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Abstract 

Background:  Fragility hip fracture increases morbidity and mortality in older adult patients, especially within the 
first year. Identification of patients at high risk of death facilitates modification of associated perioperative factors that 
can reduce mortality. Various machine learning algorithms have been developed and are widely used in healthcare 
research, particularly for mortality prediction. This study aimed to develop and internally validate 7 machine learning 
models to predict 1-year mortality after fragility hip fracture.

Methods:  This retrospective study included patients with fragility hip fractures from a single center (Siriraj Hospital, 
Bangkok, Thailand) from July 2016 to October 2018. A total of 492 patients were enrolled. They were randomly catego-
rized into a training group (344 cases, 70%) or a testing group (148 cases, 30%). Various machine learning techniques 
were used: the Gradient Boosting Classifier (GB), Random Forests Classifier (RF), Artificial Neural Network Classifier 
(ANN), Logistic Regression Classifier (LR), Naive Bayes Classifier (NB), Support Vector Machine Classifier (SVM), and 
K-Nearest Neighbors Classifier (KNN). All models were internally validated by evaluating their performance and the 
area under a receiver operating characteristic curve (AUC).

Results:  For the testing dataset, the accuracies were GB model = 0.93, RF model = 0.95, ANN model = 0.94, LR 
model = 0.91, NB model = 0.89, SVM model = 0.90, and KNN model = 0.90. All models achieved high AUCs that 
ranged between 0.81 and 0.99. The RF model also provided a negative predictive value of 0.96, a positive predictive 
value of 0.93, a specificity of 0.99, and a sensitivity of 0.68.

Conclusions:  Our machine learning approach facilitated the successful development of an accurate model to 
predict 1-year mortality after fragility hip fracture. Several machine learning algorithms (eg, Gradient Boosting and 
Random Forest) had the potential to provide high predictive performance based on the clinical parameters of each 
patient. The web application is available at www.​hippr​edict​ion.​com. External validation in a larger group of patients or 
in different hospital settings is warranted to evaluate the clinical utility of this tool.

Trial registration:  Thai Clinical Trials Registry (22 February 2021; reg. no. TCTR2​02102​22003).
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Introduction
As people live longer, the incidence of hip fracture is 
increasing, and it is estimated that there will be approxi-
mately 4.5 million cases per year worldwide by 2050 [1]. 
Osteoporotic hip fractures severely adversely affect the 
quality of life of older adults, resulting in substantially 
higher mortality and disability, and a markedly reduced 
quality of life [2]. Approximately 25% of older adults who 
sustain a hip fracture die within the first year [3], and this 
rate is 8 times higher than the mortality rate in the gen-
eral population of older adults [4]. Advanced age, male 
sex, clinical comorbidities, cognitive impairment, type 
of fracture, choice of treatment, and ambulatory status 
have been proposed as potential prognostic factors for 
mortality after hip fracture [4–8]. However, since the pre-
diction of death is complex and multifactorial, mortality 
cannot be predicted using a single variable. Identification 
of patients at high risk of death facilitates the modifica-
tion of associated perioperative factors that can reduce 
mortality.

The recent development of machine learning tech-
niques enables the development of healthcare-related 
outcome prediction tools that include perioperative 
parameters and clinical variables [9]. These techniques 
can evaluate real-world data, which often have com-
plex nonlinear relationships between variables [10], 
and are capable of building models with performances 
that exceed those of conventional prediction methods 
[11]. Many studies have evaluated the performances of 
machine learning methods, particularly mortality pre-
diction algorithms that have been developed for cardiac 
surgery [12], liver resection following colorectal cancer 
metastasis [13], traumatic head injury [14], critically ill 
influenza patients [15], and surgery for hepatocellular 
carcinoma [16]. The studies found that these algorithms 
had a better performance than conventional regression 
techniques. Developing a high-performance prediction 
model is beneficial as the goal of predicting mortality is 
to identify high-risk patients and provide clinicians with 
opportunities to consider what to do next to improve 
outcomes in these patients.

The high rate of 1-year mortality among older adults 
with fragility hip fracture suggests the need for a simi-
lar machine learning approach to predict death in this 
vulnerable population. Several models are already avail-
able. Artificial neural networks and logistic regression are 
well-known methods and have been extensively studied 
[17–22]. Support Vector Machine [23, 24], Naive Bayes 
[20, 24] and Random Forests [22–24] have also been used 

to predict mortality after hip fracture. However, there are 
other novel methods that demonstrate good performance 
with high accuracy in predicting death [15, 25, 26], such 
as Gradient Boosting, which have not yet been thor-
oughly explored for use in patients with hip fracture.

