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ABSTRACT
Objective: The purpose of this study was to discover how considering multiplicative, additive,
and interactive effects modifies results of a prospective cohort study on coronary heart disease
(CHD) incidence and its main risk factors.
Material and methods: The Kuopio Ischaemic Heart Disease Risk Factor (KIHD) Study provided
the study material, 2682 Eastern Finnish middle-aged men, followed since the 1980s. We applied
multiplicative and additive survival models together with different statistical metrics and confi-
dence intervals for risk ratios and risk differences to estimate the nature of associations.
Results: The mean (SD) follow-up time among men who were free of CHD at baseline
(n¼ 1958) was 21.4 (10.4) years, and 717 (37%) of them had the disease and 301 (15%) died
for CHD before the end of follow-up. All tested non-modifiable and modifiable risk factors
statistically significantly predicted CHD incidence. We detected three interactions: circulating
low-density lipoprotein cholesterol (LDL-C) � age, obesity� age, and obesity� smoking of
which LDL-C� age was the most evident one. High LDL-C increased the risk of CHD more
among men younger than 50 [risk ratio (RR) 2.10] than those older than 50 (RR 1.22). LDL-C sta-
tus was the only additive covariate. The additive effect of high LDL-C increased almost linearly
up to 18 years and then reached a plateau. The simple multiplicative survival model stressed gly-
cemic status as the strongest modifiable risk factor for developing CHD [hazard ratio (HR) for
diabetes vs. normoglycemia was 2.69], whereas the model considering interactions and time
dependence emphasised the role of LDL-C status (HR for high LDL-C vs. lower than borderline
was 4.43). Age was the strongest non-modifiable predictor.
Conclusions: Including covariate interactions and time dependence in survival models poten-
tially refine results of epidemiological analyses and ease to define the order of importance
across CHD risk factors.

KEY MESSAGES

� Including covariate interactions and time dependence in survival models potentially refine
results of epidemiological analyses on coronary heart disease.

� Including covariate interactions and time dependence in survival models potentially ease to
define the order of importance across coronary heart disease risk factors.
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Introduction

Coronary heart disease (CHD) is one of the most com-

mon chronic illnesses in the world and its main risk

factors are well-known [1]. These risk factors are male

gender, old age, ethnic background, family history of

CHD, diabetes, smoking, obesity, dyslipidemia, hyper-

tension, and physical inactivity of which the first four

are non-modifiable and the latter six are modifiable

[2,3]. Out of many unorthodox predictors of CHD, for
example, proteinuria and inflammatory biomarkers
have shown strong associations with CHD incidence,
but their causal roles in the development of CHD are
typically uncertain [4–7].

Traditionally, most epidemiological studies and
treatment algorithms have considered the CHD risk
factors as independent predictors [8], which may dis-
tort conclusions due to unidentified interactions. This
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is somewhat surprising as studies addressing the inter-
actions across CHD risk factors have emphasised their
importance and revealed associations of modifiable
risk factors particularly with the family history and
genetic risk [9–13], but also across the modifiable risk
factors, for example, between dyslipidemia and smok-
ing, dyslipidemia and hypertension, dyslipidemia and
obesity, and diabetes and hypertension [11,14,15].

Moreover, epidemiological studies have typically
not investigated the type of the relationship
between CHD and its risk factors, multiplicative or
additive, before choosing statistical methods and
simply applied multiplicative models, such as the
Cox regression analysis. With respect to CHD, fortu-
nately, multiplicative models are probably the correct
choice for many studies, as the effects of coexisting
CHD risk factors as such appear to be multiplicative
rather than additive, although also additive effects
evidently exist [8,14,16,17]. In general, on the other
hand, additive models should be more appropriate
in determining epidemiological relationships [18].

The aim of this prospective study was to discover
the combination of multiplicative, additive, and inter-
active effects that best recognise the main risk factors
for CHD incidence and their order of importance in a
cohort of middle-aged men followed since the 1980s.

