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Is reduction always a good scientific strategy? The
existence of the special sciences above physics
suggests not. Previous research has shown that
dimensionality reduction (macroscales) can increase
the dependency between elements of a system (a
phenomenon called ‘causal emergence’). Here, we
provide an umbrella mathematical framework for
emergence based on information conversion. We show
evidence that coarse-graining can convert information
from one ‘type’ to another. We demonstrate this
using the well-understood mutual information
measure applied to Boolean networks. Using
partial information decomposition, the mutual
information can be decomposed into redundant,
unique and synergistic information atoms. Then by
introducing a novel measure of the synergy bias of
a given decomposition, we are able to show that
the synergy component of a Boolean network’s
mutual information can increase at macroscales.
This can occur even when there is no difference in
the total mutual information between a macroscale
and its underlying microscale, proving information
conversion. We relate this broad framework to
previous work, compare it to other theories, and argue
it complexifies any notion of universal reduction in
the sciences, since such reduction would likely lead to
a loss of synergistic information in scientific models.
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1. Introduction
Reductionism is one of the classic principles of science. At the same time, science itself forms
a diverse tree with elements at different spatio-temporal scales, such as quantum waves in
physics, molecules in chemistry, cells in biology, all the way up to macroeconomics and sociology.
Macroscale descriptions like biophysical models of cells, the machine code in computers, or
organisms operating within a food web, are generally treated as if they reflect some intrinsic scale
of function that cannot be neatly improved by reduction. The result is a contradiction between
the theory and practice of science [1,2].

One resolution to this contradiction is the ‘null hypothesis’ of reductionism: that all macroscale
descriptions, which broadly are some form of dimension reduction such as coarse-graining, are
only useful due to computational constraints. This is because, according to this hypothesis, their
underlying microscales contain all the information. That is, information compression is the only true
benefit to analysing, modelling, or understanding a system at a macroscopic level. Compression
of a given information source can be lossless or lossy, but can never lead to an overall gain
of information [3]. Without any gain of information at a macroscale some have argued that
macroscales cannot add anything above or beyond their underlying microscales and therefore
should be considered epiphenomenal [4,5].

An alternative resolution to the contradiction between universal reductionism and science as
practised is a formal theory of emergence. Such a formal theory should (a) directly and fairly
compare microscales to macroscales, (b) offer a quantitative measurement of what a macroscale is
providing in terms of information gain above and beyond compression and (c) enable the means
to identify emergent scales in a given system or dataset. A non-trivial formal theory of emergence
should allow for reduction or emergence on a case-by-case basis. Such a theory of emergence can
solve longstanding problems in model choice for scientists, since it reveals the intrinsic scale of
the function of systems.

Scientific work on emergence began to use information theory to examine things like parity
checks in logic gates [6] or techniques like the Granger causality to look for emergence in time
series [7]. The first explicit comparison between scales of a system was the theory of causal
emergence, which claimed that causal relationships could be stronger at a macroscale (such
as doing more work, being more predictive, or being more informative) [8]. To measure the
informativeness of causal relationships, it made use of the effective information (EI), which is
the mutual information between a set of interventions by an experimenter and their effects.
More specifically, effective information is the mutual information following an experimenter
intervening to set a system or part of a system to maximum entropy. It quantifies the number
of YES/NO questions required to produce an output from an input, thus measuring the ‘work’
the system does in selecting that output [9].

The effective information has been shown mathematically to capture the causally relevant
information in a system by being sensitive to the determinism (lack of uncertainty in
state transitions) and degeneracy (similar or identical state transitions or dynamics, e.g. the
necessity of a given state transition). Dimension reductions like coarse-graining (grouping
elements of states in macro-elements or macro-states) or black-boxing (leaving elements
or states exogenous) can increase the effective information [10]. Overall, the argument
was that since macro-states were more deterministic and less degenerate, they did the
most work to select the output of the system, and the effective information was able to
identify the spatio-temporal scale at which this work peaked. According to the theory, this
peak indicated that this scale, whether macro or micro, was the most causally relevant
scale.

One possible criticism of the theory of causal emergence is that effective information
is only one specific measure. The effective information was first proposed by Tononi &
Sporns [11], effective information is mathematically well-described [8,9,12]. While it keeps
being re-invented as a measure of causation [13,14], generally without acknowledgement of
previous formulations or ongoing lines of research, the measure has not yet been proven
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to be the unique measure of causation, and there are alternative proposals (many of which
are mathematically related) for how to measure causation using information theory [15].
Indeed, the same general phenomena of causal emergence have been shown in integrated
information [16,17] as the φ measure can increase at macroscales due to similar reasons of
increasing determinism and decreasing degeneracy of state transitions. Measures that are
not directly causal but capture aspects of causation, like assessing the entropy of random
walkers on networks (indicating uncertainty of transitions), can also improve at macroscales
in that random walkers are more deterministic in their dynamics [18]. The fact that causal
emergence occurs across multiple measures indicates there is a broader phenomenon at work.
Specifically, there is somehow more causally relevant information at macroscales (although it
is currently unclear if this is captured by a unique measure of causation, or is better captured
by a set of common measurements). Here, we explore broadly how such information gain
is possible, and demonstrate it in the well-understood measure of the mutual information
itself.

