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Abstract

This review provides a comprehensive overview of the past 25+ years of research into the 

development of left ventricular assist device (LVAD) to improve clinical outcomes in patients 

with severe end-stage heart failure and basic insights gained into the biology of heart failure 

gleaned from studies of hearts and myocardium of patients undergoing LVAD support. Clinical 

aspects of contemporary LVAD therapy, including evolving device technology, overall mortality, 

and complications are reviewed. We explain the hemodynamic effects of LVAD support and how 

these lead to ventricular unloading. This includes a detailed review of the structural, cellular and 

molecular aspects of LVAD-associated reverse remodeling. Synergisms between LVAD support 

and medical therapies for heart failure related to reverse remodeling, remission and recovery are 

discussed within the context of both clinical outcomes and fundamental effects on myocardial 

biology. The incidence, clinical implications and factors most likely to be associated with 

improved ventricular function and remission of the heart failure are reviewed. Finally, we discuss 

recognized impediments to achieving myocardial recovery in the vast majority of LVAD-supported 

hearts and their implications for future research aimed at improving the overall rates of recovery.

Introduction

Left ventricular assist devices (LVADs) are a mainstay of care for many patients with 

end-stage heart failure either as a bridge to transplant, bridge to recovery or as destination 

therapy. Approximately 3000 LVADs are implanted worldwide each year and, with current 

selection criteria, devices and surgical techniques, 1- and 2-year survival rates are 82% 

and 72%, respectively.1 While survival rates and the incidence of pump thrombosis have 

improved over the decades as a result of technological advances and improvements in 

clinical management, significant challenges remain, particularly as they relate to stroke, 

infection, gastrointestinal bleeding and right heart failure.

In addition to remarkable contributions to the care of end-stage heart failure patients, clinical 

and basic studies of LVAD patients and their tissues have produced a wealth of information 

about the biology of heart failure and the potential for myocardial reverse remodeling,2 

remission3 and recovery.4 These studies have focused on the primary myocardial effects 
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of LVADs related to direct mechanical and metabolic ventricular unloading, in addition 

to secondary salutary myocardial effects of LVAD support related to improved end-organ 

perfusion and suppression of the activated systemic inflammatory and neurohormonal 

systems.

In this review, we first provide a brief overview of the evolving LVAD technology. Next, 

we discuss the hemodynamic effects of LVAD support and how these lead to ventricle 

unloading. This is followed by a detailed review of the structural, cellular and molecular 

aspects of LVAD-associated reverse remodeling with focus on what has been learned 

concerning the potential for myocardial recovery. Finally, we review the incidence, clinical 

implications and factors most likely to be associated with improved ventricular function and 

remission of the end-state heart failure state.

Evolving Left Ventricular Assist Device Technology

The past thirty years have seen progressive improvements in mechanical circulatory support 

devices, with significant improvements in efficacy and portability, dramatic increases in 

durability and progressive reductions in associated adverse effects. The first generation of 

LVADs, exemplified by the HeartMate XVE, were pulsatile devices, and were limited in 

use due to their size and a high rate of mechanical failure. Despite these drawbacks, the 

HeartMate XVE was a significant improvement over medical therapy, both for patients 

being bridged to transplant (BTT) and those undergoing implantation as destination therapy 

(DT).5, 6 The adverse events associated with the pulsatile LVADs spurred the development 

of second-generation LVADs, which employed continuous-flow technology. The transition 

to continuous-flow physiology had several advantages, including a significant decrease in 

the pump size and enhanced durability due to fewer moving parts and elimination of the 

need for biological valves. These improvements translated to significantly better outcomes 

for DT patients, with 46% of HMII patients achieving 2-year survival free from disabling 

stroke or device replacement as compared to 11% of HeartMate XVE patients.7 The other 

widely used, second-generation LVAD, is the HVAD. The observational ADVANCE trial 

demonstrated 90.7% success (transplantation, explantation for recovery or ongoing device 

support) at 6 months for HVAD BTT patients.8 These two devices were randomized 

against each other in DT patients in the ENDURANCE trial, which demonstrated similar 

overall event-free survival at 2 years.9 The HM3 is a third-generation LVAD, with a fully 

magnetically levitated centrifugal-flow rotor, eliminating friction-generating mechanical 

bearings which are thought to contribute to thrombus development within the HMII pump. 