Material and methods

Material

The ethical committee of the Kuopio University
approved the KIHD Study on December 1, 1983. The
KIHD study plan was published in 1988 [19] and
the actualised study protocol in separate papers in the
late 1980s and early 1990s. Salonen et al. [20] provides
a comprehensive presentation concerning variables
applied in the present study. Briefly, the primary KIHD
study sample consisted of 3235 middle-aged men liv-
ing in Eastern Finland in the city of Kuopio and its sur-
rounding rural areas. Of those men, 2682 were willing
to participate to baseline examinations and interviews
between March 1984 and December 1989. All study
participants gave written informed consent.

To enable the identification of study participants
who were not free of CHD at baseline, KIHD examina-
tions included a maximal symptom-limited exercise
tolerance test carried out at the Kuopio Research
Institute of Exercise Medicine [21]. Bicycle ergometers
with a linear (Medical Fitness Equipment 400 L, Mearn,
the Netherlands) or a step-by-step (Tunturi EL 400,
Turku, Finland) increase in the workload by 20W per
minute served as devices for the assessment of

physical work. Measurements of oxygen uptake were
based on a breath-by-breath method (MGC 2001,
Medical Graphics, St. Paul, MN) or a mixing-chamber
method (Mijnhardt Oxycon 4, Odijk, the Netherlands).
The test procedure consisted standard 12-lead ECG
recordings (Kone, Turku, Finland) before, during, and
after the ergometer test. The before recordings corre-
sponded a resting ECG. Moreover, KIHD questionnaires
included the following CHD-related questions: (a) has
your physician told you that you have had a myocar-
dial infarction, (b) has your physician told you that
you suffer from angina pectoris, (c) have you used
medicines for angina pectoris during the past 7 days,
(d) do you use sublingual nitroglycerine once a week
or more frequently, and (e) have you undergone a cor-
onary bypass operation? Based on results of the exer-
cise test and ECG recordings and answers to
questionnaire items we defined study participants hav-
ing CHD at baseline as follows: unable to complete
the ergometer test due to angina pectoris-type chest
pain, or Q waves on the ECG indicating a myocardial
infarction, or horizontal or downsloping ST depression
�1mm in aVF or V5 leads, or answering “yes” to at
least one of the questions a� e. As certain inaccura-
cies relate to exercise stress testing in general [22], in
this study, we carried out statistical analyses and
reported their results also concerning the dataset
without exclusions.

Before giving blood samples between 8 and 10
a.m. study participants abstained from alcohol for 3
days, smoking for 12 h, and eating for 12 h. After a
rest of 30min, a research nurse drew blood with
Terumo Venoject VT-100PZ vacuum (Terumo Corp.,
Tokyo, Japan) without using a tourniquet.

Endpoints

Study endpoints were i) CHD diagnosed during hospi-
talisations or specialised medical care visits, ii) death,
and iii) the end of follow-up on 31 December 2019.
CHD referred to ICD 10 codes I20� I25. The KIHD
Study receives ICD 10 codes via annual linkages to the
Care Register for Health Care provided by the Finnish
Institute for Health and Welfare (License THL/93/
5.05.00/2013 valid until 31 December 2022) and veri-
fies deaths by annual linkages to the Causes of Death
Register provided by the Statistics Finland (License TK-
53-1770-16 valid until 31 December 2026).

Covariates

Family history of CHD based on the following question-
naire items: (a) has your biological mother CHD, (b) has
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your biological father CHD, and (c) have your biological
siblings CHD? This covariate combines effects of heredity
and familial environment on the risk of CHD and, conse-
quently, it does not represent genetic factors as such or
effects of adulthood environment.

Age referred to four categories, 42, 48, 54, and
60 years, reflecting the primary KIHD recruitment.

