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Abstract

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder that affects
upper and lower motor neurons; however, its pathomechanism has not been fully elucidated. Using a com-
prehensive phosphoproteomic approach, we have identified elevated phosphorylation of Collapsin response
mediator protein 1 (Crmp1) at serine 522 in the lumbar spinal cord of ALS model mice overexpressing a
human superoxide dismutase mutant (SOD1G93A). We investigated the effects of Crmp1 phosphorylation and
depletion in SOD1G93A mice using Crmp1S522A (Ser522!Ala) knock-in (Crmp1ki/ki) mice in which the S522
phosphorylation site was abolished and Crmp1 knock-out (Crmp1�/�) mice, respectively. Crmp1ki/ki/SOD1G93A

mice showed longer latency to fall in a rotarod test while Crmp1�/�/SOD1G93A mice showed shorter latency
compared with SOD1G93A mice. Survival was prolonged in Crmp1ki/ki/SOD1G93A mice but not in
Crmp1�/�/SOD1G93A mice. In agreement with these phenotypic findings, residual motor neurons and
innervated neuromuscular junctions (NMJs) were comparatively well-preserved in Crmp1ki/ki/SOD1G93A

mice without affecting microglial and astroglial pathology. Pathway analysis of proteome alterations
showed that the sirtuin signaling pathway had opposite effects in Crmp1ki/ki/SOD1G93A and Crmp1�/�/SOD1G93A

mice. Our study indicates that modifying CRMP1 phosphorylation is a potential therapeutic strategy for ALS.
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Significance Statement

Collapsin response mediator protein 1 (CRMP1) is an intracellular molecule that mediates semaphorin 3A
(Sema3A) signaling. Phosphoproteomic analysis showed that the semaphorin neuronal repulsive signaling path-
way, which includes Crmp1 phosphorylation at Ser522, is upregulated in SOD1G93Amice that serve as a model of
amyotrophic lateral sclerosis (ALS). While deleting both copies of the Crmp1 gene (Crmp1�/�) leads to deteriora-
tion of motor function in SOD1G93Amice, phospho-null Crmp1 (Crmp1ki/ki) improves motor function while prevent-
ing motor neuron loss and denervation of neuromuscular junctions (NMJs). Among the Sema3A-mediated axon
guidance pathways, we propose that CRMP1 phosphorylation is a potential therapeutic target for ALS.
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Introduction
Amyotrophic lateral sclerosis (ALS) is a rapidly progres-

sive and fatal neurodegenerative disorder that mainly af-
fects motor neurons in the brain and spinal cord (Taylor et
al., 2016). Only a few treatments with limited efficacy are
currently available (Kim and Taylor, 2017). Since muta-
tions in SOD1, which encodes superoxide dismutase 1
(SOD1), were first discovered to cause ALS in 1993
(Rosen et al., 1993), at least 27 genes have been found to
be definitively associated with familial ALS, including
transactive response DNA binding protein (TARDBP),
fused in sarcoma (FUS) and chromosome 9 open reading
frame 72 (C9ORF72; Chia et al., 2018).
Some of the pathogenic proteins responsible for neuro-

degenerative diseases have been shown to regulate and
modulate diverse protein functions and intracellular path-
ways through posttranslational modifications such as
phosphorylation, acetylation, and methylation. In spino-
cerebellar ataxia type 1 (SCA1), phosphorylation of atax-
in-1, the causative protein for SCA1, plays a critical role in
ataxin-1 aggregation (Emamian et al., 2003). Similarly,
phosphorylation or acetylation of huntingtin alters its ag-
gregation properties and neuronal toxicity in Huntington’s
disease (HD; Arbez et al., 2017). In ALS, cytoplasmic ag-
gregates of RNA-binding proteins such as phosphoryl-
ated TDP-43 (encoded by TARDBP) or FUS constitute a
well-known, major pathologic marker for ALS. Acetylation
of TDP-43 inhibits RNA binding and promotes the aggre-
gation of phosphorylated TDP-43 (Cohen et al., 2015). By
contrast, phosphorylation of FUS inhibits FUS aggrega-
tion and ameliorates FUS-related cytotoxicity, while loss
of arginine methylation of FUS promotes FUS aggregation
(Hofweber et al., 2018). Beyond the context of these pro-
teins that directly cause disease, the importance of post-
translational modifications is evidenced by the finding
that removing phosphorylation sites of neurofilament (NF)
delays disease onset and prolongs survival in ALS model

mice (Lobsiger et al., 2005). However, there is currently a
limited understanding of how protein phosphorylation
contributes to ALS pathogenesis. We therefore con-
ducted phosphoproteomic analysis in an ALS model
using the SOD1G93A mouse line, which is the most exten-
sively used type of mouse in the study of ALS.
Through this analysis, we identified Collapsin response

mediator protein 1 (Crmp1), previously not known to
be highly phosphorylated in ALS model mice. CRMP1
belongs to a family of neuronal phosphoproteins (the
CRMPs) and was originally identified as an intracellular
protein that mediates semaphorin 3A (Sema3A) signaling
(Goshima et al., 1995). CRMPs have been correlated with
neurologic disorders such as Alzheimer’s disease (Uchida
et al., 2005; Petratos et al., 2008; Ikezu et al., 2020), HD
(Stroedicke et al., 2015), and schizophrenia (Yamashita et
al., 2013; Nakamura et al., 2018; Nomoto et al., 2021).
Additionally, Sema3A-CRMPs signaling has been sug-
gested to be involved in ALS pathogenesis because
Sema3A is upregulated in the motor cortex of ALS pa-
tients and the terminal Schwann cell adjacent to neuro-
muscular junctions (NMJs) in SOD1G93A mice (De Winter
et al., 2006; Körner et al., 2016). Moreover, elevation of
both Crmp4 and Crmp4-dynein complex leads to neuro-
nal death in ALS model mice (Duplan et al., 2010; Maimon
et al., 2021) while the inhibition of Crmp2 phosphorylation
ameliorates the motor phenotype of SOD1G93A mice
(Numata-Uematsu et al., 2019). However, it remains uncer-
tain whether CRMP1 is involved in the pathomechanism of
ALS. The only available data on CRMP1 in ALS is that Crmp1
and Crmp4 are highly abundant in the interactome of M337V
mutant compared with wild-type (WT) TDP-43 (Feneberg et
al., 2020). CRMP1 regulates neuronal cell migration, dendritic
spine development, and synaptic plasticity through CRMP1
phosphorylation. CRMP1 and CRMP2 are phosphorylated
by cyclin-dependent kinase 5 (Cdk5) at Ser522 (Cole et al.,
2006; Yamashita et al., 2007). This phosphorylation is essen-
tial for mediating intracellular Sema3A signaling and primes
the subsequent phosphorylation of Thr509, Thr514, and
Ser518 residues by glycogen synthase kinase 3b (GSK3b or
Gsk3b in mouse; Uchida et al., 2005; Cole et al., 2006).
CRMP1 is also phosphorylated by Fyn at Tyr504 but not
Ser522 (Kawashima et al., 2021). In this study, we investi-
gated the effects of Crmp1 on disease progression in an ALS
mouse model, and found that Crmp1 phosphorylation at
Ser522 is a key event in motor impairment in ALS.