Since osteoporotic hip fracture occurs in a highly vul-
nerable population [27], an accurate prediction method 
would help clinicians identify patients who require spe-
cial attention and additional services. This study aimed 
to develop and internally validate 7 machine learning 
models to predict 1-year mortality after fragility hip frac-
ture in patients for whom a treatment decision (i.e. type 
of surgery or conservative treatment) had already been 
made. The models were the Gradient Boosting Clas-
sifier (GB), Random Forests Classifier (RF), Artificial 
Neural Network Classifier (ANN), Logistic Regression 
Classifier (LR), Naive Bayes Classifier (NB), Support Vec-
tor Machine Classifier (SVM), and K-Nearest Neighbors 
Classifier (KNN). We hypothesized that machine learn-
ing models could predict 1-year mortality after fragility 
hip fracture with high predictive performance.

Methods
Study design and population
This retrospective cohort study included patients with 
fragility hip fractures from a single center (the Depart-
ment of Orthopedic Surgery, Faculty of Medicine Siriraj 
Hospital, Mahidol University, Bangkok, Thailand) from 
July 2016 to October 2018. The research protocol was 
approved by the Siriraj Institutional Review Board 
(approval number 122/2021), and the study was regis-
tered in the Thai Clinical Trials Registry on 22 February 
2021 (registration number TCTR20210222003).

We used the International Classification of Diseases, 
Tenth revision (ICD-10) diagnosis codes S7200 (neck 
fracture of the femur), S7210 (intertrochanteric fracture 
of the femur), and S7220 (subtrochanteric fracture of 
the femur) to retrieve and review patient data from elec-
tronic medical records. Patients with fragility hip fracture 
were eligible for inclusion if they were aged 50 years or 
older and had a minimum follow-up period of 1 year or 
until death. The exclusion criteria were multiple fractures 
or fractures caused by cancer that had been confirmed by 
pathological study.

Hip fracture treatment protocol
All patients with fragility hip fractures were attended by 
our fracture liaison service (FLS). The service provided 
a multidisciplinary care team consisting of orthopedic 
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surgeons, metabolic bone disease specialists, anesthesi-
ologists, geriatricians, physical therapists, physiatrists, 
and nurses. The team members provided post-fracture 
care programs and secondary-fracture prevention meas-
ures for the patients. Initially, the FLS team was alerted 
when patients with fragility hip fracture visited the emer-
gency department. The acute pain management protocol 
was followed by anesthesiologists who specialized in pain 
medicine. The patients were then seen by the FLS team in 
an orthopedic ward. A geriatrician evaluated their medi-
cal condition and performed preoperative medical opti-
mization. If surgery was decided, we operated as soon as 
the condition of each patient was suitable and an operat-
ing room was available. Conservative treatment was pro-
posed for patients who already had a low probability of 
survival. A physical therapist started a rehabilitation pro-
gram as early as possible to prevent complications from 
prolonged immobility. The multidisciplinary care team 
approach continued to play a key role in patient recovery, 
either after surgery or with conservative treatment. Phys-
ical therapists, in conjunction with psychiatrists in some 
cases, encouraged early mobilization for all patients. The 
physical therapists also assessed the risk of falling and 
planned appropriate home modification programs. FLS 
nurses facilitated the care process and reported each 
patient’s condition to other team members. As part of the 
secondary-fracture prevention program, metabolic bone 
specialists prescribed anti-osteoporosis medications, 
and osteoporosis education was given to patients and 
their families by orthopedic surgeons or nurses. The dis-
charge planning process was carried out from the begin-
ning of admission and was aimed at providing continuing 
care when patients were ready to leave the hospital. The 
entire care process was flexible and was adjusted accord-
ing to the condition of each patient. FLS team meetings 
were scheduled every week for team members to review 
the status of each patient and discuss how to improve 
the care process. All patients were followed by tele-
phone calls 3 and 12  months after discharge and yearly 
thereafter.

Data collection
Demographic and clinical data were collected from 
electronic medical records. The data related to age; sex; 
body mass index (BMI), as stratified by the World Health 
Organization expert consultation for Asian popula-
tions [28]; Charlson Comorbidity Index (CCI) score; 

underlying diseases (presence of stage 4 or 5 chronic 
kidney disease [CKD], heart disease, lung disease, cer-
ebrovascular accident [CVA], or dementia); type of frac-
ture (femoral neck fracture, intertrochanteric fracture, or 
subtrochanteric fracture); type of treatment (conserva-
tive, dynamic hip screw fixation, multiple screw fixation, 
cephalomedullary nailing, hemiarthroplasty, or total hip 
arthroplasty); time to surgery; pre-injury ambulatory 
status (bedridden, indoor dependent, outdoor depend-
ent, indoor independent, or outdoor independent); and 
walking assistive device (no ambulation, without assis-
tive device, wheelchair, walker, quad cane, tripod cane, 
or single cane). We interviewed the patients or their 
relatives by telephone to assess the living status of the 
patients (1-year mortality after hip fracture). Because 
these factors had been shown to be essential predictors of 
mortality after hip fracture, they were used to develop a 
prediction model [4, 8, 29–32].