In the Multicenter Study of MagLev Technology in Patients Undergoing Mechanical 

Circulatory Support Therapy with HeartMate 3 (MOMENTUM 3) trial, the HM3 was 

superior to the HMII in terms of event-free survival, with a marked reduction in the 

incidence of hemocompatibility-related adverse events (HRAEs), most notably pump 

thrombosis.10, 11 Despite overall improvement in outcomes, the adverse event profile of 

contemporary LVADs remains significant and include right ventricular failure, device-related 

infections, gastrointestinal bleeding, de novo aortic insufficiency, and stroke.
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LV unloading and hemodynamic effects of LVAD support

LVADs pump blood from the left ventricle to the aortic root, thus providing a mechanical 

pump that works in parallel with the native left ventricle. The flow (Q) generated by an 

LVAD depends on the pressure gradient (or pressure head, H) from the tip of the inflow 

cannula to the tip of the outflow graft and the rotational speed of the device (revolutions 

per minute, RPMs) according to each pump’s unique relationship between pressure head - 

flow relationship: the HQ curve (Figure 1A). In general, the greater the pressure head, the 

lower the flow and, for a given pressure head, the flow increases with increased RPMs. 

Modern LVADs are continuous flow devices, meaning they pump blood throughout the 

entire cardiac cycle; however, since aortic and ventricular pressures vary during the cardiac 

cycle (Figure 1B), the pressure-gradient the pump is exposed to varies during the cardiac 

cycle (Figure 1C), so that the flow rate varies during the cardiac cycle (Figure 1D). The 

impact on the LV is a flow-dependent unloading of the LV that is indexed by a decreased 

LV end-diastolic pressure, end-diastolic volume and pressure-volume area (PVA, a correlate 

of myocardial oxygen consumption) which are readily illustrated on the ventricular pressure-

volume diagram (Figure 1E). The loop shape also transitions from a normal rectangular to a 

triangular shape due to loss of isovolumic contraction and relaxation phases. Simultaneously, 

total cardiac output to the body (CO, the sum of the native heart output and the LVAD 

flow) and mean arterial blood pressure increase (MAP), while pulmonary capillary wedge 

pressure (PCWP) generally decreases in parallel with the reduction of end-diastolic pressure. 

Depending on LV contractility, LVAD RPM and volume status, the LVAD may overtake the 

LV such that LV pressure is always lower than aortic pressure and the aortic valve remains 

closed (as in Figure 1B), a phenomenon referred to as LV-aortic pressure uncoupling.

Clinical studies of both centrifugal and axial flow devices, which have different HQ curves, 

show similar hemodynamic effects.12 Patients vary greatly with regard to their baseline 

hemodynamic profile on LVAD support. Among many factors, this variability largely 

reflected differences in volume status and right ventricular contractility. Consistent with 

theory detailed above, increased RPMs generally results in decreased PCWP, and increased 

CO and MAP. There are only small and inconsistent changes of CVP, likely reflecting the 

competing effects of increased LVAD flow to increase venous return to the right ventricle 

(i.e., increased RV preload) and decrease PCWP (i.e., decreased RV afterload).12 Thus the 

higher the LVAD RPMs, the greater the degree of hemodynamic unloading.