Materials and Methods
Ethics statement
This study was conducted in strict accordance with the

Yokohama City University Guide for the Care and Use of
Laboratory Animals (permission numbers F-A-19-030 and F-
A-16-069), and experimental protocols were approved by the
Independent Review Boards of Yokohama City University
(permission numbers F-D-21-49 and F-D-18-70).

Animal
C57BL/6N mice for producing zygotes and MCH-ICR

mice to act as recipient and foster mothers were pur-
chased from CLEA Japan.
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Generation ofCrmp1ki/ki, Crmp12/2, Crmp1ki/ki/
SOD1G93A, andCrmp12/2/SOD1G93A mice
To generate Crmp1ki/ki mice in which Ser522 was re-

placed with nonphosphorylatable Ala, we employed
CRISPR/Cas9 technology. Crmp1ki/ki mice were con-
structed according to the targeting strategy outlined in
Extended Data Figure 2-1A. In addition to the Ser522Ala
(S522A) substitution, we introduced a NarI digestion
site without altering the amino acid sequence to facilitate
genotyping. The single guide RNA (sgRNA) targeting
mouse Crmp1 was designed using CHOPCHOP (http://
chopchop.cbu.uib.no). The sequence used was as fol-
lows: 59-GTGTTTAGAAGGCGAGGATT-39. The template
DNA for in vitro transcription was generated by PCR using
a forward primer that consists of the T7 promoter se-
quence (59-TTAATACGACTCACTATAGG-39) followed by
the sgRNA sequence and scaffold sequence(59-GTTTT
AGAGCTAGAAATAGCA-39), and a reverse primer (59-
CACCGACTCGGTGCC-39). Plasmid DR274 (plasmid
#42250; Addgene) was used as the PCR template. The
PCR product was purified with the QIAquick Gel Extraction
kit (#28706; QIAGEN) and used to synthesize sgRNA using
the MEGAshortscript T7 Transcription kit (Thermo Fisher
Scientific).
sgRNA was purified by phenol-chloroform extraction

and ethanol precipitation, and resuspended in OPTI-
MEM (Thermo Fisher Scientific). Chemically synthesized
single-stranded DNA with the following sequence was
used as donor DNA (Nihon Gene Research Laboratories):
59-GCCAGCTACACCCAAACATGCTGCTCCTGCTCCTT
CTGCCAAATCGGCGCCTTCTAAACACCAACCCCCAC
CCATCCGGAACCTCCACCAGTCC-39. The mutant se-
quence to be introduced is underlined. A mixture of
sgRNA, Cas9 protein (#632641; Clontech), and donor oli-
gonucleotide was introduced via electroporation into pronu-
clear stage zygotes generated by IVF. Electroporated embryos
were cultured overnight and transferred into the oviducts
of 0.5 dpc (days post cotium) pseudopregnant females.
Heterozygous Crmp1ki/1 males were mated with heter-

ozygous Crmp1 ki/1 females to generate homozygous
Crmp1ki/ki mice. Heterozygous, homozygous, and WT al-
leles were detected by PCR with the following primers:
59-TGTCTTAGCCTCCCTCCTTT-39 and 59-ACCCGCCT
AGACTGTGTCTT-39. PCR cycling conditions were as
follows 5min at 95°C; 1min at 95°C, 1min at 57°C, and
2min at 72°C for 38 cycles, followed by 7min at 72°C.
For PCR, BIOTAQ HS DNA Polymerase (#BIO-21047;
Meridian) and Ampdirect® Plus (#P/N 241-08800-98;
Shimadzu) were mixed with standard PCR reagents. To
distinguish each genotype, PCR products were digested
with NarI (#R0191; New England BioLabs) and visualized
by electrophoresis on 2% agarose (Extended Data Fig.
2-1B). Sanger sequencing was performed to verify suc-
cessful introduction of either homozygous or heterozy-
gous S522A mutation in Crmp1 (Extended Data Fig. 2-
1C). Using brain lysates, we verified suppression of
Ser522 phosphorylation in Crmp1ki/ki mice (Extended
Data Fig. 2-1D).
Animals were housed two to five per square plastic

cage with wire lids under standard laboratory conditions

(236 2°C) on a light/dark cycle (light period, 5 A.M. to 7 P.
M.) and free access to food and water. Crmp1-deficient
(Crmp1�/�) mice were generated as described previously
(Charrier et al., 2006). SOD1G93A mice were purchased
from The Jackson Laboratory (Gurney et al., 1994). We
generated Crmp1�/�/SOD1G93A and Crmp1ki/ki/SOD1G93A

mice by crossing SOD1G93A mice with Crmp1�/� and
Crmp1ki/ki mice, respectively.

Behavioral analysis
Body weight measurements and rotarod test were per-

formed weekly. For Crmp1�/�/SOD1G93A (n=20, 10 males
and 10 females) and Crmp1ki/ki/SOD1G93A mice (n=20, 10
males and 10 females), behavioral analysis began at six
weeks of age (6 w) and continued until 26 w. An accelerating
rotarod test was performed, using rotation speeds of 5–
40 rpm for 300 s. Mice underwent two trials with an inter-
trial interval of .20min and measurements of the time
elapsed to fall from the rotating cylinder were averaged and
recorded (Numata-Uematsu et al., 2019). Survival was de-
fined based on the age at which mice could no longer roll
over within 30 s after being placed on their back.