Of course, information cannot be created ex nihilo. Therefore, we propose that emergence is a
form of information conversion at a higher scales. When measured in its totality in a given system,
total information measures like the entropy of the distribution system states, the Kolmogorov
information for describing the entirety of the system, or the total correlation in the form of the
mutual information, all necessarily decrease at a macroscale (or at best, do not decrease, but can
never increase). However, information can be converted from one type to another, with no change
except for what scale the system is being modelled at, meaning there can be a gain of specific
types of information at macroscales (causal emergence would then be a gain of causally relevant
information in particular).

Herein, we seek to demonstrate general proof of information conversation across scales.
In order to do so, we first eschew other measures and solely make use of the classic
and well-understood measure of mutual information. Specifically, we consider the mutual
information between the past and future of Boolean networks [19]. While total mutual
information always decreases or remains constant at a macroscale (no information ex
nihilo), this is not the full story. For the information itself can be decomposed into a
set of partial information ‘atoms’ (PI atoms) that quantify how the total information is
distributed over all of the elements of the system [20]. Herein, we show that, after
coarse-graining, redundant information at the microscale can be converted into synergistic
information at macroscales in an overall movement of information up the PI lattice, and
that this effect exists even when no mutual information is lost. This indicates that the
‘structure’ of the mutual information is truly being converted from redundant to synergistic at
macroscales.

In §2, we overview how we are applying the mutual information in our model system,
and also its decomposition in multi-element systems. We introduce a novel measure of
redundancy/synergy bias in the mutual information, based on how PI atoms are distributed
across the PI-lattice. In §3, we examine systems of Boolean networks across scales and
accompanying changes in the partial information decomposition (PID). First, we look at common
macroscales of logic gates and find a clear shift toward synergies in some systems (e.g. we show
how an XOR is more synergistic than its underlying microscale logic gates, none of which are
XORs). Next, we examine sets of Boolean networks wherein the mutual information is identical at
both micro and macroscales, and show that even in these cases there can be an increase in synergy
bias at the macroscale. This shows direct evidence of information conversion at macroscales in
that the mutual information becomes more dominated by its synergistic component without
changing its total bit value, just its decomposition. In §4, we connect our work to previous
research by demonstrating how causal emergence can be thought of as a form of information
conversion, as the total entropy of transitions is converted to the causally relevant form of
effective information via dimension reduction. Overall, we conclude that information conversion
offers an agnostic umbrella explanation for theories of emergence based in information
theory.



4

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210150

...............................................................

2. Mutual information and its decomposition in discrete systems
Here, we detail our application of the mutual information to probabilistic Boolean networks.
A Boolean network is a canonical model system in complex systems science: a directed network
where every vertex can be in one of a finite number of ‘states’ and, as time flows, the state of
each vertex changes according to a logical function of the states of all of the parent neurons: for
example, a vertex with two parents may implement an AND function, where its state at time
t + 1 is the logical AND of both parents. Systems can be viewed as passing information from
the past to the future over the channel of the present. The quantification of this information flow
can be done by calculating the mutual information between the future and past joint states of
the variables that make up a network. Specifically, X represents the past states of the Boolean
network, while Y represents the future states of the network. The calculation of I(X, Y) quantifies
how much knowledge of the past state of the system reduces our uncertainty about the future
state of the system. Specifically,

I(X; Y) =
∑
x∈X

∑
y∈Y

P(x, y) log2

(
P(x, y)

P(x)P(y)

)
. (2.1)

This calculation requires defining the distributions P(X), P(Y) and P(X, Y). The joint
distribution is given by the transition probability matrix (TPM) of the system (with each row
weighted by the probability of that state), and P(X) is an ‘input’ distribution. To not bias our
measurements, P(X) is the stationary distribution of the system (in cases of multiple stationary
distributions, we use the one with the largest attractor, or design Boolean networks such
that all states are included in a single attractor). The ‘output’ distribution (P(Y)) can then be
calculated as the matrix product of P(X) and P(Y | X). Note that every ‘state’ in the support
sets X and Y actually represents the joint state of multiple variables in the underlying Boolean
network.

This application of the mutual information captures the total amount of information in the
dynamics of the system (the calculation of which requires the system’s stationary dynamics
P(X)). For example, in networks where the stationary distribution contains only a single state
in the form of a point attractor the mutual information is zero, since the system is like a source
that sends only a single message over a channel: there is no uncertainty about the future to be
reduced by knowledge of the past. In networks where each state is visited equally in the stationary
distribution, and each state deterministically transitions to a unique state, the mutual information
would be maximized as log2(n), as every ‘message’ the system sends is as informative as
possible.

(a) Partial information decomposition
A core limitation of mutual information when assessing systems with more than two variables is
that it gives little direct insight into how information is distributed over sets of multiple interacting
variables. Consider the classic case of two elements X1 and X2 that regulate a third variable
Y: it is easy to determine the information shared between either Xi and Y as I(Xi; Y), and it is
possible to calculate the joint mutual information I(X1, X2; Y), however, these measures leave
it ambiguous as to what information is associated with which combination of variables. For
example, if X1 � ⊥X2, then there is necessarily some information about Y that is redundantly
shared between both X1 and X2. Similarly, it is possible that there is synergistic information
about Y that is only disclosed by the joint states of X1 and X2 together and not retrievable
from either variable independently (for example, if all elements are binary and Y = X1 ⊕ X2, then
I(X1; Y) = I(X2; Y) = 0 bit but I(X1, X2; Y) = 1 bit).