In addition to these hemodynamic effects, increased LVAD speed affects LV and RV 

anatomy as summarized in Supplemental Figure 1.13 With the HeartMate II LVAD (HMII, 

Abbott Laboratories, Chicago), increased RPMs decreases LV volumes and drives the 

LV to a more conical shape. In contrast, RV volumes remain mostly stable until, at the 

highest speeds, the interventricular septum becoming more convex (bulging into the LV) 

and RV volume increases. With the HVAD device (Medtronic, Minneapolis), LV volumes 

also decrease with increasing RPMs, but the LV chamber remains more spherical as in 

the baseline heart failure state. The difference may be explained by device position. The 

HMII is an intra-abdominal device that displaces the LV apex inferiorly while the HVAD 

is connected to the LV apex, limiting the longitudinal change of the LV. The HeartMate 3 
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(HM3) LVAD, also attached to the apex, produces changes that are intermediate between the 

HMII and HVAD LVADs.

Echocardiography and hemodynamics can be used separately or simultaneously to 

determine the adequacy of LV unloading and to optimize LVAD function. Unloading 

parameters, specifically LV size, frequency of aortic valve opening and the degree of 

mitral regurgitation, can be measured dynamically across a range of LVAD speeds in an 

echocardiographic ramp test to determine the optimal speed setting.14–16 The addition 

of hemodynamic measurements to the ramp study through simultaneous right heart 

catheterization imparts an understanding of the relationship between volume unloading and 

pressure unloading.12, 13 Evidence suggests that achieving an optimal hemodynamic profile 

is associated with significant reductions in the incidence of adverse events.17, 18

Biological effects of mechanical unloading of the LV

Soon after introduction of LVADs into clinical practice, it became evident that LV 

dimensions of end-stage failing hearts were decreasing over time. To determine whether 

these changes simply reflected the primary unloading effects of the LVAD, or whether this 

reflected a fundamental change of LV size and structure, end-diastolic pressure-volume 

relationships (EDPVR) were measured from hearts explanted at the time of heart transplant 

(Figure 2A).2, 19 Results showed that the EDPVR of LVAD-support hearts were significantly 

left shifted towards lower volumes compared to non-supported hearts; on average, however, 

the LVAD-supported hearts remained larger than normal hearts. When indexed by the 

volume at which the EDPVR attained a pressure of 30 mmHg (V30), it was shown that 

the size of the heart was related to the duration of LVAD support, following a roughly 

exponential time course with a time constant of ~30 days (Figure 2B).19

These studies of explanted human hearts, and associated studies comparing characteristics 

of paired pre- and post-LVAD myocardial tissue samples, ushered in an era of intense 

investigations into the effects of LVAD support on size, structure, cellular, extracellular 

and molecular characteristics of the failing myocardium.20 These studies provided unique 

insights into mechanisms of reverse remodeling and consistently demonstrated ventricular 

structural and functional improvements are accompanied by favorable changes in the 

biology of the human myocardium at the cellular and molecular levels. Early work 

from patients supported with pulsatile-flow LVADs focused on the impact of mechanical 

unloading on individual aspects of the maladaptive LV remodeling phenotype. However, 

recent advances in RNA sequencing, mass spectrometry, and metabolomics as well as 

greater appreciation of cellular heterogeneity of the healthy and disease human heart allowed 

researchers to investigate LVAD-induced changes in RNA and protein signatures at the 

global scale in a cell-specific manner (detailed below, Figure 3). Despite the favorable 

changes observed at the cellular and molecular levels, it is important to recognize that 

the vast majority LVAD-supported patients do not exhibit fully recovery and move on 

to receive heart transplantation, highlighting the importance of correlating the changes at 

the cellular and molecular structure with echocardiographic and hemodynamic indices of 

cardiac function in LVAD patients. LVAD-induced alterations in the cellular and molecular 

structure of the failing myocardium also need to be evaluation in an evolving era of 
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LVAD technology and heart failure therapies including beta-blockers, angiotensin converting 

enzyme inhibitors, angiotensin receptor neprilsyn inhibitors, aldosterone blockers, sodium 

glucose co-transporter inhibitors, and cardiac resynchronization therapy, all of which may 

have profound impact on the reverse remodeling phenotype.