Machine learning development process
Data preprocessing
A de-identified dataset of 492 patients was enrolled in the 
study. Fifteen variables (3 continuous and 12 categorical) 
were collected. The continuous variables were age (inte-
ger), BMI (decimal number), and CCI score (integer). 
The categorical variables were sex, pre-injury status, pre-
injury gait aid, CKD, heart disease, CVA, lung disease, 
dementia, diagnosis, type of treatment, time to surgery, 
and 1-year mortality after hip fracture. Using standard 
dummy coding, 3 continuous and 11 categorical predic-
tors of one-year mortality were included in the compu-
tational process (Fig. 1a). There were no missing data in 
the dataset.

Algorithm training and validation
We applied a stratified random sampling technique 
to split patients in a 70:30 ratio into a training dataset 
and a testing dataset (Fig.  1b). All variables were nor-
malized to a scale of 0–1 to make the training process 
less sensitive to the scale of the variables. In this study, 
7 machine-learning classifier algorithms [33] were used. 
They were the Gradient Boosting Classifier (GB), Ran-
dom Forests Classifier (RF), Artificial Neural Network 
Classifier (ANN), Logistic Regression Classifier (LR), 
Naive Bayes Classifier (NB), Support Vector Machine 
Classifier (SVM), and K-Nearest Neighbors Classifier 
(KNN). Using the training dataset (344 patients), manual 

(See figure on next page.)
Fig. 1  Machine learning development process (a) 3 continuous and 11 categorical predictors of one-year mortality were taken into the 
computational process. (b) A stratified random sampling technique was applied to split patients in a 70:30 ratio to a training dataset and a 
testing dataset. (c) Training dataset was used to identify the optimal hyperparameters which provided the highest accuracy in a fivefold internal 
cross-validation of each model. (d) The performance of all algorithms were evaluated with another, unseen, testing dataset
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Fig. 1  (See legend on previous page.)
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parameter tuning, grid search, and random search were 
conducted to identify the optimal hyperparameters 
[34] which provided the highest accuracy in a fivefold 
internal cross-validation of each model (Fig. 1c). Subse-
quently, we evaluated the performance of all algorithms 
by using another unseen testing dataset (148 patients; 
Fig.  1d). The confusion matrix and evaluation meas-
ures that were reported consisted of accuracy, positive 
predictive value, negative predictive value, specificity, 
sensitivity, calibration plots and area under the receiver 
operating characteristic curve (AUC). Calibration refers 
to how well the observed and the predicted outcomes 
match up. An optimal value of a slope and intercept for 
perfect calibration is 1 and 0, respectively. We evaluated 
the contribution of each characteristic to the prediction 
model using SHAP (Shapley values) [35, 36]. In these 
processes, the Python programming language (version 
3.8.3; Python Software Foundation, Wilmington, DE, 
USA); and Scikit-Learn (version 0.24.2; Machine Learn-
ing library) [33] were used. All computational processes 
were performed in a Windows Server 2016 Datacenter 
(2.2  GHz × 4 virtual processors, with 15.9  GB of ran-
dom-access memory).

Statistical analysis
Comparisons were made of the baseline characteristics of 
the patients in the training and testing groups (Table 1), 
and of those who died and those who survived (Table 2). 
Continuous data were compared using Student’s t-test; 
the results are presented as mean plus/minus standard 
deviation. Categorical data were compared using the 
chi-squared test or Fisher’s exact test; these results are 
given as number and percentage. Data analyses were per-
formed using PASW Statistics for Windows (version 18; 
SPSS Inc., Chicago, IL, USA). Accuracy, sensitivity, speci-
ficity, and positive and negative predictive values of all 
models were calculated and compared using the DTCom-
Pair package (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​
DTCom​Pair/​DTCom​Pair.​pdf ). We also compared the 
AUC of all models by performing permutation testing 
using the coin package (https://​cran.r-​proje​ct.​org/​web/​
packa​ges/​coin/​index.​html) in R software version 4.1.1 
(http://​www.r-​proje​ct.​org/). A two-tailed P value < 0.05 
was considered statistically significant.

Results
From July 2016 to October 2018, 498 patients with a hip 
fracture were admitted to our institution. Six patients 
had multiple fractures and were excluded from our 
study, leaving 492 for final analysis. Through telephone 
interviews, we were able to obtain the living status 
of all patients 1  year after the respective fragility hip 
fractures.