Immunohistochemistry
SOD1G93A, Crmp1�/�/SOD1G93A, Crmp1ki/ki/SOD1G93A,

and WT mice were anesthetized with 0.3mg/kg of me-
detomidine, 4.0mg/kg of midazolam, and 5.0mg/kg of
butorphanol (M/M/B:0.3/4/5) and killed at 20 w (Kawai
et al., 2011). Mice were perfused with PBS followed by
4% paraformaldehyde (PFA) in PBS. Lumbar spinal
cords were dissected and tissues were immediately
fixed in 4% PFA and embedded in paraffin. Blocked spi-
nal cords were cut into 6-mm cross-sections that were
later stained with ChAT (1:100, #AB144P, RRID:AB_
2079751; Millipore) for quantitative analysis of motor
neurons (WT: n = 4, all females; SOD1G93A: n = 7,
5 males and 2 females; Crmp1�/�/SOD1G93A: n = 8,
5 males and 3 females; Crmp1ki/ki/SOD1G93A: n = 7, 3
males and 4 females) and glial cell evaluations (WT:
n = 5, 1 male and 4 females; SOD1G93A: n = 5, 3 males
and 2 females; Crmp1�/�/SOD1G93A: n = 5, 3 males and
2 females; Crmp1ki/ki/SOD1G93A: n = 5, 2 males and 3
females).
For immunofluorescence staining, paraffin-embedded

sections were permeabilized with 0.1% Triton X-100 in
PBS for 20min, blocked with 5% bovine serum for
30min, and incubated overnight with rat anti-rabbit
Iba1 polyclonal antibody (1:400, #019-19741, RRID:
AB_839504; FUJIFILM Wako), anti-mouse glial fibrillary
acidic protein (GFAP) monoclonal antibody (1:400,
#G3893, RRID:AB_477010; Sigma-Aldrich), anti-mouse
neuronal nuclei (NeuN) monoclonal antibody (1:400,
#MAB377, RRID:AB_2298772; Millipore), and anti-rab-
bit phospho-Ser522 Crmp1/2 (1:400; FUJIFILM Wako;
Uchida et al., 2005). Sections were subsequently incu-
bated with secondary antibody conjugated with either
Alexa Fluor 488 (1:1000, #A-11034, RRID:AB_2576217;
Thermo Fisher Scientific) or Alexa Fluor 568 (1:1000,
#A-11019, RRID:AB_143162; Thermo Fisher Scientific).
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Immunostained cells were analyzed in four random
fields/sections using a deconvolution fluorescence mi-
croscope system (BZ-X800; Keyence).

Assessment of NMJ innervation
Tibialis anterior (TA) muscles were dissected and fixed

with 2% PFA in PBS for 20min at room temperature.
Fixation was followed by cryoprotection with 20% sucrose
in PBS overnight. TA muscles were frozen in Tissue-Tek®

O.C.T. Compound (Sakura Finetek), and 40-mm-thick sec-
tions were made using a cryostat (Tissue-Tek® Cryo3®;
Sakura Finetek). Three sections were collected per ani-
mal on glass slides. Muscle sections were stained with
mouse anti-synaptic vesicle protein (1:100, #SV2, RRID:
AB_2315387; DSHB) and mouse anti-NFs (1:2000,
#2H3, RRID:AB_531793; DSHB) overnight at 4°C. Alexa
Fluor 594-labeled a-bungarotoxin (a-BTX; 1:500, #B-
13423; Thermo Fisher Scientific) and mouse Alexa Fluor
488 (1:500, #A-11017, RRID:AB_2534084; Thermo
Fisher Scientific) were subsequently added to the sam-
ples, followed by overnight incubation at room tempera-
ture. Images were obtained with a deconvolution
fluorescence microscope system (BZ-X800, BZ-X9000;
Keyence). Colocalization of NF and a-BTX was verified
by creating z-stack images at 40�magnification.
The percentage of neuromuscular innervation was meas-

ured at 42-96 randomly selected synaptic sites per mouse
(n=3 in each group, all males). Endplate occupancy was de-
termined by assessing the extent of overlap of axon terminal
signal (labeled by SV2/2H3) with endplate signal (labeled by
a-BTX). The degree of denervation was determined as
previously described (Numata-Uematsu et al., 2019).
Endplates were scored as “denervated” when,5% of the
endplate was deemed occupied by the axon terminal;
“fully innervated” means .95% occupancy; “partially in-
nervated”means intermediate occupancy.

Western blotting
Brain (n=1 in each group, all males) and spinal cord

samples (n=4 in each group, all males) were homoge-
nized in lysis buffer (20 mM Tris-HCl, pH 8.0, 150 mM

NaCl, 1% Nonidet P-40) supplemented with one tablet
of cOmplete, Mini1% phosphatase inhibitor cocktail 2
(# P5726; Sigma-Aldrich) and 1% phosphatase inhibitor
cocktail 3 (#P0044; Sigma-Aldrich). Lysates were centri-
fuged at 10,000 � g for 20min at 4°C, and supernatants
were normalized to total protein concentration. The sam-
ples were used for Western blotting with rabbit anti-
phosphoS522 Crmp1/2 (1:5000; FUJIFILM Wako; Uchida
et al., 2005), rabbit anti-Crmp1 (1:5000, #ab199722;
Abcam), and mouse anti-b -actin (1:10,000, #3700, RRID:
AB_2242334; Cell Signaling Technology) antibodies.