The assessment of the absence and presence of bor-
derline diabetes and diabetes at baseline based on a
fasting blood glucose (FBG) level measured by a glucose
dehydrogenase method (Merck, Darmstadt, Federal
Republic of Germany) together with the following ques-
tionnaire items: (a) do you have diet-controlled diabetes,
(b) do you use oral diabetes medications, and (c) do you
use insulin? For statistical analyses we categorised study
participants into three groups as follows: FBG
<5.6mmol/L indicating no diabetes, FBG 5.6� 6.9mmol/
L and/or diet for controlling diabetes, and FBG
�7.0mmol/L and/or glucose-lowering medication indi-
cating diabetes [23,24]. We classified men with diet-
treated diabetes and men taking diabetes medicines
into different groups as, based on preliminary analyses,
the risk of CHD was evidently higher among the latter.

Smoking status based on a self-administered ques-
tionnaire of which items dealt with the frequency and
duration of regular smoking as well as the types of
tobacco products consumed. We classified the study
participant as a smoker if he had ever smoked regu-
larly and a current smoker if he had smoked regularly
within the past 30 days.

KIHD baseline examinations included height and
weight measurements. We calculated the Body Mass
Index (BMI) for each study participants by dividing the
weight in kilograms by the square of height in metres
and categorised study participants as follows: BMI
<25.0 kg/m2 indicating healthy weight, BMI
25.0–29.9 kg/m2 indicating overweight, and BMI
�30.0 kg/m2 indicating obesity [25].

In this study, we used the fasting serum low-density
lipoprotein cholesterol (S-LDL-C) concentration instead
of the fasting serum total cholesterol (STC) concentra-
tion to detect high cholesterol levels. In our previous
paper, we had used STC [26], but preliminary analyses
of this study revealed that S-LDL-C could provide even
stronger associations with CHD. Based on S-LDL-C con-
centration we categorised study participants as fol-
lows: S-LDL-C< 3.4mmol/L indicating below
borderline concentrations, S-LDL-C 3.4� 4.1mmol/L
indicating borderline high concentrations, and S-LDL-
C> 4.1mmol/L or cholesterol-lowering medication
indicating high concentrations. These cut-off points do
not strictly follow clinical guidelines or research findings

concerning desirable S-LDL-C levels [27] because, in the
KIHD cohort, the proportion of men with the desir-
able S-LDL-C concentration for individuals at low risk
(<3.0mmol/L) is low (14.7%) whereas men having
dyslipidemia are overrepresented. Therefore, we com-
bined optimal and near optimal S-LDL-C groups into
a below borderline group to achieve as balanced 3-
group distribution as possible for statistical analyses.
To some extent, the desirable S-LDL-C levels are
always only directional as, by and large, the lower
the circulating LDL-C concentration, the lower the
risk of cardiovascular diseases [28]. Salonen et al.
[29] describe the KIHD lipid analyses in detail. Briefly,
the main fractions, very low-density lipoprotein, S-
LDL-C, and high-density lipoprotein (HDL) referred to
the respective serum fractions: the top fraction, a
computational difference between the bottom and
HDL fractions, and the supernatant after precipita-
tion of the bottom fraction.

KIHD baseline examinations included several blood
pressure measurements. In this study, we refer to the
mean of three measurements in supine, two in sitting,
and one in a standing position with a random-zero
mercury sphygmomanometer after a supine rest of
five minutes. Based on systolic (SBP) and diastolic
blood pressure (DBP) values we categorised study par-
ticipants as follows: SBP <120 and DBP <80mmHg
indicating no hypertension, SBP 120� 139 or DBP
80� 89mmHg indicating borderline hypertension, and
SBP >139 or DBP >89mmHg or blood pressure medi-
cation indicating hypertension. These cut-off points
are compromises across clinical guidelines, research
findings, and distributions of SBP and DBP values in
the KIHD cohort [30,31]. Mainly, they follow criteria
applied in the Framingham Heart Study that resem-
bles, in many ways, the KIHD Study [32].

We did not use ethnic background and gender as
covariates because all study participants were White
Finnish males. We also excluded measures of physical
activity since the proportion of physically inactive men
in the KIHD cohort is practically zero and, consequently,
it is impossible to estimate the impact of sedentary life-
style on the risk of CHD. Moreover, based on our previ-
ous analyses physical activity levels very poorly predict
the risk of CHD in this cohort [26]. Other studies also
have found the contradictory nature of physical activity,
as in some study populations physical activity, not
inactivity, is associated with an increased risk of CHD [9].