Baseline characteristics
The mean age of the study participants was 78.4  years 
(range, 50–101). Of the 492 enrolled patients, 72.2% 
were women and 27.8% were men (Table  1). Four hun-
dred fifty-three patients (92.1%) had a CCI score ≥ 3, 
and 259 (52.6%) walked without an assistive device. The 
majority (55.5%) could ambulate outdoors independently 
before the hip fracture. Four hundred and sixty patients 
(93.5%) underwent operative treatment. During the study 
period, 50.7% of the patients were able to undergo sur-
gery within 48 h of admission. The median length of stay 
was 11 days (interquartile range 8–17 days). The median 
time from admission to surgery was 2 days (interquartile 
range 1–4 days). The 1-year mortality rate after hip frac-
ture was 12.6%.

We randomly assigned 344 and 148 patients to the 
training and testing datasets, respectively. There were 
no significant differences in the patient characteristics 
of the 2 datasets. A comparison of the characteristics 
of the patients who survived and those who died is pre-
sented in Table 2. It revealed that the deceased group was 
significantly older (P = 0.007), had a significantly higher 
proportion of male patients (P = 0.023), and had signifi-
cantly higher prevalences of all 5 evaluated comorbidi-
ties (stage 4 or 5 CKD, heart disease, CVA, lung disease, 
and dementia; all P = 0.001 or P < 0.001). CCI score, pre-
injury ambulatory status, type of fracture, and treatment 
were also significantly different.

Machine‑learning performance comparisons
We used a dataset of 344 patients to train 7 machine 
learning models to predict 1-year mortality after fragil-
ity hip fracture. The performances of the 7 algorithms 
are detailed in Table 3. For the training dataset, the accu-
racies were GB model = 1.00, RF model = 0.97, ANN 
model = 0.99, LR model = 0.94, NB model = 0.90, SVM 
model = 0.94, and KNN model = 0.94. As to the testing 
dataset, all models achieved high AUCs (between 0.81 
and 0.99; Fig. 2). The RF model provided high predictive 
performance, with an accuracy of 0.95, a positive predic-
tive value of 0.93, and a sensitivity of 0.68. There were 
significant differences between the AUC of RF model and 
the ANN, LR, NB, SVM, KNN models (0.99 vs 0.92 vs 
0.95 vs 0.91 vs 0.94 vs 0.81, respectively). The calibration 
of all models show intercepts ranging from -0.09 to 0.35 
and slopes ranging from 0.55 to 1.32 (see Supplementary 
file 1). The calibration plot of the RF model was well cali-
brated with slope and intercept close to optimal value.

Machine‑learning‑model selection
The RF model demonstrated high accuracy, positive 
predictive value, and sensitivity. Due to our screening-
test study design, we mainly focused on sensitivity to 

https://cran.r-project.org/web/packages/DTComPair/DTComPair.pdf
https://cran.r-project.org/web/packages/DTComPair/DTComPair.pdf
https://cran.r-project.org/web/packages/coin/index.html
https://cran.r-project.org/web/packages/coin/index.html
http://www.r-project.org/
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detect at-risk patients who might encounter mortality 
1 year after their fracture. The sensitivity of RF model 
were not significant different from GB and ANN model. 
However, the RF model had higher AUC than the 
ANN model. The RF model also had good calibration. 
Accordingly, the RF algorithm was selected for model 
construction.

Analysis of clinical variable contribution
Figure  3 illustrates the impact of each characteris-
tic on the entire dataset prediction by the trained RF 
algorithm. The 5 most influential clinical characteris-
tics were CCI score, heart disease, BMI, dementia, and 
lung disease. The best-tuned hyperparameters for the 
RF obtained from hyperparameter optimization were 

Table 1  Comparison of the demographic and clinical characteristics of all patients, and of those in the training and testing groups

A P value < 0.05 indicates statistical significance

Abbreviation: SD Standard deviation

Patient characteristics Total (N = 492) Testing (n = 148) Training(n = 344) P value

Age (years), mean ± SD 78.4 ± 9.8 78.0 ± 10.1 78.6 ± 9.7 0.511

Female sex, n (%) 355 (72.2%) 104 (70.3%) 251 (73.0%) 0.584

Body mass index (kg/m.2), mean ± SD 22.3 ± 3.9 22.2 ± 4.1 22.4 ± 3.9 0.634

Charlson comorbidity index (CCI) score, n (%)

  - < 3 39 (7.9%) 13 (8.8%) 26 (7.6%) 0.716

  - ≥ 3 453 (92.1%) 135 (91.2%) 318 (92.4%)