To address this issue, the PID framework was introduced [20]. It provides a method by
which the mutual information between the joint state of multiple sources variables and a single
target variable can itself be decomposed. For the example case detailed above, with two ‘source’
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variables (X1 and X2) and a single ‘target’ variable Y, the full PID breaks I(X1, X2; Y) down into
the following additive combination of ‘partial information atoms’:

I(X1, X2; Y) = Red(X1, X2; Y) + Unq(X1; Y | X2) + Unq(X2; Y | X1) + Syn(X1, X2; Y), (2.2)

where Red(X1, X2; Y) is the information about Y that is redundantly shared between X1 and X2 (i.e.
an observer could learn the same information about Y examining either X1 or X2), Unq(X1; Y | X2)
refers to the information about Y that is uniquely present in X1 and not in X2, and Syn(X1, X2; Y) is
the information about Y that is only disclosed by the joint states of X1 and X2 considered together.
Furthermore, the bivariate mutual information can also be decomposed:

I(X1; Y) = Red(X1, X2; Y) + Unq(X1; Y | X2) (2.3)

and
I(X2; Y) = Red(X1, X2; Y) + Unq(X2; Y | X1). (2.4)

The result is that equations (2.2), (2.3) and (2.4) form an under-determined system of three
equations with four unknowns (Red, Unq1, Unq2, Syn). Given an appropriate function with which
to compute any of these three, the rest are trivial.

As the number of sources informing about a single target grows, the number of combinations
of sources that must be considered grow super-exponentially. The seminal contribution of
Williams and Beer was to realize that it is not necessary to brute-force search every combination
in the power-set of sources, but rather, that meaningful combination of sources are naturally
structured into a partially ordered lattice, known as the partial information (PI) lattice.
Furthermore, for a particular set of sources α, the value of the associated partial information atom
Πα can be calculated recursively as the difference between the information redundantly shared
across the sources of interest, and the sum of all PI atoms lower down on the lattice:

Π (α, Y) = Red(α, Y) −
∑
β≺α

Π (β, Y), (2.5)

where Red(α, Y) is the redundancy function, which quantifies the information about Y that is
redundantly present in every element of α. For readers interested in the deeper mathematical
details of the construction of the PI lattice, we refer to [20], and more recently [21] for a more in-
depth discussion. For our purposes, it suffices to understand that there exists a partial ordering
of PI atoms, with ‘more redundant’ atoms towards the bottom. For example, in the case of three
sources, the bottom of the PI-lattice is given by {0}{1}{2}, which refers to the information about
the target that is redundantly present in all three sources. At the top of the lattice is {012}, which
gives the information about the target that is only accessible when considering the joint state of all
three sources jointly, and not disclosed by any ‘simpler’ combination of sources. It is important to
note that, for systems with more than two sources, the PI atoms no longer break down into neatly
intuitive categories of ‘redundant’, ‘unique’ and ‘synergistic’: more exotic combinations of sources
appear, for example, {0}{12}, which gives the information about the target that is redundantly
present in X0 and the joint state of X1 and X2 together. However, in general, the lower down on
the PI-lattice a PI atom is, the more redundant the information is, while the higher on the lattice,
the more synergistic.

While the PID framework provides the scaffold on which information can be decomposed, it
fails to provide the specific keystone necessary to actually calculate it: the redundancy function
that forms the base of the PI-lattice. Williams and Beer proposed the specific information as a
plausible redundancy function typically denoted as IWB:

IWB(X; Y) =
∑
y∈Y

P(y) min
Xi∈X

I(Xi; y). (2.6)

The specific information quantifies the average minimum amount of every element of X
discloses about Y. The term minXi∈X I(Xi; y) calculates the minimal amount of information any
Xi ∈ X provides about the specific state Y = y. Across all y ∈Y , IWB quantifies the expected
minimum amount of information that X will disclose about Y. As a redundancy function, IWB has
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a number of appealing quantities: in contrast to other redundancy functions, it will only return
values greater than or equal to zero bit. Given the perennial difficulties of interpreting negatively
valued information quantities, this is a key property, one not shared by most other redundancy
functions. Furthermore, IWB is both conceptually and computationally simple: being based on the
specific information, it is a ‘pure’ information-theoretic measure and does not require leveraging
theory or algorithms from fields like information geometry [22], game theory [23] or decision
theory [24,25] and is one of the fastest-running functions in the Discrete Information Theory toolbox
[26]. IWB is also arguably the most well-used redundancy function in the scientific literature,
having been the function of choice in [27–31].

Williams and Beer’s redundancy function has been critiqued for behaving in an ‘unintuitive’
manner in some cases [32], and does not readily localize the way that the mutual information
function does [33]. Since PID was initially proposed, considerable work has gone into developing
an ‘optimal’ redundancy function, resulting in a plethora of measures [22,32–39]. So far, no single
measure has emerged as the accepted ‘gold standard’, although they share many commonalities.
Each function comes with it is own limitations (for example, only being defined for two variables,
or occasionally returning negative quantities of partial information, or violating some intuitions
about how such a measure ‘should’ behave), so care is necessary when deciding which one to use.