Statistical analyses

To detect interactions, we computed risk ratios (RR)
and risk differences (RD) with 95% confidence intervals
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(CI) for each pair of covariates. In RD, CIs refer to the
Wilson intervals [33]. We also fitted a binomial regres-
sion model as a part of generalised linear models to
each pairwise interaction. Basically, non-overlapping
confidence intervals indicate statistically significant
interactions, RRs regarding multiplicative interactions
and RDs regarding additive interactions. Moreover, we
used the interaction contrast ratio (ICR), with 95% CIs
based on the variance recovery method [34], to verify
additive interactions. ICR expresses the additional risk
due to the interaction and it is also known as RERI,
the relative risk for interaction [35–37]. If the additive
interaction is present, ICR differs from zero. We also
calculated the attributable fraction and the synergy
index [35,37] as a part of a preliminary analysis, but
them did not affect conclusions based on ICR.

To simplify the interpretation of interactions we
dichotomised the covariates as follows: Family history
(no close relatives with CHD vs. close relative(s) with
CHD), age (<50 vs. >50), glycemic status (FBG
<5.6mmol/L and no glucose-lowering medication or
diet vs. FBG �5.6mmol/L or glucose-lowering medica-
tion or diet), smoking status (never smoked vs. former
or current smoker), weight (BMI <30 kg/m2 vs. BMI
�30 kg/m2), cholesterol status (S-LDL-C� 4.1mmol/L
and no cholesterol-lowering medication vs. S-LDL-
C> 4.1mmol/L or cholesterol-lowering medication),
and blood pressure status (SBP �139mmHg, DBP
�89mmHg, and no blood pressure medication vs. SBP

>139mmHg, or DBP >89mmHg, or blood pres-
sure medication).

Regarding multiplicativity and additivity we, first,
performed a conventional Cox proportional hazards
model that assumes multiplicative associations [38].
Precisely, the proportional hazard assumption denotes
that covariate coefficients do not change over time,
i.e. b(t) ¼ c [39]. In the Cox survival model, the CHD
endpoint served as the dependent variable and all
covariates served as independent variables. We used
the covariates as categorical variables and investigated
the Schoenfeld residuals to test the proportional haz-
ards assumption [40]. Based on our previous study the
type of covariate, categorical or continuous, has prob-
ably no statistically significant effect on Cox model
results [26] but including continuous covariates in the
model requires the assessment of nonlinearity by
means of martingale residuals [41]. Second, we added
statistically significant covariate interactions to the Cox
model. Third, we performed the Cox-Aalen model with
a proportionality test based on martingale residuals
[42,43]. The Cox-Aalen model allows covariates to
result in either multiplicative or additive effects [43].
Fourth, to estimate effects of additive covariates we
executed the Aalen’s additive regression model
[44,45]. As the KIHD study utilises the IBMVR SPSSVR soft-
ware platform, we also applied the SPSS built-in time
variables to estimate effects of additive covariates.
When covariates are time-dependent, another option

Table 1. Distribution of study participants by the main CHD risk factors at baseline.
Risk factor Severity Description n (N)

Age 0 42 years 294 (334)
1 48 years 274 (358)
2 54 years 1148 (1592)
3 60 years 242 (398)

Family history 0 No close relatives with CHD 1061 (1351)
1 One close relative with CHD 638 (898)
2 Two or more close relatives with CHD 244 (413)

missing 15 (20)
Diabetes 0 FBG<5.6mmol/L 1800 (2425)

1 FBG 5.6� 6.9mmol/L or diagnosis and diet 102 (159)
2 FBG>6.9mmol/L or medication 56 (98)

Smoking 0 Never 672 (861)
1 Previously 675 (955)
2 Currently 611 (866)

Obesity 0 BMI <25 kg/m2 622 (843)
1 BMI 25� 29.9 kg/m2 993 (1351)
2 BMI �30 kg/m2 334 (476)

missing 9 (12)
Cholesterol 0 S-LDL <3.4mmol/L 539 (705)