Pre-injury ambulatory status, n (%)

  - Bedridden 15 (3.0%) 7 (4.7%) 8 (2.3%) 0.556

  - Indoor dependent 43 (8.7%) 10 (6.8%) 33 (9.6%)

  - Outdoor dependent 16 (3.3%) 5 (3.4%) 11 (3.2%)

  - Indoor independent 145 (29.5%) 45 (30.4%) 100 (29.1%)

Assistive device, n (%)

  - No ambulation 15 (3.0%) 7 (4.7%) 8 (2.3%) 0.839

  - Without assistive device 259 (52.6%) 76 (51.4%) 183 (53.2%)

  - Wheelchair 10 (2.0%) 2 (1.4%) 8 (2.3%)

  - Walker 91 (18.5%) 28 (18.9%) 63 (18.3%)

  - Quad cane 3 (0.6%) 1 (0.7%) 2 (0.6%)

  - Tripod cane 27 (5.5%) 9 (6.1%) 18 (5.2%)

  - Single cane 27 (5.5%) 25 (16.9%) 62 (18.0%)

Type of fracture, n (%)

  - Femoral neck fracture 248 (50.4%) 77 (52.0%) 171 (49.7%) 0.883

  - Intertrochanteric fracture 241 (49.0%) 70 (47.3%) 171 (49.7%)

  - Subtrochanteric fracture 3 (0.6%) 1 (0.7%) 2 (0.6%)

Treatment, n (%)

  - Conservative treatment 32 (6.5%) 11 (7.4%) 21 (6.1%) 0.791

  - Dynamic hip screw 36 (7.3%) 12 (8.1%) 24 (7.0%)

  - Cephalomedullary nailing 202 (41.1%) 56 (37.8%) 146 (42.4%)

  - Multiple screw fixation 19 (3.9%) 8 (5.4%) 11 (3.2%)

  - Hemiarthroplasty 195 (39.6%) 59 (39.9%) 136 (39.5%)

  - Total hip arthroplasty 8 (1.6%) 2 (1.4%) 6 (1.7%)

Comorbidities, n (%)

  - Chronic kidney disease stage 4 or severe 130 (26.4%) 37 (25.0%) 93 (27.0%) 0.658

  - Heart disease 123 (25.0%) 44 (29.7%) 79 (23.0%) 0.114

  - Cerebrovascular accident 103 (20.9%) 35 (23.6%) 68 (19.8%) 0.336

  - Lung disease 34 (6.9%) 13 (8.8%) 21 (6.1%) 0.332

  - Dementia 81 (16.5%) 16 (10.8%) 65 (18.9%) 0.033

Time to surgery n (%)

  - ≤ 48 h 233 (50.7%) 69 (50.4%) 164 (50.8%) 1.000

  - > 48 h 227 (49.3%) 68 (49.6%) 159 (49.2%)

Death, n (%) 62 (12.6%) 19 (12.8%) 43 (12.5%) 1.000
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max_depth = 60, max_features = ‘sqrt’, min_samples_
leaf = 4, min_samples_split = 5, n_estimators = 400, 
and random_state = 8. The best-tuned hyperparameters 
for all models are listed in Table  4. The receiver oper-
ating characteristic curve of the Random Forests algo-
rithm is shown in Fig. 2a.

Machine learning model application
The trained RF algorithm subsequently used demo-
graphic and clinical information to construct a predic-
tive model to estimate the probability of 1-year mortality 
of patients. A programming interface was developed to 
allow healthcare providers to access the application at 

Table 2  Comparison of the demographic and clinical characteristics of patients who died and those who survived

A P value < 0.05 indicates statistical significance

Abbreviation: SD Standard deviation

Patient characteristics Deceased (n = 62) Survived (n = 430) P value

Age (years), mean ± SD 81.5 ± 8.5 77.9 ± 9.9 0.007
Male sex, n (%) 25 (40.3%) 112 (26.0%) 0.023
Body mass index (kg/m.2), mean ± SD 21.8 ± 4.2 22.4 ± 3.9 0.123

Charlson comorbidity index (CCI), n (%)

  - < 3 0 (0.0%) 39 (9.1%) 0.009
  - ≥ 3 62 (100.0%) 391 (90.9%)

Pre-injury ambulatory status, n (%)

  - Bedridden 1 (1.6%) 14 (3.3%) 0.021
  - Indoor dependent 10 (16.1%) 33 (7.7%)

  - Outdoor dependent 1 (1.6%) 15 (3.5%)

  - Indoor independent 24 (38.7%) 121 (28.1%)

  - Outdoor independent 26 (42.0%) 247 (57.4%)

