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Abstract

Purpose: Objective assessment of deformable image registration (DIR) accuracy often relies 

on the identification of anatomical landmarks in image pairs, a manual process known to be 

extremely time-expensive. The goal of this study is to propose a method to automatically detect 

vessel bifurcations in images and assess their use for the computation of target registration errors 

(TRE).

Materials and Methods: Three image datasets were retrospectively analyzed. The first dataset 

included 10 pairs of inhale/exhale phases from lung 4DCTs and full inhale and exhale breath-hold 

CT scans from 10 patients presenting with chronic obstructive pulmonary disease, with 300 

corresponding landmarks available for each case (DIR-Lab). The second dataset included 6 pairs 

of inhale/exhale phases from lung 4DCTs (POPI Dataset), with 100 pairs of landmarks for 

each case. The third dataset included 28 pairs of pre/post-radiotherapy liver contrast-enhanced 

CT scans, each with 5 manually picked vessel bifurcation correspondences. For all images, the 

vasculature was autosegmented by computing and thresholding a vesselness image. Images of the 

vasculature centerline were computed and bifurcations were detected based on centerline voxel 

neighbors’ count. The vasculature segmentations were independently registered using a Demons 

algorithm between representations of their surface with distance maps. Detected bifurcations were 

considered as corresponding when distant by less than 5 mm after vasculature DIR. The selected 

pairs of bifurcations were used to calculate TRE after registration of the images considering three 

algorithms: rigid registration, Anaconda and a Demons algorithm. For comparison with the ground 

truth, TRE values calculated using the automatically detected correspondences were interpolated 

in the whole organs to generate TRE maps. The performance of the method in automatically 

calculating TRE after image registration was quantified by measuring the correlation with the TRE 

obtained when using the ground truth landmarks.
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Results: The median Pearson correlation coefficients between ground truth TRE and 

corresponding values in the generated TRE maps were r=0.81 and r=0.67 for the lung and liver 

cases, respectively. The correlation coefficients between mean TRE for each case were r=0.99 and 

r=0.64 for the lung and liver cases, respectively.

Conclusion: For lungs or liver CT scans DIR, a strong correlation was obtained between TRE 

calculated using manually picked or landmarks automatically detected with the proposed method. 

This tool should be particularly useful in studies requiring to assess the reliability of a high 

number of DIRs.
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Introduction

Advanced image-guided cancer treatment strategies increasingly rely on deformable image 

registration (DIR) methods. The use of DIR for the propagation of anatomical structures 

or region of interest boundaries from one image volume to another is now well established 

in radiation oncology.1 However, other applications that require DIR to be accurate at 

the voxel level, such as dose mapping between longitudinal images or in 4D images for 

automated voxel analysis, are still limited by the challenge in thoroughly characterizing the 

local registration error uncertainties and their clinical impact.2,3 The most objective way 

to characterize these errors is by having expert observers, such as radiologists, identify 

corresponding anatomical landmarks in the pairs of images to register. Identification of 

anatomical landmarks is usually facilitated in images which exhibit blood vessel branching 

such as images of the lung,4–8 liver9–13 or brain14,15. However, this task is extremely 

time-consuming, especially since observer uncertainty exist and should be quantified by 

considering different experts and reproducibility tests and gross errors occur, due to human 

error in interacting with the point selection software that requires data curation and 

evaluation of the selected points. Therefore, this approach has been adopted for evaluation 

of DIR accuracy only on relatively small image datasets, unlikely to represent all the 

challenges that DIR methods can face with the global population of patients and has not 

translated to patient-specific quality assurance (QA) in the clinical setting. A control quality 

tool that could automatically detect when the desired registration accuracy is not achieved 

would increase the safety of clinical protocols or robustness of studies involving DIR 

techniques.

Few methods have been evaluated to achieve this automatic DIR accuracy assessment. 