In this work, we used the original measure put forth by Williams and Beer, as it was necessary
that whatever measure we chose never return negative quantities of information, be applicable to
systems with more than two sources, and run in reasonable times. IWB remains widely used and
the most studied. We used the Discrete Information Theory package [26] for the implementation of
IWB and all PID calculations. In future work, we aim to replicate these findings using alternative
redundancy functions and related frameworks.

(b) PID of temporal mutual information
PID is usually applied to situations like those given in the example above, where a set of sources
(neurons, perceptrons, etc.) synapse onto a single target and is often applied in such cases [27–31].
Here, we detail our application of the PID of the mutual information between the past and the
future in Boolean networks.

Consider a Markovian system with two interacting elements that is evolving in time.
Following the convention given above, we will say that X = {X1, X2} indicates the past states of
both elements of our system, and Y = {Y1, Y2} indicates the future states of both elements of our
system. We can then adapt the classic PID framework by defining our ‘sources’ as every Xi ∈ X,
and our single target as the joint future state Y. The PID of this two-element dynamical system is
then given by

I(X, Y) = Red(X1, X2; Y) + Unq(X1; Y | X2) + Unq(X2; Y | X1) + Syn(X1, X2; Y). (2.7)

This decomposition details how information about the next joint-state of the system is
distributed [40].

(c) Introducing synergy and redundancy biases
In our two toy examples above, we relied heavily on the categorical distinction between
redundant, unique and synergistic information. These classifications are useful for building
intuition, but do not readily generalize to systems with more than two elements. To address this,
we introduce the construct of a partial information spectrum, from which one can calculate the
relative top- or bottom-heaviness of a PI lattice without directly having to define well-delineated
‘pools’ of redundant, unique, or synergistic information (figure 1).

Recall that the value of a given PI atom is calculated recursively from the sums of every PI
atom lower than it down on the lattice; PI atoms higher on the lattice contain information that
is increasingly synergistic and cannot be extracted from any simpler combination of sources.
Because the PI lattice is partially ordered, there are collections of PI atoms that are at the same
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synergy bias: 0.276 synergy bias: 0.771

{012} {012}

{0}{1}{2} {0}{1}{2}

Figure 1. The partial information spectrum. The PI lattices for two, three-element systems. For each system, from the PI lattice
we can create a PI spectrum,which gives the proportion of the totalmutual information present in all PI atoms at a given ‘height’
on the lattice. Left: this system has a low synergy bias (high redundancy bias): themajority of themutual information about the
joint future state is redundantly shared across all the elements ({0}{1}{2}), or other highly redundant PI atoms (e.g. {0}{1}).
Right: this three-element system has a high degree of synergy bias, with the majority of the information about the joint future
present only in the joint state of all three elements ({012}). (Online version in colour.)

‘height’ on the lattice relative to the bottom (the maximum redundancy atom) or the top (the
maximum synergy atom). We claim that these atoms comprise a ‘layer’ of the lattice defined by
some ratio of redundancy to synergy. The PI spectrum S is then defined as an ordered list where
the ith bin in the spectrum is given by the proportion of total mutual information present in all PI
atoms in the ith layer.

Once the PI spectrum (S) has been calculated, it is easy to determine how top-heavy it is using a
measure similar to the Earth Mover’s Distance. We define the synergy bias (Bsyn(S)) as the amount
of normalized partial information in each layer (Si being the sum of all PI atoms in the ith layer,
divided by the joint mutual information), weighted by the number of steps that layer is from the
bottom.

Bsyn(S) =
|S|∑
i=0

i
|S|Si, (2.8)

where i indexes the layer (starting from the bottom, maximally redundant layer) and |S| gives the
total number of layers in the lattice. By normalizing by the total number of layers, we can compare
the synergy bias between two different sized lattices, since we are looking at the proportion of the
total lattice height moved, rather than counting the actual number of layers.

The redundancy bias is defined equivalently, although the reference point is at the top of the
lattice, rather than the bottom:

Bred(S) = 1 −
|S|∑
i=0

i
|S|Si. (2.9)

Conveniently, since both measures are symmetric and normalized by the total joint mutual
information, Bsyn + Bred = 1, so we only ever have to calculate one and both are greater than zero.

The synergy and redundancy biases allow us to compare how top- and bottom-heavy two
different PI lattices are: a high synergy bias indicates that most of the partial information is
present in synergistic relationships between elements, while a high redundancy bias indicates
that most of the partial information is redundantly present across multiple individual elements.
Since it is a normalized measure, we can compare the top- and bottom-heaviness of systems with
different numbers of elements (and consequently, different sized lattices) and thus can measure
synergy/redundancy bias across scales.
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3. Evidence of information conversion across scales

(a) Macroscales can increase the synergy bias of information
We begin with a well-known type of macroscale as our model system: that of a single logic gate,
which itself is some dimension reduction of a larger collection of networked gates. By breaking
down three basic logic gates with distinct mechanisms (AND, OR and XOR) into collections of
microscale gates with simpler mechanisms, we can directly and fairly compare the microscales
and macroscales in terms of their respective distribution of partial information. This provides the
first showcase of information conversion across scales.