Assistive device, n (%)

  - No ambulation 1 (1.6%) 14 (3.3%) 0.421

  - Without assistive device 26 (41.9%) 233 (54.2%)

  - Wheelchair 2 (3.2%) 8 (1.9%)

  - Walker 17 (27.4%) 74 (17.2%)

  - Quad cane 0 (0.0%) 3 (0.7%)

  - Tripod cane 4 (6.5%) 23 (5.3%)

  - Single cane 12 (19.4%) 75 (17.4%)

Type of fracture, n (%)

  - Femoral neck fracture 20 (32.3%) 228 (53.0%) 0.001
  - Intertrochanteric fracture 42 (67.7%) 199 (46.3%)

  - Subtrochanteric fracture 0 (0.0%) 3 (0.7%)

Treatment, n (%)

  - Conservative treatment 13 (21.0%) 19 (4.4%) 0.022
  - Dynamic hip screw 5 (8.1%) 31 (7.2%)

  - Cephalomedullary nailing 27 (43.5%) 175 (40.7%)

  - Multiple screw fixation 2 (3.2%) 17 (4.0%)

  - Hemiarthroplasty 15 (24.2%) 180 (41.8%)

  - Total hip arthroplasty 0 (0.0%) 8 (1.9%)

Time to surgery n (%)

  - ≤ 48 h 19 (38.8%) 214 (52.1%) 0.096

  - > 48 h 30 (61.2%) 197 (47.9%)

Comorbidities, n (%)

  - Chronic kidney disease stage 4 or severe 44 (71.0%) 86 (20.0%)  < 0.001
  - Heart disease 41 (66.1%) 82 (19.1%)  < 0.001
  - Cerebrovascular accident 24 (38.7%) 79 (18.4%) 0.001
  - Lung disease 17 (27.4%) 17 (4.0%)  < 0.001
  - Dementia 27 (43.5%) 54 (12.6%)  < 0.001
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Fig. 2  Receiver-operating characteristic curve (ROC) of (a) Random Forests algorithm (RF); (b) Gradient Boosting algorithm (GB); (c) Artificial Neural 
Network algorithm (ANN); (d) Logistic Regression algorithm (LR); (e) Naive Bayes algorithm (NB); (f) Support Vector Machine algorithm (SVM); (g) 
K-Nearest Neighbors algorithm (KNN); and (h) all algorithms
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www.​hippr​edict​ion.​com. By entering details of key char-
acteristics into the prediction model, it was able to gen-
erate the probability of 1-year mortality of individual 
patients with fragility hip fractures. The characteristics 
were age; sex; BMI; pre-injury ambulatory status; assis-
tive device usage; CCI score; type of fracture; type of 
operation; time to surgery; and the presence of CKD, 
heart disease, CVA, lung disease, and dementia.

Discussion
Patients with osteoporotic hip fracture are likely to suf-
fer higher morbidity and mortality than non-fracture 
patients within the same age group [4, 37]. Adverse 
events after hip fracture can occur during hospitalization 
and the post-discharge period. They include events such 
as infection [38], heart failure [38], and thromboembo-
lism [39]. As these events can lead to death in high-risk 

Fig. 3  Characteristics of the selected model (Random Forests model): SHAP Value summary graph of top-20 variables and their impact on the 
prediction

Table 4  The best-tuned hyperparameters for each model

Classifier models Hyperparameters

Gradient Boosting max_depth = 10, max_features = ’sqrt’, min_samples_split = 50, n_estimators = 800, random_state = 8, learning_rate = 0.5, 
subsample = 0.5

Random Forests max_depth = 60, max_features = ’sqrt’, min_samples_split = 5, min_samples_leaf = 4, n_estimators = 400, random_state = 8

Artificial Neural Network activation = ’identity’, alpha = 0.0001, batch_size = ’auto’, hidden_layer_sizes = 7, learning_rate = ’adaptive’, learning_rate_
init = 0.001, max_iter = 500, solver = ’lbfgs’

Logistic Regression C = 0.4, multi_class = ’multinomial’, random_state = 8, solver = ’saga’

Naive Bayes alpha = 1.0, fit_prior = True, class_prior = None

Support Vector Machine C = 0.1, degree = 4, kernel = ’poly’, probability = True, random_state = 8

K-Nearest Neighbors n_neighbors = 3

http://www.hipprediction.com
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patients [40, 41], an attempt to identify those at risk of 
complications after hip fracture is a primary objective to 
reduce mortality. In patients predicted to be at risk for 
poor outcomes, interventions can be initiated to pre-
vent complications and reduce the likelihood of death. 
Among the possible interventions, two are paramount. 
The first requires full and honest communication with 
the patient and family about the planned treatment and 
risks. The second requires prompt clinical decision-mak-
ing by doctors, families, and caregivers to ensure that 
scarce resources, such as an intensive care unit, are effec-
tively allocated, and that the need for additional services 
is determined and actioned. Examples of these services 
are intensive monitoring and optimization of patients’ 
medical problems, additional home visits and family 
nursing support, and a personalized exercise program. 
In this study, we evaluated machine learning methods to 
develop a model that would predict 1-year mortality after 
a fragility hip fracture. Our results showed that the tool 
we designed had high mortality-prediction accuracy.