1 S-LDL 3.4� 4.1mmol/L 568 (772)
2 S-LDL >4.1mmol/L or medication 816 (1156)

missing 35 (49)
Hypertension 0 SBP<120 and DBP<80mmHg 205 (257)

1 SBP 120� 139 or DBP 80� 89mmHg 645 (799)
2 SBP>139 or DBP>89mmHg or medication 1098 (1614)

missing 10 (12)

Notes. n refers to 1958 men free of coronary heart disease (CHD) at baseline, and N refers to the entire cohort of 2682
men. FBG: fasting blood glucose; BMI: body mass index; S-LDL: serum low-density lipoprotein; SBP: systolic blood pres-
sure; DBP: diastolic blood pressure.
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is to divide the follow-up period into shorter covari-
ate-specific time segments. In this study, however, we
did not test this method, since it may lead to the use
of even several different time segments if the number
of time-dependent covariates is high. However, in case
of few covariates the method is worth exploring [39].

To better illustrate the possible additive nature of
CHD risk factors we created a severity grading from 0
to 15. Grade 0 referred to the following baseline char-
acteristics: No close relatives with CHD, age 42, FBG
<5.6mmol/L and no glucose-lowering medication or
diet, never smoked, BMI <25 kg/m2, S-LDL-
C< 3.4mmol/L and no cholesterol-lowering medica-
tion, and SBP <120mmHg, DBP <80mmHg, and no
blood pressure medication. Correspondingly, Grade 15
referred to the most severe risk profile with respect to
CHD risk factors at baseline (Table 1). We do not sug-
gest the grading as an alternative for well-established
CHD risk scores, for example, but a way to concretise
cohort-specific effects of CHD risk factors. In the grad-
ing, we applied the same severity classes as in other
analyses to maintain coherence across results.

R 4.0.2 with the R packages “interactionR,”
“survival,” and “timereg” served as a statistical plat-
form [43,46–50].

Results

Baseline characteristics

All study participants were men, and their respective
mean (SD) age, FBG concentration, BMI, S-LDL-C con-
centration, SBP, and DBP were 53.1 (5.1) years, 4.8
(1.2) mmol/L, 26.9 (3.6) kg/m2, 4.0 (1.0) mmol/L, 134.2
(17.1) mmHg, and 88.7 (10.5) mmHg. Among those,
who had ever smoked (n¼ 1821) the mean (SD) pack-
year was 16.2 (18.9). Based on baseline examinations
and interviews 724 men had CHD. Table 1 presents
distributions of study participants by CHD risk factors
and risk factor severity gradings.

Endpoints

Of men who were free of CHD at baseline (n¼ 1958),
717 (37%) had the disease and 301 (15%) died for
CHD before the end of follow-up. All in all (n¼ 2682),
1777 (66%) men died, 541 (20%) men died for CHD,
905 (34%) men were alive, and 737 (27%) men were
alive and free of CHD at the end of follow-up. The
mean (SD) follow-up time was 21.4 (10.4) years among
men who were free of CHD at baseline, 14.7 (10.6)
years among men who had CHD at baseline (n¼ 724),

Figure 1. Statistically significant interactions across the main coronary heart disease (CHD) risk factors.
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and 19.6 (10.8) years among all men. The respective
risks of all-cause (and CHD) mortality were 0.62 (0.15),
0.77 (0.33), and 0.66 (0.20).

Interactions

We detected three multiplicative and one additive
interactions across the covariates (Figure 1,
Supplementary table 1). High S-LDL-C and obesity
increased the risk of CHD more among men younger
than 50 (RR for high S-LDL-C: 2.10, RR for obesity:
1.72) than those older than 50 (RR for high S-LDL-C:
1.22, RR for obesity: 1.11), and obesity increased the
risk of CHD particularly among non-smokers (RR in
non-smokers: 1.35, RR in smokers: 0.92). The inter-
action between weight and smoking statuses was sig-
nificant both at multiplicative and additive scales.