Note that here we are technically leaving elements exogenous in time in our macroscale (since
the microscale networks require multiple timesteps to run), and all mechanisms have been coarse-
grained into the single mechanism (again, broadly, these are all referred to as forms of dimension
reduction). Such example systems of logic gates have no stationary dynamics, since they are not
closed, but are open systems. Therefore, to calculate the mutual information, in all cases (both
micro and macro) the same input distribution to either the macroscale mechanism’s inputs or
the inputs to the network of microscale logic gates that underlies them. For solely explanatory
purposes, we make use of the maximum entropy as our input distribution in all cases, and this
means that P(X) is identical for both macro and microscales in our comparisons.

By calculating the mutual information of the macro and microscales with the same inputs, and
decomposing the result using PID, we can see that the synergy bias of the system is not constant
between scales. Consider the XOR gate, which can be decomposed into a network of one NAND
gate, one AND gate and one OR gate (as well as two inputs A and B). The resulting system has five
elements compared to the macroscale, which has three elements (XOR, A and B). We found that,
at the microscale, the system had mutual information of 2.5 bit, while it had the expected 1 bit of
mutual information at the macro scale. However, while the total mutual information decreased for
the XOR gate macroscale, the synergy of that information increased, from 0.52 at the microscale
to 0.83 at the macroscale. The same was true for both the OR and the AND gates, although to a
lesser degree (final values can be found in table 1). Note that while the AND and OR gates have
the same macroscale mutual information and synergy bias (since they are isomorphic), they have
different microscale values, which reflects the different number and structure of NAND gates
required to implement them.

This suggests that, while dimension reduction reduces the overall amount of information in a
system, the ‘leftover’ information can move higher on the macroscale PID lattice. This can be seen
directly in figure 2, which shows the PI spectra based off on the PI lattices for three macroscale
mechanisms and their underlying microscales of networked logic gates.

When considering our logic gate result, it is clear that dimension reductions like coarse-
graining can alter the distribution of information in the PI lattice of a system, even when both
scales are simply a different description of the same system. Note that this result fits intuitively
with the idea that something is being gained by modelling an XOR gate as an actual XOR gate,
even if it is made of a set of underlying logic gates that, like NAND gates, are not themselves
XORs. What is gained is a distinctive bias toward synergy in the information flowing through
the system. Additionally, it is intuitive that XORs should greatly demonstrate this effect, like
ANDs and ORs demonstrate it to only a slight degree. While not shown, it should be obvious
that there can be reverse cases; for example, some macroscales may be more redundant than their
underlying microscales, since there is no limit to how complex a microscale can be.

(b) Redundant to synergistic information conversion
In the cases of classic logic gate composition above in §a, it could be argued by a skeptic that while
the synergy biases are indeed increasing at the macroscale, this is because all the information at
the bottom of the lattice is being removed by dimension reduction. This may be true in some
instances. Luckily, we can provide direct evidence that the effect we have observed is not just
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Table 1. The macro and microscale temporal mutual information and their respective synergy biases.

gate microscale MI macroscale MI microscale syn. bias macroscale syn. bias

AND 1.623 bit 0.811 bit 0.533 0.578
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OR 2.811 bit 0.811 bit 0.518 0.578
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XOR 2.5 bit 1 bit 0.52 0.833
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For three logic gates (AND, OR and XOR), this table shows the effects that going up a level of abstraction has on the temporal mutual
information and the synergy biases. It is important to understand that while the micro and macroscale implement the same function, the
temporal mutual information can be very different.

that some types of information (like redundant information at the bottom of the lattice) are lost
at macroscales. Rather, there is evidence that information is being converted from one type to
another (or more precisely, information is moving up the PI spectrum from redundant to more
synergistic at the macroscale).

To showcases of information conversion, we developed a method by which the mutual
information can be kept constant across scales. Since the mutual information in terms of total
bits is not decreasing at the macroscale, any change in synergy bias must be from the conversion
of information, not its loss.

First, it is important to note that a neglected aspect of fairly comparing micro and macroscales
is making sure that the macroscales are viable models of the system. It is therefore critical that
the dynamics between a macroscale model and a microscale model are either identical (as in our
cases), or highly similar. That is, dimension reduction shouldn’t lead to significant differences
in dynamics, nor to responses to interventions, or else the macroscale is a poor model of the
system. This has been called ‘consistency’ and has been explored in structural equation modelling
specifically of equivalence classes [41]. Given that precise consistency is not always possible,
it is possible to measure the amount of inconsistency as the difference between the dynamics
of the microscale and that of the macroscale, and an informational measure of inconsistency
was therefore introduced that can analyse how consistent a wide variety of systems are [18].
It is worth noting that in this work, because of the use of equivalence classes in our method
of expansion, in addition to the mutual information being constant, all scales used here also
have zero inconsistency according to this measure. Such perfectly consistent macroscales do not
necessarily need to be constructed via equivalence classes in order to ensure consistency, as we
do here, since there are various types of macroscales that can give complete consistency [18].