Impact of Mechanical Unloading on the Failing Cardiomyocyte

Reversal of Cardiomyocyte Hypertrophy

Cardiomyocyte hypertrophy is widely believed to be a compensatory response to stress 

induced by hemodynamic overload and/or neurohormonal activation, which may become 

maladaptive if the stress signal remains sustained.21 Studies have consistently showed that 

mechanical unloading with LVAD leads to a reduction in cardiomyocyte size while the 

magnitude of this reduction has been debated.19, 22–24 Some early work from patients 

with pulsatile-flow LVADs have suggested that prolonged unloading could lead to an 

extreme reduction in cell size resulting in the atrophy of cardiomyocyte, similar to what 

has been observed in animal models of heterotopic heart transplantation and mechanical 

unloading.22, 25, 26 These observations led to the utilization of β1-agonist clenbuterol in 

LVAD-supported patients, in an effort to pharmacologically prevent cardiomyocyte atrophy 

and to promote myocardial recovery in clinical trials.27, 28 However, other studies with 

pulsatile devices19 and more recent data from patients supported with newer generation 

continuous-flow LVADs29 did not suggest a reduction in cell size beyond that of non-failing 

cardiomyocyte and therefore did not support this hypothesis.

One of the characteristic features of pathological cardiomyocyte hypertrophy is the 

switch to the fetal gene expression profile including atrial natriuretic peptide (NPPA), 

brain-natriuretic peptide (NPPB), beta-myosin heavy chain (MHY7), and alpha-skeletal 

actin (SKA). Consistent with LVAD-induced reduction in cardiomyocyte size, mechanical 

unloading also leads to reduction in myocardial expression of fetal gene isoforms. While 

the upstream signaling cascades for LVAD-induced reduction in cell size are only beginning 

to be understood, GATA binding protein 4 (GATA-4), a master transcriptional regulator 

of stress-induced cardiomyocyte hypertrophy, has been shown to be downregulated with 

LVAD support.30 Similarly, activation of mitogen activated protein kinases (MAPKs) that 

are linked to cell growth including ERK-1/2 and JNK-1/2 were also shown to be reduced 

with mechanical unloading.31 GSK-3β, a negative regulator of calcineurin/NFAT signaling 

and cardiomyocyte hypertrophy, has been shown to be activated during LVAD support, yet 

this finding has not been validated by other investigators.29, 32, 33

Improvements in Calcium Cycling and Cardiomyocyte Contractility

Altered calcium cycling resulting in reduction in cardiomyocyte contractility is a central 

cause of heart failure.34 Cardiomyocytes isolated from explanted human hearts before and 

after LVAD support demonstrate a significant improvement in myocyte contractile properties 

such as magnitude of contraction, time to peak contraction, and time to 50% relaxation, 

yet this improvement appears to be only partial compared to non-failing cardiomyocytes.35 

LVAD-induced improvements in cardiomyocyte contractility is associated with a significant 

increase in calcium entry through sarcolemma during action potential and an increase in 
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sarcoplasmic reticulum calcium content.36 These favorable changes are also accompanied 

by normalization of calcium cycling genes including Na/Ca exchanger (NCX), sarcoplasmic 

endoreticular Ca2+ ATPase (SERCA), and ryanodine receptor 2 RyR220, as well as protein 

kinase A mediated hyperphosphorylation of RyR2.37 Additional evidence for LVAD-induced 

improvement in excitation-contraction coupling arises from ultrastructural examination of 

LVAD-supported cardiac tissues also suggested a higher likelihood of functional recovery in 

hearts with preserved T-tubule structure and a shorter physical distance between sarcolemma 

and ryanodine receptors.38

β -adrenergic signaling is a direct regulator of cardiac contractility through changes in 

both inotropy and chronotropy. Heart failure is characterized by sympathetic hyperactivity 

resulting in a decrease in myocardial β−1 adrenergic receptor density and uncoupling of G 

proteins from the β receptors, a process involving GRK2 mediated phosphorylation of the β 
receptor. Mechanical unloading with LVAD results in upregulation of β-adrenergic receptor 

density and increased responsiveness to β-adrenergic stimulation.39, 40 Restoration of β-

adrenergic responsiveness was accompanied by decreased GRK activity on LVAD support, 

which was mediated primarily by a reduction in GRK2 but not GRK5 expression.41, 42