Muenzing et al16 proposed a machine learning based method to classify the local alignment 

of voxels in follow-up pairs of lung CT into three quality categories. Sokooti et al17 

later evaluated the use of random forests for that same task. Datteri et al18 proposed the 

construction of error maps for brain MR images using multiple registration circuits and 

atlas data. More recently, Eppenhof and Pluim19 proposed and evaluated the use of 3D 

convolutional networks to generate registration error maps in inhale-exhale pairs of thoracic 

CT scans. An inconvenience of these machine learning approaches may be the difficulty for 

the clinical user to apprehend the results. If these methods can be used to generate error 

Cazoulat et al. Page 2

Med Phys. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



maps to draw the user’s attention on likely misaligned anatomical areas, they do not provide 

a clear rationale for the classification of the registration accuracy, such as well identified 

mismatching anatomical points. Other methods have been proposed to automatically detect 

large numbers of landmark correspondences in pairs of lung20,21, abdomen22,23 or head and 

neck images24 which can be used for the assessment of DIR accuracy. However, landmarks 

automatically identified using image intensity features may not necessarily represent actual 

anatomical correspondences. This paper proposes a heuristic method to reproduce the 

process of manual landmark selection by a human observer in images presenting with 

vascular trees. The proposed workflow consists of segmenting the vasculature, detecting 

vessel bifurcations, and selecting correspondences between the bifurcations.

Many studies have previously proposed to extract the vasculature information from the 

images to improve the accuracy of deformable image registration methods6,10,25–29. In 

this study, the vasculature trees were extracted and matched independently of the rest of 

the image. A list of corresponding vessel bifurcation points, as well as the possibility to 

visualize the vessel matching, can then be offered to the clinical user for a quick assessment 

of any other deformable alignment results. The approach was evaluated using 26 pairs 

of lung CT scans from publicly available datasets and 28 pairs of longitudinal contrast-

enhanced CTs of liver cholangiocarcinoma. Target registration error (TRE) calculated with 

manually or automatically detected anatomical correspondences, and calculated after classic 

registration methods, were compared.

1 Materials and methods

2.1 Patient data—The method proposed in this paper was evaluated for lung and liver 

CT scans. The lung CT scans of a total of 26 individuals were collected from three publicly 

available datasets: DIR-Lab,7,30 DIR-Lab COPD8 and POPI31,32, while the liver dataset 

corresponded to CT scans of 28 patients previously treated at The University of Texas MD 

Anderson Cancer Center.

2.1.1 Lung datasets: The DIR-Lab dataset (https://www.dir-lab.com/) contains 4DCT 

scans from 10 subjects. The images were acquired by a General Electric Discovery 

ST PET/CT scanner (GE Medical Systems, Waukesha, WI) with a voxel size between 

0.97×0.97 and 1.15×1.15 mm in the axial plane and a slice spacing of 2.5mm. For 

each pair of inhale (T0) and exhale (T50) phases, 300 pairs of manually selected feature 

landmarks defined are provided. Only the inhale and exhale phases of each 4DCT scan and 

corresponding landmarks were analyzed in this study.

The DIR-Lab COPD contains full inhale and exhale breath-hold CT scans from 10 patients 

presenting with chronic obstructive pulmonary disease (COPD). The images were acquired 

by a with a GE VCT 64-slice scanner (GE Healthcare Technologies, Waukesha, WI) with 

a resolution comprised between 0.59×0.59 and 0.74×0.74 mm in the axial plane and a slice 

spacing of 2.5mm. As for the DIR-Lab dataset, 300 pairs of manually selected landmarks are 

provided for each pair of images.

The POPI dataset contains 4DCT scans from the Léon Bérard Cancer Center & CREATIS 

lab, Lyon, France for 6 subjects (https://www.creatis.insa-lyon.fr/rio/popi-model/).31,32 The 
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images were acquired by a Philips 16-slice Brilliance Big Bore Oncology Configuration 

(Phillips Medical Systems, Cleveland, OH) and had a resolution varying between 0.78×0.78 

mm and 1.17×1.17 mm. The slice spacing was 2 mm. For each pair of inhale and exhale 

phases of the 4DCTs, 100 landmarks identified semi-automatically with a software tool33 

are provided.