Multiplicative and additive effects

Most covariates were multiplicative. In a basic multi-
plicative survival model, glycemic status related to the
highest hazard ratio (HR). After considering covariate
interactions and time dependence, the model emphas-
ised age, weight status, and glycemic status as the
strongest multiplicative covariates with the respective
category-to-category HRs of 1.94, 1.68, and 1.63 (Table
2). The HR (95% CI) of age 60 compared to age 42
was 5.69 (2.22� 14.58), that of obesity compared to

normal weight was 1.72 (0.78� 3.81), and that of dia-
betes compared to no diabetes was 2.75 (1.89� 4.00).
Improvements in the model fit from the basic model
to the model with interactions and further to the
model with interactions and time dependence were
statistically only modest. In the first step, the �2 times
the log of the likelihood (-2LL) decreased from 16,055
to 16,034 with the p-value of .183 and in the
second step, -2LL decreased from 16,034 to 16,028
with the p-value of .461.

The only additive covariate was S-LDL-C status.
Schoenfeld residuals indicated no violations of the
proportional hazards assumption whereas the propor-
tionality test pointed out S-LDL-C status. The p-value
was¼ .033 when the model included covariate interac-
tions and .043 when it did not. The additive effect of
borderline high S-LDL-C compared to below border-
line S-LDL-C and that of high S-LDL-C compared to
borderline high S-LDL-C suggested two extra CHD
cases per 1000 men during 10 years of follow-up, as
the mean coefficient was 1.84� 10�4. The cumulative
coefficient for S-LDL-C status increased almost linearly
up to 18 years with the slope of c. 0.006 and then
reached a plateau (Figure 2). When comparing high S-
LDL-C to the combined group of borderline high and
below borderline S-LDL-C, the additive effect sug-
gested 2.5 extra CHD cases per 1000 men during
10 years of follow-up with the mean coefficient
of 2.51� 10�4.

Table 2. CHD risk factor specific category-to-category hazard ratios (95% CI) together with p-values
without and with covariate interactions and time dependence.
Risk factor Model 1 Model 2 Model 3

Age of 42 years 1.48 (1.35� 1.63) 1.91 (1.52� 2.40) 1.94 (1.54� 2.44)
Age of 48 years p< .001 p< .001 p< .001
Age of 54 years � Weight ¼ 0.152 � Weight ¼ 0.156
Age of 60 years � S-LDL-C¼ 0.036 � S-LDL-C¼ 0.023
No family history 1.30 (1.17� 1.44) 1.29 (1.16� 1.43) 1.29 (1.16� 1.43)
One with CHD p< .001 p< .001 p< .001
Two or more with CHD
No diabetes 1.64 (1.39� 1.92) 1.63 (1.38� 1.91) 1.63 (1.38� 1.91)
Borderline or diet-treated p< .001 p< .001 p< .001
Diabetes
Never smoking 1.31 (1.19� 1.45) 1.44 (1.23� 1.69) 1.45 (1.23� 1.70)
Previous smoker p< .001 p< .001 p< .001
Current smoker � Weight ¼ 0.142 � Weight ¼ 0.132
Normal weight 1.26 (1.13� 1.42) 1.68 (1.23� 2.29) 1.68 (1.23� 2.30)
Overweight p< .001 p¼ .001 p¼ .001
Obesity � Age ¼ 0.152 � Age 0.156

� Smoking ¼ 0.142 � Smoking ¼ 0.132
Below borderline S-LDL-C 1.30 (1.18� 1.42) 1.64 (1.29� 2.08) 1.95 (1.43� 2.67)
Borderline p< .001 p< .001 p< .001
High S-LDL-C � Age ¼ 0.036 � Age ¼ 0.023

� TIME ¼ 0.073
No hypertension 1.31 (1.16� 1.49) 1.32 (1.16� 1.49) 1.32 (1.17� 1.50)
Borderline p< .001 p< .001 p< .001
Hypertension