Reorganization of Cytoskeletal Structure

Cytoskeletal proteins form the scaffold of cardiomyocytes providing stability and 

mechanical integrity of sarcomeres necessary to maintain uniform transmission of 

force.43 Genetic mutations in cytoskeletal proteins cause muscular dystrophy frequently 

associated with dilated cardiomyopathy and heart failure, and disorganization of cytoskeletal 

organization is linked to contractile dysfunction.44 Vatta et al. reported a disruption in the N-

terminal region of dystrophin protein in patients with end-stage cardiomyopathy, which was 

reversed after mechanical unloading with LVAD in 4 out of 6 patients.45 Myocardial gene 

expression analysis in LVAD supported patients with recovery of LV function suggested 

an increase in the transcript levels of several sarcomeric and non-sarcomeric cytoskeletal 

genes including lamin A/C, spectrin, β-actin, α-tropomyosin, α1-actinin, and α-filamin and 

a decrease in vinculin, troponin T3 and α2-actinin.46 At the protein level, abundance of 

cytoskeletal proteins including desmin, vinculin, and α-actin was significantly reduced in 

ischemic failing hearts following mechanical unloading.47 However, immunohistochemical 

staining of myocardial cytoskeletal myofilaments in patients before and after LVAD support 

showed only slight improvements in structural organization of actin, tropomyosin, troponin 

C, troponin T, titin proteins, suggesting that disarrangement of cytoskeletal protein structure 

could be persistent with mechanical unloading.48

Alterations in Mitochondrial Structure and Cellular Metabolic Pathways

The majority of the ATP consumed by the cardiomyocyte is derived from oxidative 

metabolism in the mitochondria, also known as “powerhouses” of cell.49 As such, 

abnormalities in mitochondrial structure and function is closely linked with pathophysiology 

of heart failure. Mechanical unloading with LVAD leads to a reduction in cardiomyocyte 

mitochondrial content determined by mtDNA copy number normalized to nuclear DNA.50 

The reduction in mitochondrial number is, however, accompanied by favorable changes in 

the mitochondrial ultrastructure including size uniformity, organized cristae structure, and 
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reduction in abnormally small and fragmented mitochondria following LVAD support.51 

Frequency of deletion mutations in the mitochondrial DNA were reduced in patients 

supported with LVAD.52 As a result, mitochondrial oxidative stress measured by hydrogen 

peroxide emission ex-vivo was significantly reduced in LVAD supported failing hearts.53

Altered energetics is believed to be central to the development and progression of HF, 

exhibiting a “fetal pattern” of substrate use characterized by enhanced glycolysis and a 

reduction in fatty acid oxidation. Transcriptional analysis of unloaded human hearts have 

suggested LVAD-induced upregulation of genes involved in fatty acid, pyruvate and glucose 

metabolism as well as genes in the mitochondrial complex.54 Favorable changes in the 

metabolic gene expression profile was accompanied by restoration of myocardial metabolite 

levels of C2–C10 acylcarnitines, Krebs cycle intermediates, as well as amino acids to 

levels of non-failing control hearts, suggestive of improved fuel utilization and metabolic 

homeostasis with LVAD support.54 Other investigators have suggested that, while the levels 

of glycolytic metabolites and amino acid in the failing human myocardium are restored 

with LVAD support; the levels of Krebs cycle intermediates remain largely unchanged, 

suggestive of “glycolysis-oxidative phosphorylation mismatch”.55 While the precise 

mechanisms responsible for the dissociation between glycolysis and tricarboxycycline acid 

cycle metabolism are unclear, subsequent work suggested that the glycolysis-oxidative 

phosphorylation mismatch is accompanied by an increase in the levels of rate-limiting 

enzymes of pentose phosphate pathway and 1-carbon metabolism in LVAD supported 

hearts, resulting in higher levels of reduced nicotinamide adenine dinucleotide phosphate 

and improved cytoprotection.56

Mechanical unloading improves fatty acid oxidation through upregulation of carnitine 

palmitoyltransferase I (CPT1) mRNA levels, a critical regulator of mitochondrial fatty acid 

transportation and reduced myocardial accumulation of toxic lipid intermediates including 

diacylglycerol and ceramide.57 Nearly all chain lengths of ceramides are reduced by 