2.1.2 Liver longitudinal CT scans dataset: Pairs of contrast-enhanced CT scans pre- 

and post-radiation therapy acquired on average 113 ± 35 days apart were retrospectively 

analyzed for 28 patients with cholangiocarcinoma treated at MD Anderson. The spatial 

resolution of the CT scans ranged between 0.66×0.66 mm and 0.98×0.98 mm in the axial 

plane and the slice spacing ranged from 2 and 5 mm. For evaluation of the accuracy of DIR 

methods, five corresponding landmarks were previously manually identified in each pair of 

longitudinal images.10,11

2.2 Automatic TRE estimation

2.2.1 Lung cases: The workflow of the proposed method to estimate TRE between 

registered pairs of reference and secondary lung CT scans is depicted in Figure 1 and 

detailed below.

Lung and vessels segmentation: First, the left and right lung were automatically segmented 

on each image using a deep learning-based segmentation method consisting of a U-net 

model (R-231) trained on 236 lung CT scans including various diseases and distributed 

online by Hofmanninger et al in a recent lung segmentation study.34 All lung contours for 

the 26 cases were visually reviewed by an experienced imaging physics scientist (GC) and 

considered accurate enough for the purpose of this study without need for manual edits. A 

vessel segmentation algorithm, as described in detail in a previous study,6 was then applied 

to the image within the lung contours morphologically eroded by 5mm. Briefly, a vesselness 

image was computed as a combination of the eigen values of the Hessian matrix of the 

image.35 As a representation of the lung vasculature, a binary image was generated by 

thresholding the vesselness image in the lungs at the 95th percentile. This threshold being 

chosen empirically, the binary segmentation did not necessarily respect the actual diameter 

of the vessels but provided a representation of the vessel tree facilitating the extraction and 

registration of the vessel tree centerlines. To control the size of the vessels to detect, the 

original image is usually convolved with a Gaussian kernel of variance σ prior to calculation 

of the Hessian matrix. While highly detailed trees can be obtained by setting σ to 1mm 

as in prior work,6,36 establishing correspondences between such detailed trees appeared too 

challenging in cases which presented with large deformations. The variance σ was instead 

set to 3 mm in this study.

Detection of vessel bifurcations: The centerlines of the vessel trees were extracted using 

a skeletonization algorithm37 and the resulting binary images were used to automatically 

detect vessel bifurcations. For each voxel being part of the centerline, the number of other 

voxels in its 3×3×3 neighborhood also belonging to the centerline were counted. The voxel 

was considered to be a bifurcation point when that number was above 2 (a voxel in the 

middle of a branch will have only 2 neighbors). In order to avoid including bifurcation 
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points where a branch would be only one voxel long, the 5×5×5 neighborhood of the 

detected bifurcation voxel was considered. In this case, at least 3 more voxels (at least 6 in 

total) should be counted. Bifurcations with a count below 6 voxels were then discarded. The 

skeletonization algorithm could sometimes generate small blobs in the trees which would 

result in multiple detected bifurcations in place of one. To remove these duplicates, the 

image of bifurcations was morphologically dilated with a spherical structuring element with 

radius 1 mm. The final bifurcation coordinates corresponded then to the center of mass of all 

connected regions.

Vessel trees matching: Signed squared distance maps were calculated from the vessel tree 

segmentations. The distance map represented on the secondary image was registered using a 

classic affine transformation optimized to minimize the mutual information between the two 

distance maps. After this initialization, deformable image registration was applied using an 

implementation of a variant of the Demons algorithm,38 with the smoothing parameter σ set 

at 2mm. The affine transform and displacement vector field (DVF) computed by the Demons 

algorithm were composed to provide a DV Fvessels mapping the vessels of the reference 

image onto the vessels on the secondary image.

Selection of bifurcation correspondences.: Each bifurcation detected in the reference 

image was displaced according to DV Fvessels. When a displaced bifurcation was located 

in the vicinity of a detected bifurcation in the secondary image within a distance τ, the 

correspondence between the two bifurcations was saved. All bifurcations of the reference 

image that did not fall close (within τ) to a bifurcation in the secondary image were 

discarded.