Notes. Study participants were free of coronary heart disease (CHD) at baseline (n¼ 1958). Model 1: Basic multiplicative
survival model. Model 2: With covariate interactions. Model 3: With covariate interactions and time dependence. S-LDL-C:
Serum low-density lipoprotein cholesterol.
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Concerning the severity grading of CHD risk factors,
a one-point increase in the severity score increased
the absolute risk of CHD by 6% regardless of whether
men with CHD at baseline were included or excluded
(Figure 3). From Grades 2 to 12, the relationship was
linear with the p-value of <.0001, and it explained
97% of the variation in the absolute CHD risk.
Between Grades 12 and 2, the respective RD (95% CI)
and RR (95% CI) were 0.62 (�0.45� 0.85) and 13
(3.22� 52.54). The CIs were wide due to low number
of men belonging to these grade categories, 15 and
39, respectively. Computationally, the 6% point-to-
point increase in the risk corresponds to the RD of
0.60 and RR of 6.00, when the interval is 10 points. If
including the uttermost grades (0, 1, 13, and 14) and
men with CHD at baseline, the simple linear regression
still explained 89% of the variation. Grade distributions
followed a normal distribution, and no men reached
the maximum score of 15 (Figure 3).

Discussion

Based on our findings considering covariate interac-
tions and time dependence in survival modelling may
refine results and ease to define the order of import-
ance across the main CHD risk factors. Previous simu-
lations and real data demonstrations have proposed
that extending conventional Cox survival models
improves model fit when predicting CHD by means of
its risk factors [16,51]. Additive models also appear to
emphasise partly different CHD risk factors than multi-
plicative models [16,17] and replacing both additive
and multiplicative models with other techniques, such
as survival trees and Fuzzy Logic-based models, high-
lights yet more risk factors [52,53]. Traditionally, stud-
ies have identified dyslipidemia as a pivotal CHD risk

factor [8]. Comparisons across studies with respect to
the order of significance among risk factors, however,
are difficult because studies have applied different risk
factor combinations and within-covariate variations
greatly differ across studies. Among the main modifi-
able CHD risk factors, studies have pointed out at least
unfavourable glycemic status [9,10] and smoking
[6,51,52] as the strongest one, and survival tree analy-
ses have suggested slightly different combinations of
CHD risk factors for different age groups and gen-
ders [52].

Our study suggested high S-LDL-C as the strongest
modifiable predictor of CHD in middle-aged men,
which is in accordance with the traditional opinion
[8]. At the same time, our study revealed the inter-
action between high S-LDL-C and age, the strongest
non-modifiable predictor, as well as the time depend-
ence of high S-LDL-C, as the relative significance of
high S-LDL-C diminished together with increasing age
and follow-up time. This time dependent interaction
also is in accordance with earlier findings [54].
However, without considering both interactions and
time dependence in the statistical model this study
would have stressed other covariates, such as gly-
cemic status, and omitted the importance of high S-
LDL-C.

The associations of CHD with its main risk factors in
the KIHD cohort appeared to be additive in that sense
that each one-point increase in the risk factor severity
grading increased the absolute risk of CHD just about
equally and irrespective of the risk factor type. For
example, becoming 6 years older, becoming over-
weight, and developing a precondition equally
increase the risk of CHD i.e. by 6% over the next three
decades. This finding for its part supports the trad-
itional opinion of CHD as a multifactorial disease with-
out any single dominant risk factor [8].

The additive effect of obesity on the CHD risk in
the presence of smoking was negative i.e. the abso-
lute risk of CHD was slightly lower among obese
smokers (0.35) than among normal or overweight
smokers (0.38). This effect for its part reflects the fact
that smoking per se increases the risk of all-
cause mortality, even more than obesity does [55]. In
the KIHD cohort, the absolute risk of all-cause and
non-CHD mortalities are highest specifically among
non-obese smokers (0.78 and 0.61), evidently higher
than among obese smokers (0.73 and 0.50).
Correspondingly, multiplicative interactions of age
with high S-LDL-C and obesity suggested the signifi-
cance of high S-LDL-C and obesity among men
younger than 50. A reason for this somewhat