Dorsal root ganglion (DRG) culture and growth cone
collapse assay
A primary culture of mouse DRG neurons was prepared as

previously described (Kawashima et al., 2021). Briefly, DRGs
were dissected from embryonic day 14–15 WT (C57B6/J)
and Crmp1ki/ki mice and plated on glass-bottom culture

dishes precoated sequentially with poly-L-lysine (100mg/
ml; #P4832; Sigma-Aldrich) and mouse laminin (8mg/ml;
#354232; Corning). DRG explants were subsequently cul-
tured in 250ml/well of Neurobasal medium (#21103049;
Thermo Fisher Scientific) supplemented with 2% B-27
(#17504044; Thermo Fisher Scientific), 1 mM GlutaMax
(#35050061; Thermo Fisher Scientific), 20 ng/ml NGF,
50 U/ml penicillin, and 50mg/ml streptomycin for 1 d at
37°C. The explants were stimulated with either 0.5, 1, or
3 U/ml purified recombinant chick Sema3A for 10min at
37°C and fixed with PBS containing 2% formaldehyde and
10% sucrose. Growth cones were stained with Alexa Fluor
488 phalloidin (#A12379; Thermo Fisher Scientific). The
growth cones without lamellipodia or filopodia were
scored as collapsed. In each condition, .50 growth
cones were examined. Sema3A at 1 U/ml concentra-
tion induced 50% collapsed growth cones of chick E7
DRG neurons (Nakamura et al., 2014). Growth cone
images were captured with a BZ-X800 microscope at
40�magnification (Keyence).

Proteomics
Lumbar spinal cords were isolated from 20-week-old

mice that were first sedated by anesthesia with M/M/
B:0.3/4/5 and killed thereafter by rapid decapitation.
Dissected spinal cords were stored at �80°C until use.
Lumbar spinal cords were sonicated on ice at 20 kHz for
30 s a total of four times in lysis buffer [50 mM NH4HCO3,
8 M urea, 4% sodium deoxycholate, 1% phosphatase in-
hibitor cocktail 2 (#P5726; Sigma-Aldrich), 1% phospha-
tase inhibitor cocktail 3 (#P0044; Sigma-Aldrich), 1%
protease inhibitor mix (#03969-21; Nacalai Tesque)] using
a Branson cell disruptor. Cleared spinal lysate was ob-
tained by centrifugation at 15,000 � g for 15min at 4°C.
Proteins were precipitated with four volumes of cold ace-
tone and resuspended in 200ml of lysis buffer. A total of
600-mg protein extracted from each spinal sample was
reduced with 10 mM dithiothreitol and alkylated with
12.5 mM iodoacetamide. Proteins were diluted with three
volumes of 50 mM NH4HCO3 before digestion with trypsin
(Promega) at an enzyme:substrate ratio of 1:20 overnight
at 37°C. Sodium deoxycholate was removed from sam-
ples using the phase-transfer surfactant method using
ethyl acetate (Masuda et al., 2008). After desalting using
an OASISHLB 1 ml (Waters), phosphopeptide enrichment
was performed with a homemade TiO2-C8 tip column
using solution compositions specified by the Titansphere
Phos-TiO kit (GL Sciences). Our homemade TiO2-C8 tip-
column was made from a 200-ml pipette tip (D200;
Gilson) by layering 3mg of TiO2 particles (GL Sciences)
on top of C8 disk filters (Empore C8; 3M Corporation).
After drying, the peptides obtained were dissolved in
0.1% formic acid and 2% acetonitrile (ACN) and ana-
lyzed using a Q-Exactive mass spectrometer (Thermo
Fisher Scientific) equipped with an UltiMate 3000 LC
system (Thermo Fisher Scientific). Peptides were loaded
on a trap column (100mm� 20 mm, C18, 5mm, 100Å;
Thermo Fisher Scientific) and subsequently separated
on a Nano HPLC capillary column (75mm� 180 mm,
C18, 3mm; Nikkyo Technos). Buffer A was 0.1% formic
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acid in 2% ACN while buffer B was 0.1% formic acid in
95% ACN. Peptides were eluted with a linear gradient of
2–33% buffer B for 120min.
Label-free quantitative analysis was conducted using

the software Progenesis QI for proteomics (Nonlinear
Dynamics). For protein and peptide identification, peak
lists were created using the software Progenesis QI for
proteomics and searched against mouse protein se-
quences in the UniProtKB/Swiss-Prot database http://
www.uniprot.org/ using the MASCOT software (Matrix
Science). Basic search parameters were as follows: tryp-
sin digestion with two missed cleavages permitted; pep-
tide mass tolerance, 65 ppm; fragment mass tolerance,
60.05Da; usual variable modifications, methionine oxi-
dation, cysteine carbamidomethylation, protein N-ter-
minal acetylation, and N-terminal carbamylation. For
phosphoproteomic analysis, additional variable modifica-
tion parameters for analyzingMS data were phosphorylation
of serine, threonine, and tyrosine. Identifications were fil-
tered at a 1% false discovery rate and significance peptide
score�30. Protein interaction analysis was conducted with
the online tool STRING (https://string-db.org, default set-
tings; PMID 15608232). Ingenuity pathway analysis (IPA;
content version: 60467501/62089861, release date: 2020-
11-19/2021-02-17; QIAGEN) was used for pathway analy-
sis. Females and males were used for phosphoproteomics
and proteomics, respectively.

Pathway analysis
Genes mapped from significantly upregulated or down-

regulated peptides and phosphorylated peptides were
used to identify cellular and molecular processes, path-
ways and clusters using STRING and IPA software.
Activation z scores were calculated using IPA’s z score al-
gorithm to predict the overall activation or inhibition of the
functional cellular processes/pathways and upstream
regulators identified. A positive z score implies an overall
predicted activation of the process/pathway/upstream
regulator, whereas a negative z score implies an overall
predicted inhibition or downregulation of the pathway/
process/upstream regulator. IPA considers z scores of�2
indicative of significant activation while z scores ��2 are
indicative of inhibition. Cellular processes/upstream regu-
lators with no z scores imply that IPA cannot generate
prediction states for these functionalities.

Statistical analysis
Statistical evaluation of behavioral analysis, immunohisto-

chemistry, and Western blotting results was performed using
Prism 8 (GraphPad Software). For Rotarod test and body
weight data, a two-way ANOVA with Fisher’s LSD test was
used at each age. The Kaplan–Meier methodwas used to an-
alyze survival and onset in each SOD1G93A mouse strain.
Immunohistochemistry and Western blotting results were
analyzed using either ImageJ or ImageQuant software (GE
Healthcare).

Data availability
All mass spectrometry proteomics data have been de-

posited with the ProteomeXchange Consortium (http://

www.proteomexchange.org) via the jPOST (https://jpostdb.
org) partner repository with the dataset identifier PXD030651
(https://repository.jpostdb.org/preview/13182122262802fe459f41,
access key: 5727). All data are fully available without
restriction.