2.2.2 Liver cases: The method to detect bifurcation correspondences for the liver cases is 

the same as for the lung cases, except for the vessel segmentation and rigid initialization 

method which were described in detail in a previous study.10 Briefly, a multiscale 

vasculature enhancement filter based on the formulation by Frangi et al39 was applied to the 

liver CT followed by an Otsu thresholding filter40 to obtain a segmentation of the vessels. 

The skeletonization was performed using the same algorithm as for the lung cases37. The 

rigid initialization was based on a chamfer matching of the vessel segmentations and the 

deformable matching performed using distance maps and a Demons algorithm as for the 

lung. Figure 2 shows an example of segmentation results from a pre-treatment liver CT, the 

extracted centerline, and the bifurcations: manually picked, automatically detected and those 

for which a corresponding bifurcation was found in the post-treatment CT considering τ =4 

mm.

2.3 Comparison of automatic TREs vs ground truth—To evaluate the accuracy 

of the method in estimating TREs in a typical range of values, the 54 pairs of lung or 

liver images were registered using three standard registration methods: rigid, Anaconda in 

RayStation (RaySearch Laboratories, Stockholm, Sweden),41 and a Demons algorithm.38 

The rigid alignment corresponded to the default alignment for the lung images and to the 

chamfer matching for the liver images. After each registration, the TREs were calculated 

using the ground truth and automatically detected landmark correspondences. Since the 
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number and spatial distribution of the ground truth and automatically detected landmarks 

differed, the automatic TREs were interpolated at the ground truth landmarks locations. To 

perform this interpolation in an organ, a triangular mesh of this organ was created from 

its contour on the reference image. The number of points was on average (min;max): 7494 

(4850;10346) and 4194 (3388;5866) for the two lungs and liver, respectively. Using these 

points and the landmarks in the reference image, a tetrahedral mesh was created using a 

Delaunay triangulation algorithm implemented in the Visualization Toolkit (www.vtk.org). 

Each point of the mesh corresponding to a landmark was assigned the corresponding TRE 

value, and each point of the external surface was assigned the TRE of the closest landmark. 

The TRE values in the mesh were then resampled on the grid of the reference image to 

provide a TRE map as illustrated in Figure 1.

To quantify the performance of the proposed method in automatically estimating TRE, 

the correlation with ground truth TRE was calculated. Using the TRE results from the 

three registration methods and for all pairs of images, the Pearson correlation coefficient 

r between the ground truth TREs and TREs given by the TRE maps was calculated. The 

performance of the method in estimating mean TRE for each case was evaluated in two 

ways. In Evaluation A, all the detected landmark correspondences were used for the mean 

TRE calculation. In Evaluation B, only the values resampled onto the ground truth landmark 

locations were used.

2. Results

3.1 Local TRE evaluation—Varying the tolerance parameter τ lead locally to different 

automatic TREs. Figure 3 represents the distribution of the Pearson correlation coefficients 

r between ground truth TREs and TREs derived from TRE maps for the different lung 

datasets. The value of τ providing the highest median correlation varied between the 

datasets, the optimal value for the DIR-Lab COPD dataset, which contains the cases with the 

largest deformations, being higher than for the POPI or DIR-Lab datasets. As a compromise, 

τ was set to 5mm for the rest of the study.

The Pearson correlation coefficients r obtained for the liver cases are represented in Figure 

4. The correlations were in general lower than for the lung cases. For a few cases, no or even 

negative correlations were obtained. As for the lung, the τ leading to the highest median r 
was 5mm and was therefore fixed to this value in the rest of the study.

The number of detected correspondences for τ = 5 mm was on average (min;max): 175 

(64;312) and 32 (6;69) for the two lungs and liver, respectively. Figure 5 illustrates for the 

best, median and worst lung cases in terms of TRE correlation: the segmented vessels and 

corresponding bifurcations before and after matching of the tree; the generated TRE maps 

from these bifurcation correspondences; and the plot of the automatic vs ground truth TREs. 