LVAD support along with a reduction in protein levels of ceramide synthase 2 (CERS2).58 

Consistent with improved fatty acid utilization and oxidation, the levels of circulating long-

chain acylcarnitines were significantly reduced following LVAD support.59

Reduction in Cardiomyocyte Cell Death and Autophagic Signaling

Heightened necrotic and apoptotic cell death is thought to contribute to cardiomyocyte 

loss and progressive decline in LV function during heart failure. Early studies from 

patients supported with pulsatile-flow LVADs suggested attenuation of ventricular apoptotic 

DNA fragmentation and upregulation of anti-apoptotic signaling genes including bcl-XL 

and FasExo6Del/Fas in the failing human hearts after mechanical unloading.60 However, 

terminal deoxynucleotidyl transferase dUTP nick-end (TUNEL) labeling of apoptotic nuclei 

consistently demonstrated an overall low incidence of cardiomyocyte apoptosis in the failing 

human heart, which was largely unchanged following mechanical unloading.61–64

Mechanical unloading with LVAD leads to a reduction in the levels of autophagy 

markers in the failing human heart including Atg5–12, Beclin-1, and LC3-II.62 Mice with 

cardiac-restricted overexpression of beclin-1 develop augmented pathological remodeling 

characterized by cardiomyocyte hypertrophy, increased myocardial fibrosis, and reduced 
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fractional shortening following pressure overload. Conversely, heterozygous disruption of 

beclin-1 was protective from pathological remodeling induced by pressure-overload.65 

Taken together, these observations suggest that LVAD-induced reduction in autophagic 

response could be an adaptive response.

Enhanced Cardiomyocyte Regeneration

Adult human heart has extremely limited capacity for regeneration evidenced by low 

incidence of cardiomyocyte turnover that diminishes with age.66 Cell-cycle arrest remains 

a major barrier to cardiomyocyte renewal. Mechanical unloading with LVAD was shown 

to reduce the number of polypoid cardiomyocytes and cardiomyocyte DNA content, while 

the number of binucleated cardiomyocytes were increased.67 In addition, markers of cell-

cycle reentry including phosphorylated Histone H3 and Aurora B kinase were shown to be 

upregulated in cardiomyocytes following LVAD support.50 While the signaling mechanisms 

responsible for cell-cycle reentry remains largely unknown, these early observations suggest 

that at least a proportion of cardiomyocytes are not terminally differentiated and could 

potentially regenerate with mechanical unloading.

Impact of Mechanical Unloading on the Non-Myocyte Compartment

Changes in Extracellular Matrix

The extracellular matrix (ECM) plays a crucial role in cardiac homeostasis by providing 

structural support and regulating signal transduction in resident myocardial cells.68 Ischemic 

and non-ischemic heart failure are characterized by activation of fibroblasts which triggers 

synthesis and deposition of ECM proteins resulting in expansion of interstitium. While 

several reports suggested a reduction in myocardial collagen content with mechanical 

unloading23, 69, 70, the majority of evidence from studies utilizing digital microscopy as 

well as biochemical and functional characterization of myocardial collagen in larger number 

of patients demonstrate no change63, 71 or a significant increase24, 40, 71–74 in myocardial 

fibrosis following LVAD support. Biochemical characterization of myocardial collagen 

using hydroxyproline and Sircol collagen assays showed an LVAD-induced increase in the 

total myocardial collagen content, undenatured soluble collagen, as well as cross-linked 

collagen determined by an increased ratio of insoluble to soluble collagen fraction.40, 73, 74 