Results
Phosphoproteomic analysis of the spinal cord of
SOD1G93A mice at 20weeks of age
To characterize posttranslational changes associated

with ALS, we determined the phosphoproteomic profile of
the spinal cord of SOD1G93A (n=5) mice and compared it
with that of WT (n=4) mice at 20weeks of age. Canonical
pathway analysis using IPA identified semaphorin neuro-
nal repulsive signaling pathway as one of the major path-
ways affected in the SOD1G93A mouse spinal cord (Fig.
1A). Thirteen upregulated and six downregulated phos-
phorylation sites were specified in 11 and 4 proteins
that make up this pathway, respectively (Fig. 1B).
Signaling proteins downstream of Sema3A included
Crmp1, Crmp2, Crmp5, Gsk3b , and Farp1. For Crmp1
in particular, phosphorylation was significantly higher
at both Ser8 and Ser522 (Fig. 1B). The interactome of
upregulated phosphopeptides (fold change .1.5, p ,
0.05) in SOD1G93A mice was visualized by STRING:
functional protein association networks (https://string-
db.org/; Fig. 1C). We again found changes in phospho-
proteins associated with axon guidance, including
Crmp1, Crmp5, GSK3b , Cfl1, and Rock1. Sema3A sig-
naling has a well-established relationship with Crmp1
phosphorylation at Ser522, but not at Ser8. Therefore,
in this study, we focused on the role of CRMP1 Ser522
phosphorylation in ALS pathogenesis.

The effects of total depletion of Crmp1 and of blocking
Crmp1 phosphorylation at Ser522 on phenotypes of
ALSmice
To determine the roles of total CRMP1 and CRMP1

phosphorylation at Ser522 in ALS pathogenesis, we em-
ployed Crmp1 knock-out (Crmp1�/�) mice (Cole et al.,
2006) and Crmp1 knock-in (Crmp1ki/ki) mice, the latter of
which we newly established by introducing the S522A
mutation to block Crmp1 phosphorylation at Ser522
using the CRISPR/Cas9 system (Extended Data Fig. 2-
1A). Sanger sequencing confirmed successful introduc-
tion of the mutation (Extended Data Fig. 2-1B,C), and
Western blotting failed to detect Crmp1-Ser522 phospho-
rylation in Crmp1ki/ki mice (Extended Data Fig. 2-1D).
Increased Crmp2-Ser522 phosphorylation in Crmp1ki/1

and Crmp1ki/ki mice compared with WT mice might be at-
tributed to the compensatory effect of Crmp2.
Next, we analyzed Sema3A response in cultured DRG

neurons from Crmp1ki/ki mice. The Sema3A-induced
growth cone collapse response of Crmp1ki/ki DRG neu-
rons at E14–15 was significantly lower than that of WT
neurons measured at 1 and 3 U/ml Sema3A (F(1,56) =
20.67, 0.5 U/ml: p=0.067, 1 U/ml: p=0.008, 3 U/ml:
p=0.006, two-way repeated measures ANOVA followed
by Bonferroni’s multiple-comparisons test; Extended
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Data Fig. 2-1E,F). This result indicates that blocking
Crmp1 phosphorylation at Ser522 attenuates the Sema3A
signal in mouse DRG neurons. Furthermore, we evaluated
the motor function of Crmp1ki/ki mice and no significant
differences were observed between WT and Crmp1ki/ki mice
in a rotarod test (Extended Data Fig. 2-1G). Crmp1�/� mice
have been shown to have normal motor function (Yamashita
et al., 2013).
These Crmp1 mutant mice were subsequently crossed

with SOD1G93A mice and resultant Crmp1�/�/SOD1G93A

and Crmp1ki/ki/SOD1G93A mice were compared with
SOD1G93A mice. We used Western blotting to measure
the levels of phospho-Crmp1-Ser522 and total Crmp1 in
the spinal cord of these model mice at 20weeks of age.
The levels of phospho-Crmp1-Ser522 normalized to total
Crmp1 were higher in SOD1G93A mice (t(6) = 8.797,
p=0.0001, unpaired t test) than in WT mice (Extended
Data Fig. 2-2A,B), in agreement with our phosphoproteo-
mics results, and they were completely suppressed in
Crmp1 mutant mice. By contrast, total Crmp1 was re-
duced in SOD1G93A mice (F(2,9) = 0.092, p=0.042, one-
way ANOVA with Uncorrected Fisher’s LSD), absent from
Crmp1�/�/SOD1G93A mice, but at WT levels in Crmp1ki/ki/
SOD1G93A mice (Extended Data Fig. 2-2A,C). To investi-
gate the types of cells expressing phospho-Crmp1, we
performed immunofluorescence analysis in the ventral
horn of the lumbar spinal cord of SOD1G93A mice at
20weeks of age using anti–phospho-Ser522 Crmp1/2
antibody. Phospho-Crmp1/2-Ser522 was colocalized
with NeuN (neuron; Extended Data Fig. 2-2D) but not with
GFAP (astrocyte; Extended Data Fig. 2-2E).
Phenotypic analysis revealed that selective inhibition of

Crmp1 phosphorylation at Ser522 in Crmp1ki/ki/SOD1G93A

mice, but not the complete knock-out of Crmp1 in
Crmp1�/�/SOD1G93A mice, prolonged survival duration
relative to SOD1G93A mice (median survival: SOD1G93A,
167 d; Crmp1�/�/SOD1G93A, 173 d; Crmp1ki/ki/SOD1G93A

180 d, p=0.044 with log-rank test; Fig. 2A,B). In detail,
the disease duration in SOD1G93A, Crmp1�/�/SOD1G93A,
and Crmp1ki/ki/SOD1G93A mice was 54, 63, and 65 d, re-
spectively. Moreover, the disease duration was longer in
Crmp1ki/ki/SOD1G93A mice than in SOD1G93A mice
(p=0.039), but the disease onset in all three types of mice re-
mained unchanged (112, 102, and 112 d, respectively; Fig.
2C–E). Crmp1ki/ki/SOD1G93A and Crmp1�/�/SOD1G93A mice
showed longer (6 w; p=0.049, 21 w; p=0.032, 22 w;
p=0.004, 23 w; p=0.019, 24 w; p=0.025 by two-way
ANOVA with Fisher’s LSD test) and shorter (18 w; p=0.011)
latency to fall in rotarod test, respectively, compared with
SOD1G93A mice (Fig. 2F). Genetic modifications of Crmp1 in
SOD1G93A mice did not affect body weight (Fig. 2G). These

results indicate that abolishing Crmp1 phosphorylation at
Ser522, without depleting Crmp1 altogether, may ameliorate
the phenotypes of SOD1G93Amice.

