of Proposed Pose Classification on CASF-2016a.

    No. Poses Accuracy (%) Precision Recall F1 score
RF_i incorrect 1633 69.9 0.70 0.96 0.81
correct 796   0.68 0.16 0.26
3D-CNN incorrect 1633 83.4 0.92 0.82 0.87
correct 796   0.70 0.86 0.77
3D-CNN_i incorrect 1633 83.7 0.84 0.93 0.88
correct 796   0.82 0.65 0.72
3D-CNN_a incorrect 1633 87.4% 0.87 0.96 0.91
correct 796   0.89 0.71 0.79
3D-CNN_ia incorrect 1633 88.4 0.93 0.89 0.91
correct 796   0.80 0.87 0.83
PCN incorrect 1633 81.4 0.86 0.86 0.86
correct 796   0.71 0.72 0.72
PCN_a incorrect 1633 82.1 0.89 0.84 0.86
correct 796   0.70 0.79 0.74
PCN_ia incorrect 1633 87.2 0.90 0.92 0.91
correct 796   0.82 0.78 0.80
a

From top to bottom, Random Forest with protein–ligand interaction features (RF_i), 3D-CNN, 3D-CNN with protein–ligand interaction features (3D-CNN_i), 3D-CNN with affine transformation (3D-CNN_a), 3D-CNN with both interaction features and affine transformation (3D-CNN_ia), PCN, PCN with affine transformation (PCN_a), and PCN with both interaction features and affine transformation (PCN_ia).