Figure 2. Additive effect of high serum low-density lipopro-
tein cholesterol (S-LDL-C) concentrations on the risk of coron-
ary heart disease.
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surprising age-obesity relationship can partly relate to
the duration of obesity, as the KIHD study participants
who were obese and younger than 50 at KIHD base-
line had the highest mean (95% CI) BMI in young
adulthood (23.3, 22.9� 23.8), statistically significantly
(p¼ .001) higher than that of obese study participants
who were older than 50 at KIHD baseline (22.5,
22.3� 22.7). In other words, the KIHD study partici-
pants who were obese and younger than 50 at KIHD
baseline could have exposed to obesity longer than
the KIHD study participants who were obese but older
than 50 at KIHD baseline. Irrespective of the direction
of the interaction, however, the interaction should be
considered in statistical models.

All in all, considering how long and intensively
studies have underlined the importance of combining
multiplicative, additive, and interactive effects in gen-
eral and in the epidemiology of CHD [8–18], it is
astonishing that covariate interactions and their time
dependencies do not belong to the routine statistical
procedures of epidemiological studies on CHD. One
reason for the inequality between multiplicative and
additive survival models may relate to the interpret-
ation of their results. Results of multiplicative models
can be understood as risk ratios but results of additive
models should be at least partly reported as risk differ-
ences and additional cases, which, however, does not
denote additive models are difficult to interpret per
se [56].

Strengths and limitations

The present study is a longitudinal study with an
exceptionally long follow-up period, whereas a whole
range of previous findings concerning the nature of
associations across CHD and its main risk factors ori-
ginate from cross-sectional and case-control studies.
This study also included information from all 10 main
non-modifiable and modifiable CHD risk factors,

whereas previous studies have typically included only
some of them. On the other hand, this study focussed
only on White Finnish males without detailed informa-
tion regarding their genetic risk for CHD, which limits
possibilities to generalise its findings [57]. Moreover,
this study refers specifically to CHD, ICD 10 codes
I20� I25, as an endpoint, and because the main CHD
risk factors are to some extent outcome sensitive [26],
i.e. explanatory powers and the order of importance
among risk factors slightly differ across endpoints,
such as CHD, an acute myocardial infarction (AMI),
and a fatal AMI, the present results are not directly
generalisable to AMI and sudden cardiac death,
although them are typical manifestations of CHD. Our
previous paper provides analyses to verify this out-
come sensitivity [26]. To control possible bias origi-
nated from inaccuracies related to exclusions of study
participants based on the ergometer test we executed
statistical analyses and reported their results also con-
cerning the dataset without exclusions. The exclusions
did not affect the results of this study, which is in
accordance with our previous findings [26].

Conclusions

Considering interactions across the main CHD risk fac-
tors together with their time dependencies in a sur-
vival model on CHD incidence changed the order of
importance among the risk factors compared to a sim-
ple multiplicative model. Without considering both
interactions and time dependence the survival model
stressed glycemic status as the strongest modifiable
risk factor, whereas the extended model emphasised
S-LDL-C status that research, traditionally, has identi-
fied as a pivotal CHD risk factor. Age overcame the
family history of CHD as the strongest non-modifiable
risk factor. This study seriously reminds the benefits of
dealing simultaneously with multiplicative, additive,
and interactive associations for validity.

Figure 3. Relationship between the risk of coronary heart disease (CHD) and the severity grading of CHD risk factors.

ANNALS OF MEDICINE 1507



From the clinical perspective, this study suggests
high S-LDL-C concentrations being a very strong
explanator of CHD risk among men younger than 50.
Also, obesity is a strong explanator, but both age and
smoking confound the relationship between CHD and
obesity. Furthermore, this study proposes the order of
importance among the main CHD risk factors, also in
the clinical context, may slightly differ from the con-
ventional order. Smoking, for example, could be a so
strong predictor of non-CHD mortality that its role in
the development of CHD, at least, at the population
level may show moderate.
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