What follows is the description of our method to hold the mutual information constant
and ensure consistency between scales. This ‘expansion method’ introduced here is based on
generating a Boolean network (represented by some TPM). Assuming this Boolean network is a
macroscale, we can then bifurcate nodes in the network in such a way as to create an equivalence
class. When we split a single node in an N node network, we go from a system with 2N joint states
to a microscale system with 2N+1 joint states. By re-allocating the probabilities of transitions across
the new, expanded state-space, we can ‘fix’ the total joint, temporal mutual information, despite
increasing the dimensionality of the overall system. Effectively, this allows for the generation of
microscales from a given macroscale, an inversion of the normal process of finding macroscales
from a given microscale [8]. Relevant Python code can be found at https://github.com/EI-
research-group/synergistic_information_emergence. This process allows us to create different
arbitrary microscales for a given system, while the mutual information remains fixed between
the two scales. Therefore, any change in bias on the PI spectrum comes from the conversion of
information from one type to another.

To illustrate this, we constructed 200 TPMs that were positive-Gaussian by initially generating
8 × 8 random Gaussian matrices from a distribution with a mean of 0 and a standard deviation
of 1, taking the absolute value of every entry, and finally normalizing the rows to define discrete
probability distributions. The resulting TPMs describe the stochastic dynamics of 200 distinct,

https://github.com/EI-research-group/synergistic_information_emergence
https://github.com/EI-research-group/synergistic_information_emergence
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Figure 2. Partial information spectra for logic gates. Partial information spectra for three logic gates: AND (top), OR (middle),
XOR (bottom) at the macroscale (right) and the microscale (left). The synergy biases and temporal mutual information values
can be viewed in table 1. (Online version in colour.)

fully connected three-element systems with binary states. These are our starting macroscales. For
each of these 200 systems, we split one element to create a four-element system, two of which
are from our initial macroscale, and two of which are ‘children’ of the initial split macroscale
element. We then re-calculate the PI spectrum and synergy bias for our new microscale. We can
carry out this process of creating children in an equivalence class more than once: if so, we call the



11

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210150

...............................................................

macroscale system mesoscale system microscale system

macroscale TPM mesoscale TPM microscale TPM

time t time t time t

tim
e 

t –
 1

tim
e 

t –
 1

tim
e 

t –
 1

B

C

A B

C

B

C

a

b

b

a1

a0

Figure 3. Multi-scale analysis. Here, we can see how to construct equivalence class microscales from a given macroscale such
that mutual information is fixed. Left: a three-element system (top), and its associated TPM. We select a single node (A) to
expand. Middle: expanding node A into nodesα andβ results in a four-element system, which crucially preserves the mutual
information from the joint-past to the joint future. We can select another node (α) to expand again, resulting in Right: the
final microscale expansion of our system. Note that the original node A has been expanded twice, while the overall mutual
information dynamics are preserved in all cases. (Online version in colour.)

four-node network a ‘mesoscale’ and the five-node network a ‘microscale’. An example system is
shown in figure 3, as well as details of the entire process as it is expanded into a mesoscale and
then microscale (non-macroscale nodes in figure 3 are referred to as α and β in this process).

First, all of the 200 Gaussian systems showed an increased bias toward synergy at the
macroscale, despite the mutual information being unchanged across scales. In general, our
hypothesis was that the higher the synergy bias of the macroscale, the more that synergy would
be lost at the microscale. This appears to be true in these model systems; in figure 4, we correlated
the gain in synergy bias following the conversion of the microscale to the macroscale, against
the macroscale synergy bias. Pearson’s product-moment correlation found a highly significant
positive correlation between macroscale synergy bias and the gain in synergy bias under repeated
coarse-graining of the microscales (see figure 4, left, ρ = 0.819, p < 10−10). This suggests that, for
random stochastic systems, even when total mutual information is constant across scales, the
systems have more redundant information at the microscale than at the macroscale. This is proof
that dimensionality reductions exist that increase the overall synergy of the system by converting
information to be more synergistic.

In addition to the Gaussian matrices, we also constructed 185 ‘deterministic’ systems, where a
single joint state led predictably to another single joint state with probability 0.99 (the remaining
probability was evenly distributed to ensure the system was ergodic, did not have fixed point
attractor, and that the stationary distribution involved all system states), which we expanded in
the same manner as described above into both ‘meso’ and microscales. By exploring both highly
stochastic and deterministic systems, we can generate a richer sample of the space of all three-
element Boolean systems and identify more universal patterns.
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synergy at themacroscale and an increase in redundancy at themicroscale. The equivalence class structure used to construct the
systems holds the mutual information steady across scales, so an increase in synergistic information at the macroscale can only
come from a decrease in the redundant information of the microscale. Left: the same plot, although here we display both the
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visual examination suggests that for both classes of system, the relationship between the macroscale synergy bias and the
change in synergy bias is generally linear and, for both systems, lies along a common line of best fit. This suggests that, while
different systems behave differently under coarse-graining, the broader relationship is preserved. (Online version in colour.)

We found similar results with the deterministic systems, although several clear differences
are immediately apparent upon inspection (see figure 4, right). First, it’s clear that deterministic
systems of the kind we are creating have a lower synergy bias overall than using the Gaussian
method of creating systems. In cases where the macroscales are indeed synergistic, like they are
in Gaussian systems (above 0.5 in synergy bias), it is also the case that the underlying microscales
are more redundant. However, in deterministic macroscales that are biased toward redundancy
(below 0.5 in synergy bias), they can actually be expanded into microscales that are themselves
more synergy biased (and the correlation between the change in synergy and the macroscale
synergy remained positive).