Pathologic evaluations ofCrmp12/2/SOD1G93A and
Crmp1ki/ki/SOD1G93A mice
To examine the effect of Crmp1 depletion and selective

inhibition of Crmp1 phosphorylation at Ser522 on mutant
SOD1–induced neurodegeneration in mice, we measured
the number of residual motor neurons in the anterior horn
of the lumbar spinal cord from WT (n=4), SOD1G93A

(n=7), Crmp1�/�/SOD1G93A (n=8), and Crmp1ki/ki/
SOD1G93A (n=7) mice at 20weeks of age. The loss of
motor neurons in Crmp1�/�/SOD1G93A mice was likely to
be more evident than in SOD1G93A mice, but the difference
was not statistically significant (p=0.871 by one-way ANOVA
with Tukey’s; Fig. 3A,D). Compatible with our phenotypic
findings, the numbers of motor neurons were significantly
preserved in Crmp1ki/ki/SOD1G93A mice (WT vs Crmp1ki/ki/
SOD1G93A; p=0.496, SOD1G93A vs Crmp1ki/ki/SOD1G93A;
p=0.0253 by one-way ANOVA with Tukey’s; Fig. 3A,D).
However, proliferation of microglia and astroglia showed no
significant differences in every SOD1G93A mouse strain used
in this study (Fig. 3B,C,E,F).
We also evaluated the NMJ in the TAmuscle of SOD1G93A,

Crmp1�/�/SOD1G93A, and Crmp1ki/ki/SOD1G93A mice.
Compared with NMJs of SOD1G93A mice (innervated:
42.26 6.3%, denervated: 32.06 1.0%), Crmp1ki/ki/
SOD1G93A mice showed more innervated (65.465.4%,
p = 0.038, by one-way ANOVA with Dunnett’s multiple
comparisons test) and fewer denervated NMJs (9.96 1.9%,
p=0.01, by one-way ANOVA with Dunnett’s multiple com-
parisons test) at 140 d, while Crmp1�/�/SOD1G93A mice
showed no significant difference (innervated: 42.96 6.4%,
denervated: 34.36 7.5%; Fig. 4A,B). These results further
support the notion that inhibiting phosphorylation of Crmp1
at Ser522 can ameliorate mutant SOD1-induced neurode-
generation inmice.

Total depletion of Crmp1 and blocking Crmp1
phosphorylation at Ser522 differentially regulated the
sirtuin signaling pathway in SOD1G93A mice
Finally, we investigated the molecular basis for differen-

tial clinical and pathologic phenotypes observed between
Crmp1�/�/SOD1G93A and Crmp1ki/ki/SOD1G93A mice. For
this purpose, we performed the proteomic analysis of
the lumbar spinal cord of Crmp1�/�/SOD1G93A and
Crmp1ki/ki/SOD1G93A mice in comparison with SOD1G93A

mice. Using IPA, we visualized the canonical pathways af-
fected in each SOD1G93A strain. The top 10 canonical

continued
Figure 1. Phosphoproteomic analysis of spinal cords from WT and SOD1G93A mice at 20weeks of age. A, Top 10 canonical path-
ways identified based on the molecules that were differentially expressed (max fold change.1.5, ANOVA p, 0.05) between WT
and SOD1G93A mice in phosphoproteomics. B, A list of phosphoproteins in semaphorin neuronal repulsive signaling pathway with
significant expression changes in the lumbar spinal cords of SOD1G93A mice compared with WT mice (max fold change 1.5;
p, 0.05). Phosphorylation sites, fold-change levels, and p-value are also shown. C, Protein–protein interaction (PPI) network of dif-
ferentially upregulated proteins in SOD1G93A mice visualized by STRING: https://string-db.org/. Red nodes are phosphoproteins as-
sociated with axon guidance in reactome pathway. The red arrow indicates Crmp1.
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pathways affected in Crmp1�/�/SOD1G93A and Crmp1ki/ki/
SOD1G93A mice are shown in Extended Data Figure 3-1A,B,
respectively. Extended Data Figure 3-1C shows the re-
sults of clustering analysis for SOD1G93A versus
Crmp1�/�/SOD1G93A mice and SOD1G93A versus Crmp1ki/ki/
SOD1G93A mice. Intriguingly, the sirtuin signaling pathway
was differently affected in Crmp1�/�/SOD1G93A (downregu-
lated) andCrmp1ki/ki/SOD1G93Amice (upregulated).

Discussion
The pathogenesis of ALS involves diverse pathways,

including oxidative damage, disruption of protein clearance,

mitochondrial dysfunction, apoptosis, axonal transport
defects, growth factor deficiency, glial cell pathology,
glutamate excitotoxicity, and disruptions in RNA me-
tabolism (Rothstein, 2009; Taylor et al., 2016).
In this study, we performed phosphoproteomic analysis

to comprehensively characterize specifically phosphoryl-
ated proteins in SOD1G93A ALS model mice and identified
semaphorin neuronal repulsive signaling pathway as one
of the major affected pathways (Fig. 1). Sema3A expres-
sion was previously shown to be elevated in the motor
cortex of ALS patients, although results were less distinct
in the spinal cord (Körner et al., 2016). Higher levels of
Sema3A in the terminal Schwann cells of SOD1G93A mice