Our experiment carried out a 3-step, general, machine 
learning approach: data preprocessing, algorithm train-
ing, and algorithm testing with an unseen dataset. We 
searched for the best performance of each algorithm by 
fivefold cross-validation using manual search and auto-
mated hyperparameter optimization with grid search 
and random search [34]. After comparing all algorithms, 
we selected the RF model. It provided the highest per-
formance in predicting 1-year mortality, indicated by 
its highest sensitivity in detecting high-risk patients 
(Table 3).

GB and RF models are tree-based methods that gather 
the results from individual trees. The difference between 
the 2 models is how the trees build up and how the 
results are collected [42, 43]. The GB model adds each 
tree up sequentially and allows self-correction from the 
error at each step to improve the model, while the RF 
model builds all trees up simultaneously. GB collects 
the results during the whole process from start to finish, 
while RF sums up and averages the results when the pro-
cess is finished. Theoretically, GB usually takes a longer 
time to train, but it can provide better performance than 
RF if the parameters are carefully tuned. GB and RF have 
also demonstrated their high performance in predictive 
modeling of health outcomes [15, 25, 26, 44].

The ANN models used in this study were standard 
feed-forward, multilayer perceptrons with back-propa-
gation neural networks trained using a supervised train-
ing algorithm [45]. Each of the ANN models consists of 
3 layers: 1 input layer, 1 hidden layer, and 1 output layer. 
The neural network takes input variables, which are then 
passed through the layer of hidden neurons to the out-
put layer. The ANN model is a flexible system that allows 

complex modeling of nonlinear relationships. It is not 
adversely influenced by the interconnection of multiple 
variables, which is the case with patients with a hip frac-
ture [46]. Moreover, the ANN model can automatically 
adjust the weight in the network and self-correct, which 
produces a better prediction accuracy [47].

In contrast, LR is commonly used to predict the prob-
ability of occurrence of an event. It assumes that the out-
come has a linear relationship with the variables [48]. 
The LR method predefines the association among the 
predictors in a linear manner, which gives it the ability 
to explain the degree of causal relationship for each vari-
able [17, 49, 50]. However, if there is interplay between or 
among the factors or a nonlinear relationship exists, the 
LR model may be a less appropriate modeling option [51] 
for our dataset.

The NB algorithm is a classification technique that 
applies Bayes’ theorem by assuming that each variable is 
independent of each other [52]. This assumption makes 
the learning phase easier and simple to implement. How-
ever, the NB algorithm might be inaccurate in scenarios 
with increased bias for nonlinear problems. NB might 
also have a better performance in datasets that have a 
small sample size [53].

SVM utilizes a geometrical relationship between vari-
ables and predicts outcomes by identifying the boundary 
(or hyperplane) between the data of 2 classes and sepa-
rating them. It has a good performance in distinguish-
ing between 2 classes, provides flexibility for both linear 
and nonlinear problems, and has a low risk of overfitting 
from its regularization feature [54, 55]. However, inter-
pretation of the model is often difficult [56, 57].

The KNN creates decision boundaries to separate dif-
ferent classes [58]. Its advantage is that it is simple to 
implement and easy to understand. It also utilizes a 
memory-based approach and is capable of being quickly 
trained with a new dataset. However, if the K value is not 
appropriately chosen, the model has a high risk of overfit-
ting [59, 60].