4. Causal emergence as information conversion
Given the evidence that information conversion can occur at macroscales, even in a well-
understood baseline measure like the mutual information, it is next necessary to establish what
it means and how it relates to other information-theoretic approaches to emergence. How does
it play out in measures like the effective information, which was specifically designed to capture
causal influence and can peak at a macroscale?

A hint comes from the already well-established fact that the effective information (EI) changes
across scales due to a change in determinism and/or degeneracy [8,10,18]. Indeed, it is already
proven that:

EI(X; Y) =
∑
x∈X

∑
y∈Y

P(x, y) log2

(
P(x, y)

P(x)P(y)

)∣∣∣∣ P(X) = Hmax, (4.1)
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which differs from the normal mutual information calculation in that P(X) is set to Hmax, and can
be rewritten as

Effective information = determinism − degeneracy. (4.2)

In this interpretation of the effective information, the determinism is based on the information
lost via uncertainty in state transitions:

determinism = log2(N) − 〈H(p(y) | P(X) = Hmax)〉. (4.3)

The term log2(N) can be understood as the uncertainty about the future state of a maximally
entropic system with N unique states. The second term 〈H(p(y) | P(X) = Hmax)〉 gives the average
uncertainty about the future state of our real system X (note that this is applied over a single
timestep, e.g. t to t+1). The average uncertainty is a function of the noise, wherein 〈H(p(y) | P(X) =
Hmax)〉 is zero if there is no noise in any transition (and the system is therefore deterministic).

The difference between the two terms (the hypothetical maximum entropy and the empirical
entropy) gives us a measure of how much better we are at predicting the future of X than we
would be in the ‘worst case scenario’. If effective information is increasing at a macroscale due
to an increase in the determinism term, then the entropy term in the determinism must itself
be necessarily decreasing. This is because log2(N) also necessarily decreases at the macroscale,
so therefore any increases in the determinism term must come from a greater decrease in
〈H(p(y) | P(X) = Hmax)〉 than log2(N). Figure 4(left) shows this decrease in the information (the
uncertainty of transitions), which can lead to an increase in effective information at a macroscale.

The degeneracy contains a similar entropy term and a size term:

degeneracy = log2(N) − H(〈p(y) | P(X) = Hmax〉). (4.4)

The degeneracy term is very similar structurally to the determinism term: once again the
log2(N) represents the maximally entropic ‘reference’ system. The term H〈(p(y) | P(X) = Hmax)〉
quantifies the uncertainty in retrodiction of a previous state, given a current state. That is,
degeneracy is the amount of information lost (in a single timestep) if the system is ‘reversed’
in time.

The degeneracy can be thought of as the amount of information about the past that is lost
when multiple causal paths ‘run together’. For instance, we can imagine a system where two
unique states both lead to the same subsequent state. In this case, information about the past
is lost because it is impossible to determine which of the two prior states preceded the current
one from just the current state alone. It can also be thought of as quantification of how different
each state’s transitions are. If in a system every state has a unique transition, then the degeneracy
H〈(p(y) | P(X) = Hmax〉) term is zero, and degeneracy maximal.

The case of degeneracy is more complicated, since here the entropy term can increase at
macroscales. However, as in determinism, the log2(N) term always decreases. And it is actually
the decreasing of log2(N) that can lead to a decrease in degeneracy at the macroscale, e.g. if
two states both deterministically transition to a single state, then a grouping over those (or an
equivalent drop out of one) leads to an decrease in degeneracy since log2(N) decreases. This leads
to an increase in EI because the degeneracy term itself is subtracted in the EI equation.

Notably, it is well-known that the effective information cannot increase at a macroscale if
determinism is maximal and degeneracy is minimal. Why? Because there is no information
to convert, neither in terms of the size of the system log2(N) nor in terms of the uncertainty
of transitions 〈H(p(y) | P(X) = Hmax)〉. Therefore, causal emergence can be conceived as the
conversion of causally irrelevant information (like the uncertainty of state transitions) to causally
relevant information (the effective information), fitting into the umbrella theory of emergence as
information conversion.

We have offered forth an umbrella theory of emergence based on how changes in scale lead
to the conversion of one type of information to another. That is, dimension reduction does not
necessarily leave all types of information invariant. We claim that the best way to consider
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these questions is to examine how changes in modelling, such as dimension reduction, change
information type. While some information measures, like the total correlation between past and
future measured by the mutual information, can only stay constant or decrease at macroscales,
such measures can still demonstrate information conversion (such as here from redundant to
synergistic information). We have shown this effect in Boolean networks, such as comparing a
macroscale XOR to its underlying logic gates, none of which are XORs at the microscale. We
have also shown it in cases of equivalence classes where the mutual information is held constant
across scales and yet still information can become more biased toward synergy at the macroscale,
proving information conversion.

Further future work may be examining things like at what scale synergistic information peaks,
or how to find scales that maximally convert information while minimally losing information.
Though we have shown evidence that some redundant information must become synergistic
(or vice versa), it remains to be understood exactly which information changes form. Recent
work on decomposing the local mutual information into directed local entropies may provide
an interesting path forward [42]. Another promising future direction of research would be to
introduce local information analysis to this pipeline [33,43].