Figure 2. Phenotypic comparisons of SOD1G93A, Crmp1�/�/SOD1G93A, and Crmp1ki/ki/SOD1G93A mice. This figure is supported by
Extended Data Figures 2-1, 2-2. A, Kaplan–Meier survival curves for SOD1G93A (black), Crmp1�/�/SOD1G93A (blue), and Crmp1ki/ki/
SOD1G93A (red) mice. Median survival duration in SOD1G93A, Crmp1�/�/SOD1G93A, and Crmp1ki/ki/SOD1G93A mice was 167, 173,
and 180 d, respectively (the log-rank test, p=0.044). B, The comparative survival durations for three groups (two-way ANOVA,
*p,0.05). C, Kaplan–Meier curves for disease onset. D, Median disease onset in SOD1G93A, Crmp1�/�/SOD1G93A, and Crmp1ki/ki/
SOD1G93A mice was 112, 102, and 112 d, respectively, and the differences were not significant (the log-rank test, p=0.797). E,
Mean disease duration (days from onset to end stage). Mean disease duration in SOD1G93A, Crmp1�/�/SOD1G93A, and Crmp1ki/ki/
SOD1G93A mice was 54, 63, and 65 d, respectively. Moreover, the duration was longer in Crmp1ki/ki/SOD1G93A mice than in
SOD1G93A mice (one-way ANOVA with Fisher’s LSD test, p=0.039). F, Rotarod test. Crmp1ki/ki/SOD1G93A mice exhibited a signifi-
cant improvement in motor function at the late stage (21–24 w) compared with SOD1G93A mice, while Crmp1�/�/SOD1G93A showed
shorter latency to fall during the rotarod test at 18 w. Values are means6SD (SOD1G93A, n=20; Crmp1�/�/SOD1G93A, n=20;
Crmp1ki/ki/SOD1G93A, n=20). *,†p, 0.05, **p, 0.01 (two-way ANOVA with Fisher’s LSD test). G, Body weight. Significant differen-
ces were not observed between the three lines of model mice. N.S. = not significant.
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suppressed nerve terminal plasticity and induced motor
neuron death (De Winter et al., 2006). These past findings
strongly suggest that Sema3A signaling is involved in ALS
pathogenesis. Moreover, our phosphoproteomics analy-
sis of the spinal cord of SOD1G93A mice detected en-
hanced phosphorylation of Crmp1, Crmp5, GSK3b , and
Farp1, all downstream proteins involved in Sema3A sig-
naling (Fig. 1B). In particular, we focused on the enhanced
phosphorylation of Crmp1 Ser522, which was confirmed
by the significantly elevated ratio of phospho-Crmp1-
Ser522 to total Crmp1 in SOD1G93A mice compared with
WT mice in Western blotting (Extended Data Fig. 2-2B).
Because phospho-antibody against Ser522 has an

identical phosphorylation consensus motif for both

Crmp1 and Crmp2, it can discriminate these two Crmps by
Western blotting (Extended Data Fig. 2-2A) but not by im-
munohistochemistry. Despite this limitation, we character-
ized the types of cells with Crmp1 phosphorylation using
immunofluorescence analysis involving anti–phospho-
Ser522 Crmp1/2 antibody. As shown in Extended Data
Figure 2-2D,E, Crmp1/2 in the ventral horn of the lumbar
spinal cord was localized in neurons but not in astrocytes,
which indicates that elevated phosphorylation of Crmp1
Ser522may largely occur in neurons. This is also compatible
with the previous finding that glial cells do not express
CRMP1 protein (Bretin et al., 2005; Luo et al., 2012).
Elevated Crmp1 phosphorylation in the spinal cord of

SOD1G93A mice may be explained by the fact that

Figure 3. Motor neuron degeneration and gliosis. This figure is supported by Extended Data Figure 3-1. A, Representative images
of ChAT-stained motor neurons in the lumbar spinal cord of mice at 20 w. GFAP-immunostained (B) and Iba1-immunostained (C)
images of the lumbar spinal cord. Scale bar: 200mm. D, Counts of ChAT-positive neurons in hemi sections of the lumbar spinal
cord (WT; n=4, SOD1G93A; n=7, Crmp1�/�/SOD1G93A; n=8, Crmp1ki/ki/SOD1G93A; n=7). Significance was determined by one-way
ANOVA with Tukey’s multiple comparisons test as follows: WT versus SOD1G93A; p=0.003, WT versus Crmp1�/�/SOD1G93A;
p, 0.001, SOD1G93A versus Crmp1�/�/SOD1G93A; p=0.871, WT versus Crmp1ki/ki/SOD1G93A; p=0.496, SOD1G93A versus Crmp1ki/ki/
SOD1G93A; p=0.0253. Percentage of GFAP-positive (E) and Iba1-positive (F) area within the ventral horn area (WT; n=5, SOD1G93A; n=5,
Crmp1�/�/SOD1G93A; n=5, Crmp1ki/ki/SOD1G93A; n=5). Significance was determined by one-way ANOVA with Dunnett’s multiple compari-
sons test as follows: (E) SOD1G93A versus Crmp1�/�/SOD1G93A; p=0.723, SOD1G93A versus Crmp1ki/ki/SOD1G93A; p=0.292, (F) SOD1G93A

versus Crmp1�/�/SOD1G93A; p=0.457, SOD1G93A versus Crmp1ki/ki/SOD1G93A; p=0.999. Values are means 6 SEM; *p, 0.05, **p, 0.01,
***p, 0.001, N.S. = not significant as determined by one-way ANOVA.
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Sema3A signaling hyperactivates the complex of Cdk5
and p25, an activator of Cdk5, in the brain and spinal cord
in a mouse model of ALS as well as in ALS patients
(Nguyen et al., 2001; Klinman and Holzbaur, 2015; Bk et
al., 2019). Excessive Cdk5 activity is associated with in-
duction of neuronal loss (Cheung and Ip, 2012) and Cdk5
inhibition in the motor neurons prevents motor neuronal
death in ALS model mice (Bk et al., 2019). Moreover,
primary cultured DRG neurons from Crmp1ki/ki mice

expressing the Crmp1S522A mutant were less sensitive to
Sema3A stimulation than those from WT mice (Extended
Data Fig. 2-1E,F), in contrast to a previous finding that ec-
topic expression of the Crmp1S522D phosphomimetic mu-
tant in DRG neurons potentiated the Sema3A-induced
growth cone collapse response (Nakamura et al., 2014).
Therefore, we hypothesized that inhibition of Crmp1

phosphorylation at Ser522 ameliorates disease progres-
sion in SOD1G93A mice. In fact, motor function and