For the best and median cases (r = 0.95 and 0.90, respectively), which were from the POPI 

and Dir-Lab dataset, the matching between the vessel trees appeared consistent. On the 

contrary, for the worst case, a case from the COPD dataset, the method seemed to fail at 

accurately matching the trees because of the large deformations between the deep inhale and 

exhale states of the lung. However, the TRE correlation was still moderate in this case (r = 

0.66). Figure 6 illustrates similarly the results for the best, median and worst liver cases. The 
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worst case presented a negative correlation between the automatic and ground truth TREs. 

The segmentation of the vasculature in the longitudinal images appeared less consistent than 

usual causing the method to detect only 8 bifurcation correspondences (versus an average 

of 32 for the 28 cases). These correspondences were also all located in a same small area 

yielding in this case to a rough TRE map of the liver.

3.1 Mean TRE evaluation—Figure 7 reports for the lung cases the automatically 

determined mean TRE vs the ground truth mean TRE, using TREs based on all detected 

bifurcation correspondences (Evaluation A) or using TRE maps (Evaluation B). Using all 

detected correspondences, the mean automatic TRE presented a very high correlation with 

the ground truth (r2 = 0.97). This correlation was even higher when using interpolated TREs 

in Evaluation B (r2 = 0.99). Similarly, Figure 8 reports the mean TRE results for the liver 

cases. The correlation (r2 = 0.62) was inferior to the one obtained for the lung cases but 

still high. Again, the correlation was higher in Evaluation B (r2 = 0.64), indicating a certain 

sensitivity of the ground truth mean TRE to the location of the manually picked landmarks.

Figure 9 shows the distributions of the mean TRE obtained for the three registration 

methods and Table 1 reports the mean values. Both Evaluation A and B yielded to similar 

distributions of the mean TRE as when using the ground truth landmarks.

3. Discussion

A method was proposed in this paper to automatically estimate TRE after registration of 

lung or liver images exhibiting vasculature. The method allowed to accurately estimate 

mean TRE in these organs according to ground truth TRE derived from manually selected 

anatomical landmarks. This tool could thus be particularly valuable in studies involving 

numerous DIRs, such as dose accumulation studies, to automatically bring attention to 

probable DIR failure when automatic TRE exceeds certain threshold. In addition to 

detecting such cases, this tool can provide a clear and intuitive rational for the decision by 

allowing to visualize the vessels segmentation and estimated bifurcation correspondences, 

as for example as illustrated in figures 5 and 6. While approaches based on convolutional 

neural networks appear promising to estimate TRE values directly from the registered 

images, they do not directly offer this possibility to the user. We believe that the method 

proposed in this paper could be used as a tool that, in complement with others, will allow 

more robust assessments of DIR accuracy in the clinic for patient-specific QA. Treatment 

planning systems (TPS) for radiation therapy indeed currently lack this kind of tool which, 

after each application of a DIR, would provide the user with a measure of confidence (TRE) 

in the result, and the option to highlight anatomical areas likely not properly aligned.

Regarding the spatial distribution of the TRE, the method provided a very high correlation 

for all of the lung cases analyzed except for a couple of deep inhale and exhale image pairs. 

Parts of the workflow could be improved to address these challenging cases. For example, 

other vessel segmentation algorithms may provide more consistent results between the pairs 

of images, especially considering the remarkable recent advances in deep learning for image 

segmentation. The technique proposed to match the vessel trees could also be replaced 

by more advanced approaches, for example based on a graph definition of the trees. The 
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difference between the optimal tolerance parameters τ for the three lung datasets suggest 

that a finer tuning of this parameter in future work could also improve the performance 

of the method, for example by adapting its value based on the initial distance between 

the landmarks. However, the optimal value of this parameter is dependent of other parts 

of the workflow, mainly the vessel segmentation and matching algorithms, which, we 

believe, are the components presenting the best opportunities of amelioration in our current 

implementation.

The results were more mitigated for the liver than for the lung, as for a few cases no 

correlation was found between the automatic and ground truth TREs. However, as discussed 

in prior work analyzing those data,10,11 large uncertainties exist in the ground truth 

landmarks in some cases because of poor contrast or dramatic liver response to treatment. 