More broadly, this umbrella theory of emergence reveals that there are measurable benefits
to macroscale models. If so, this is likely to have been selected for in science, i.e.members of the
special sciences can be viewed as converting redundant information into a more useful form.
Indeed, it has even been shown that synergistic information processing can be key to certain
games like to a successful poker strategy [44]. Our hypothesis is that the special sciences, and
macroscale models in general, involve the conversion of redundant information into synergistic
and unique information, making such macroscales useful for experimenters above and beyond
their degree of compression.

Tying this to previous research, macroscale modelling can also convert causally irrelevant
information to causally relevant information by making causal relationships between variables
in a model more dependent (by increasing determinism or decreasing degeneracy), i.e. causal
emergence. Note that there are clear advantages to identifying scales at which variables are more
dependent. For instance, it has been shown that biological networks show more causal emergence
than comparable technological or social networks [18]. This is probably because there are multiple
advantages for macroscales, ranging from a lower entropy of random walkers to greater global
efficiency at macroscales [45]. Some preliminary research examining the protein interactomes
of over 1000 species shows that macroscales have become more likely to demonstrate causal
emergence over evolutionary time [46]. This may even be one reason that controlling biological
systems is so difficult: they are cryptic by having an intrinsic functional scale be a difficult-to-
discover macroscale, making biological networks more robust to failure and less likely to be
controlled from the outside [47].

The sort of above analyses are just a fraction of the applications of a formal theory of
emergence, which is ultimately a toolkit for identifying the intrinsic scale of the function of
complex systems. This issue of identifying intrinsic scale crops up all across the sciences, such as
modelling gene regulatory networks in biology [47], understanding whether the brain functions
at the scale of neurons or minicolumns [48,49], answering what level of abstraction is appropriate
for modelling and comparing deep neural networks [50], or even examining the best scale to
model cardiac systems at [51]. Previous research has shown how intrinsic scale comes about
via growth rules, e.g. networks that develop causally emergent macroscales only do so once the
network is no longer growing in a ‘scale-free’ manner [18]. Ultimately, by tracking information
conversion, experimenters and modellers can close in on the intrinsic scale of function for a given
system.

(a) Comparison to other theories of emergence
To help the nascent field of formal theories of emergence, it is important to discuss exactly
what type of emergence we mean here, and compare and contrast to other definitions. For
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example, there is no doubt that simple laws and interactions in systems can lead to the
emergence of complex, interesting, or unexpected dynamics, such as in cases of symmetry
breaking [52] or simple rule iteration [53]. Sometimes this is referred to as ‘emergence’. However,
this phenomenon of complexity emerging from simplicity is not conceptually mysterious, and is
already well-understood mathematically.

Another use of the term ‘emergence’ comes from thinking about joint effects, which is a ‘whole
versus parts’ emergence. Ultimately, this is motivated by the fact that elements in a system can
exhibit behaviour, dynamics or functions that would not take place if they were partitioned or
isolated from the rest of the system. One such measure that captures how much information is
lost by partitioning individual elements off from a given system is Integrated Information Theory
[54,55]. However, the mere fact that joint sets of elements behave differently compared to isolated
elements in terms of effects or information flow does not by itself capture what is lost by reduction
to some lower scale of explanation. IIT contains an explicit built-in distinction between ‘whole
vs. parts’ emergence and ‘macro vs. micro’ emergence (the latter is when some supervenient
model of the system is compared to its underlying model, such as a higher scale to a lower
scale) [16].

There are also extensions of IIT, such as the ‘integrated information decomposition’ (ΦID)
[40,56]. As with the work described here, the ΦID framework actually takes as its starting
point the decomposition of the mutual information between past and future. However, the ΦID
framework constructs a double PI lattice that describes how information moves from one PI atom
to another through time. In this framework, the authors define ‘emergent’ information as when a
supervenient feature (a dimension reduction in our language) contains unique information across
time that is not present in the unique information of its independent underlying microscale parts.
However, this means leaving out the synergistic and redundant information in the comparison
between macro and micro, and a fair comparison would involve these, since the underlying
microscale will almost certainly have joint effects. Additionally, purely unique information
generally vanishes as a system grows in size.

By focusing on an explicit comparison between the fully modelled micro and macroscales
of systems, this allows us to examine the kind of emergence that is traditionally discussed in
analytic philosophy, which involves issues of supervenience, multiple-realizablity and causality
[57]. There it is sometimes called ‘synchronic’ emergence [58], although we eschew this term
as confusing for scientific usage, and continue to use ‘macro vs. micro’ to refer to this sort of
emergence. As we have shown, such a mathematical theory of emergence is part of modeller
and experimenter toolkits when it comes to identifying intrinsic scales of function, as well as
modelling practices. This process involves explicit modelling of different scales of model or
physical systems, followed by their comparison.

While related to philosophical discussions of emergence, note that our proposal of emergence
as information conversion does not fit cleanly into the traditional strong/weak emergence
dichotomies in philosophy [59]. Supervenience is not violated when information is converted
from one type to another (such as redundant mutual information becoming synergistic,
uncertainty of transitions being transformed into effective information, etc). In this view, the
reduction is always possible when supervenience holds, and therefore there is always an
identifiable procedure to map one scale to another. However, such reduction can lead to a real and
measurable loss of a given type of information. This offers a subtle but powerful explanation as to
what advantages macroscale models provide above and beyond compression, and may explain
the necessary existence of the special sciences.
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