Figure 4. Blocking Crmp1 phosphorylation at S522 delays denervation at NMJs. A, Representative photomicrographs of NMJs in
fixed TA muscles. Nerve axons (green) are stained with 2H3 (NF) plus SV2 (synaptic vesicles) and postsynaptic acetylcholine recep-
tors (red) are stained with a-BTX. Scale bar: 20mm. B, Crmp1 S522A expression increases endplate occupancy in TA muscle of
SOD1G93A mice. The figure shows the percentage of fully innervated (fully occupied), partially denervated (partially occupied), and
denervated endplates of the axon terminals in TA muscles from mice with the indicated genotypes. Statistical significance was de-
termined as follows: innervated: WT versus SOD1G93A; p, 0.001, SOD1G93A versus Crmp1�/�/SOD1G93A; p=0.999, SOD1G93A ver-
sus Crmp1ki/ki/SOD1G93A; p=0.038, denervated: WT versus SOD1G93A; p, 0.001, SOD1G93A versus Crmp1�/�/SOD1G93A;
p=0.955, SOD1G93A versus Crmp1ki/ki/SOD1G93A; p=0.01, by one-way ANOVA with Dunnett’s multiple comparisons test. Values
are means 6 SEM (n=3); *,†p, 0.05, ††p, 0.01, ***p, 0.001 by one-way ANOVA with Dunnett’s multiple comparisons test.
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survival were improved in Crmp1ki/ki/SOD1G93A mice (Fig.
2A,B,F). Reflecting these phenotypic improvements, the
residual motor neurons and innervation of NMJs were sig-
nificantly preserved in Crmp1ki/ki/SOD1G93A mice (Figs.
3A,D, 4A,B). By contrast, microgliosis and astrocytosis
were not affected by Crmp1 modification in SOD1G93A

mice (Fig. 3B,C,E,F), which is consistent with the previous
finding that depletion of Epha4 in SOD1G93A mice attenu-
ates motor neuron degeneration without altering gliosis
(Van Hoecke et al., 2012). Because both Crmp1 and
Epha4 are axon guidance proteins and are expressed
only in neurons (Bretin et al., 2005; Luo et al., 2012; Van
Hoecke et al., 2012), their alteration in SOD1G93A mice
may affect neurons but not glial cells. Our results indicate
that blocking Ser522 phosphorylation in Crmp1 has a pro-
tective effect on neuronal pathology of ALS. Previously re-
ported adverse effects of Cdk5 activity in ALS models
(Nguyen et al., 2001; Klinman and Holzbaur, 2015) may be
mediated in part by Crmp1 phosphorylation.
In addition to the differential Crmp1 phosphorylation

between WT and SOD1G93A mice, expression of total
Crmp1 was significantly reduced in the spinal cord of
SOD1G93A mice (Extended Data Fig. 2-2A,C). Therefore,
to investigate the effect of the total Crmp1 amount, we an-
alyzed Crmp1�/�/SOD1G93A mice and found that deleting
Crmp1 in SOD1G93A mice caused motor function to dete-
riorate slightly but did not affect survival or body weight.
Crmp1 knock-down was previously reported to reduce
the number of spinal cord neurons in vitro (Kurnellas et al.,
2010). In addition, CRMP1 protein levels were reduced in
the brains of HD patients, and those of Crmp1 were de-
creased in a mouse model (Stroedicke et al., 2015).
Moreover, CRMP1 knock-down by siRNA has been re-
ported to enhance misfolding and toxicity of mutant hun-
tingtin in an HD cell model, whereas CRMP1 overexpression
shows the opposite effect (Stroedicke et al., 2015). These
findings indicate that CRMP1 may have beneficial effects
against neurodegenerative diseases, including HD and ALS,
although the molecular mechanism of the decrease in
CRMP1/Crmp1 in patients and mouse models is currently
unknown. Unexpected mild deterioration of clinical (Fig. 2F)
and pathologic (Fig. 3A,D) phenotypes in Crmp1�/�/
SOD1G93A mice may reflect functional redundancy of other
CRMP family proteins such as CRMP2.
We performed proteomics analysis followed by IPA

analysis to investigate the underlying mechanism respon-
sible for the phenotypic differences between Crmp1�/�/
SOD1G93A and Crmp1ki/ki/SOD1G93A mice (Extended Data
Fig. 3-1). The sirtuin signaling pathway was upregu-
lated in Crmp1ki/ki/SOD1G93A mice but downregulated
in Crmp1�/�/SOD1G93A mice. Sirtuin signaling regu-
lates cell survival, energy expenditure, and metabolic
control through its energy-sensing and redox-sensing
functions, and it is associated with lifespan extension
(Tang, 2017). In ALS, the sirtuin signaling pathway has
been reported to confer beneficial effects on motor
neuron survival, such as promoting autophagy and mi-
tophagy and suppressing protein misfolding and ag-
gregate formation (Watanabe et al., 2014; Tang, 2017).
These previous findings are consistent with the fact

that the sirtuin signaling pathway reduces SOD1G93A

toxicity in the context of Crmp1ki/ki but increases it with
Crmp1�/�. However, the mechanism of the relationship be-
tween Crmp1 alteration and the sirtuin signaling pathway in
ALSmodel mice remains to be determined.
When considering therapeutic strategies, treatment

effects may be enhanced by targeting not only the
phosphorylation of CRMP1 but also that of CRMP2, be-
cause the inhibition of Crmp2 phosphorylation also
ameliorates the motor phenotype of SOD1G93A mice
(Numata-Uematsu et al., 2019). In humans, it is neces-
sary to identify small-molecule inhibitors that selec-
tively block Ser522 phosphorylation of CRMP1 and
ideally also that of CRMP2. Alternatively, cell-permea-
ble peptides that compete with CRMP1/2-Ser522 may
be effective if used with appropriate cell-targeting ve-
hicles to avoid the development of autoimmunity.
To conclude, we have comprehensively investigated pro-

teins that are specifically phosphorylated in ALS model
mice, and found evidence that Crmp1 phosphorylation at
Ser522 is likely involved in ALS pathogenesis. Blocking
Crmp1 phosphorylation at Ser522 led to improvements in
the clinical and pathologic phenotypes of ALS model mice.
These improvements were associated with alteration of the
sirtuin signaling pathway. In humans, simultaneously sup-
pressing Ser522 phosphorylation of both CRMP1 and
CRMP2may be a potential therapeutic strategy for ALS.
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