Although most machine learning approaches offer flex-
ibility in solving sophisticated connections between vari-
ables and outcomes, interpretation problems can arise 
and present a challenge to implementation [61]. One 
way to explore how each predictor affects the outcome of 
interest is to apply the Shapley (SHAP) values to rank the 
predictors according to their contribution to a model [35, 
36]. In Fig. 3, the SHAP-value graph illustrates the value 
of the top 20 variables and their impact on the predic-
tions of the RF model. It explains why a high CCI score 
increased the predicted 1-year mortality. CCI scores 
are calculated by considering multiple comorbidities of 
patients, and the scoring system has been validated to 
predict 1-year mortality [62]. CCI scores have also been 
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reported to be related to reduced survival in women after 
suffering hip fracture [63]. As a result, the CCI score 
became the most influential characteristic in our model. 
Furthermore, dementia, lung disease, heart disease, and 
BMI were found to be important predictive factors for 
1-year mortality. When we compared the characteris-
tics of the patients who died and those who survived, all 
characteristics differed significantly, other than BMI and 
gait aid. All of these statistically different characteristics 
had also been reported to be significantly associated with 
post-fragility fracture mortality by other studies. The sig-
nificant differences we found in almost all factors sup-
port those previous findings and emphasize the essential 
predictive value of the factors. Advanced age and male 
sex were significant predictors of mortality [29–31]. A 
difference in mortality was observed between operative 
and nonoperative treatments [4]. Multiple comorbidi-
ties and preoperative mobility were also reported to be 
associated with death after hip fracture [8, 32]. However, 
despite a trend toward an improvement in the mortality 
rate and increased knowledge and awareness of these fac-
tors, a recent systematic review found that the mortality 
rate within 1 year of a hip fracture remains as high as 22% 
[64]. The development of a tool that can combine multi-
ple variables into a single prediction model would be of 
great utility to clinicians. With advances in the machine 
learning approach, we can train and test models with 
datasets to recognize patterns that would otherwise be 
hidden in complex relationships between variables [65].

Various machine learning models for mortality predic-
tion in hip fracture patients have been proposed [17–21, 
23, 24, 66]. Unlike most previous studies, we investigated 
only hip fractures from low-energy trauma, and we did 
not exclude patients aged less than 65  years because 
osteoporotic hip fracture can occur at the age of 50 [67]. 
We also included variables, such as different kinds of hip 
fracture (ie, neck, intertrochanteric, and subtrochanteric 
fracture of the femur) and whether the patient received 
operative or nonoperative treatment. Although most 
hip fractures are currently managed operatively [68], 
there is a proportion of patients who are managed non-
operatively (eg, hip fracture patients whose pre-injury 
status was nonambulatory, and patients with an already 
low probability of survival). A recent systematic review 
showed that nonoperative treatment was associated with 
higher rates of morbidity and mortality [69], which fur-
ther emphasizes the need for special attention to prevent 
complications in this group of patients.

Our machine-learning-developed model serves as 
a screening tool for the identification of high-risk 
patients and provides information that aids clinical 
decision-making. For instance, a prediction of death 
within 1  year would encourage physicians to develop 

an intensive treatment plan and prepare the resources 
needed for high-risk patients. These actions and 
interventions would be expected to reduce complica-
tions and improve patient survival. To identify at-risk 
patients with high accuracy, machine learning algo-
rithms (eg, Gradient Boosting and Random Forests) 
can be used to develop models with acceptable predic-
tive performance. The prediction tool can also be used 
to counsel patients and caregivers and encourage them 
to comply with the medical actions and interventions 
considered necessary.

Limitations
This study is not without limitations. Like other hos-
pitals, our center admits patients directly from their 
homes after suffering a hip fracture. However, being a 
tertiary care center, our hospital also accepts patients 
with very high-risk comorbidities who have been 
transferred from primary hospitals that do not have 
the resources needed for their treatment. This could 
lead to a selection bias. First, patients with severe 
comorbidities who are transferred to our hospital have 
a higher risk of mortality than the general population. 
In addition, any increase in the duration before surgery 
resulting from delays in transferring the patients to 
our hospital only exacerbates the risk of mortality [70]. 
However, we did not incorporate the time gap between 
fracture and hospital admission into our model and 
this could contribute to another potential limitation.

Second, our data were drawn from only a single 
center with a relatively small sample. This may have 
resulted in overfitting of the models. Therefore, exter-
nal validation is essential to confirm the predictive 
ability of our 1-year mortality prediction tool. It is 
important to note that each center has different proto-
cols for treating patients with hip fractures. This may 
also help explain the heterogeneity in the outcomes of 
earlier studies.

Finally, it should be noted that there are other factors 
that influence outcomes that were not included in our 
study, such as complications in the hospital and after dis-
charge. These may prove to have some value in predicting 
mortality after hip fracture.

Conclusions
Our machine learning approach facilitated the success-
ful development of an accurate model to predict 1-year 
mortality after fragility hip fracture. Several machine 
learning algorithms (eg, Gradient Boosting and Ran-
dom Forest) had the potential to provide high predic-
tive performance, based on the clinical parameters of 
each patient. The 5 most influential clinical variables in 
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the prediction model were the CCI score, heart disease, 
BMI, dementia, and lung disease. The web application 
is available at www.​hippr​edict​ion.​com. External valida-
tion in a larger group of patients or in different hospital 
settings is warranted to evaluate the clinical utility of 
this tool.
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