These uncertainties could explain some of the discrepancies observed between automatic 

and ground truth TRE.

Finally, the method was evaluated using lung and liver CT scans, but the workflow could 

in theory be easily adapted for other imaging modalities or anatomical localization showing 

vascular trees, such as in the case of brain imaging.

4. Conclusion

A full workflow based on image processing techniques was proposed to automatically 

estimate TRE in pairs of CT scans for organs with visible vasculature. The evaluation on 26 

lung pairs of different respiratory images and 28 longitudinal liver images showed that the 

method can provide an estimation of the mean TRE highly correlated to the TRE estimated 

using manually identified anatomical landmarks. The method thus appears particularly 

interesting to be incorporated as a control quality tool in studies involving an extensive 

use of DIR.
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Figure 1. 
Workflow of the automatic definition of landmarks for TRE calculation. Example with a 

lung case from the DIR-Lab dataset (Case 2).
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Figure 2. 
Example of a liver case. Left images: axial and coronal slices of the pre-treatment contrast-

enhanced CT scan with the auto-segmentation of the liver (in blue) and vasculature (in 

red). Right: Representation of the liver surface and segmented vasculature centerline. Green 

spheres: the 5 ground truth landmarks. Blue spheres: the detected landmarks for which a 

correspondence was established on the post-treatment image. White spheres: the bifurcations 

that were detected in the pre-treatment image but discarded because no correspondence 

could be established in the post-treatment image according to the vessels DIR.

Cazoulat et al. Page 13

Med Phys. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Distributions of the Pearson correlation coefficients between automatic and ground truth 

TREs for the 26 lung cases and different tolerance parameters τ.
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Figure 4. 
Distributions of the Pearson correlation coefficients between automatic and ground truth 

TREs for the 28 liver cases and different tolerance parameter τ.
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Figure 5. 
Best, median and worst lung cases results. Top row: Side view of the overlay between the 

vessels segmented on the reference image (in blue) and the secondary image (in green) 

before vessel matching (left) and after (right). Second row: Corresponding centerlines and 

bifurcation correspondences. Third row: Axial and coronal slice of the computed TRE maps 

calculated in case of rigid registration (arbitrary window/level setup). Bottom row: Plot of 

the correlation between automatic and ground truth TREs.
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Figure 6. 
Best, median and worst liver cases results. Top row: Side view of the overlay between the 

vessels segmented on the reference image (in blue) and the secondary image (in green) 

before vessel matching (left) and after (right). Second row: Corresponding centerlines and 

bifurcation correspondences. Third row: Axial and coronal slice of the computed TRE maps 

calculated in case of rigid registration (arbitrary window/level setup). Bottom row: Plot of 

the correlation between automatic and ground truth TREs.
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Figure 7. 
Representation for the lung cases of the correlation between the TREs calculated using the 

ground truth and automatically detected landmark correspondences. Left (Evaluation A): 

using all the detected landmarks. Right (Evaluation B): Using TRE maps.
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Figure 8. 
Representation for the liver cases of the correlation between the TREs calculated using the 

ground truth and automatically detected landmark correspondences. Left (Evaluation A): 

using all the detected landmarks. Right (Evaluation B): Using TRE maps.
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Figure 9. 
Distribution of the mean TRE for the lung (26) and liver (28) cases obtained after using the 

three registration methods and considering the ground truth landmarks, Evaluation A and B.
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Table 1.

Mean TRE (±SD) (mm) after the three registration methods and considering the three evaluation methods.

Lung cases Liver cases

Ground truth Evaluation A Evaluation B Ground truth Evaluation A Evaluation B

Rigid 14.1±8.5 13.4±7.3 13.7±7.7 7.9±2.8 7.2±2.2 7.2±2.3

Anaconda 7.2±6.4 6.4±6.0 6.6±5.9 8.0±3.1 7.6±2.9 7.6±2.7

Demons 9.1±8.7 8.5±8.3 8.6±8.2 8.9±3.9 7.4±3.3 8.1±3.7
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