LVAD-induced increase in the cross-linked collagen resulted in an increase in myocardial 

stiffness determined by passive LV pressure volume relationships.40

Changes in myocardial collagen content is mediated by ECM turnover enzymes including 

matrix metalloproteinases (MMPs) and their inhibitors (TIMPs). Studies using gelatin 

zymography suggested a decrease in MMP-2 and MMP-9 activity in LVAD supported 

failing hearts, which was accompanied by a significant reduction in MMP-1, increase 

in TIMP-1 protein levels, and a net decrease in MMP-1/TIMP-1 ratio favoring collagen 

deposition.40, 73 Myocardial mRNA levels of MMP-2 and MMP-9 were downregulated with 

LVAD support and accompanied by a reduction in circulating MMP-9 protein levels.70

Neurohormonal inhibition appears to be a major determinant of LVAD-induced ECM 

remodeling, as treatment with ACE-inhibitors resulted in significant reduction of cross-
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linked collagen, normalization of MMP-1/TIMP-1 ratio, and COL1A1 gene expression in 

the failing human heart.75, 76 ECM remodeling could be affected by other factors such as 

the degree and duration of mechanical unloading, as the longer durations of LVAD support 

resulted in lower myocardial collagen content. 74

A central question remains whether myocardial fibrosis is a determinant of myocardial 

recovery in LVAD supported patients. Animal models of myocardial recovery with 

improvements in cardiac structure and function exhibit persistent or increased myocardial 

fibrosis, suggesting that reversal of fibrosis may not be central to the process of reverse 

remodeling.77–79 On the contrary, histopathological studies from explanted human hearts 

suggested that patients with less cardiac fibrosis at the time of LVAD implantation were 

more likely to demonstrate improvement ejection fraction and undergo device remodel for 

recovery.80, 81 It is important to note, however, that lower myocardial fibrosis may serve 

as surrogate for non-ischemic HF etiologies, which have higher recovery potential than 

ischemic HF. Nevertheless, these observations suggest that while mechanical unloading 

with LVAD may not reduce myocardial fibrosis, patients with lower myocardial collagen 

deposition at the time of LVAD implantation could be more likely to recover on device 

support. Future research will determine the precise role of extracellular matrix composition 

in LVAD-induced reverse remodeling.

Endothelial Cell Activation & Microvascularizarion

It has been well established that microvascular density in the failing human heart is 

reduced. LVAD support is associated with a 33% increase in myocardial microvascular 

density measured by CD34 staining in the failing human heart.24 Ultrastructural examination 

suggests signs of endothelial cell activation in LVAD supported hearts including 

reduplication of basal lamina, increase in the number of cellular projections, and increased 

number of organelles protruding into the luminal area.24 While the signaling mechanisms 

responsible for LVAD-induced changes in endothelial cell phenotype and myocardial 

microvascular density are unknown, it is plausible that angiogenetic pathways including 

Angiopoietin-2 (Ang-2) signaling which have been implicated in the development of 

mucosal arterio-venous malformations and mucosal bleeding events, could also be activated 

in the failing human myocardium.82 Ang-1 promotes normal vessel growth while Ang-2 

promotes abnormal growth associated with vascular destabilization and inflammation.83 

Therefore, LVAD-induced changes in endothelial structure and microvascular density could 

be maladaptive and contribute to increased fibrosis observed in LVAD supported hearts.

In addition to changes in the endothelial cell phenotype, mechanical unloading has a 

profound impact on the macrovascular structure. LVAD support resulted in thinning of 

internal elastic media and reciprocal thickening of the external elastic media in coronary 

arteries.84 Importantly, mechanical unloading induced expansion of the coronary artery 

adventitia, which was accompanied by a significant increase in collagen deposition and 

vasovasorum density in this layer.84 While the functional impact of these findings merit 

further research, fibrotic changes observed in the coronary arteries in LVAD supported 

patients may cause myocardial ischemia and hinder myocardial recovery.
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Changes in Cytokine Signaling and Cardiac Macrophage Phenotype

Chronic heart failure is associated with activation of innate and adaptive immune systems 

compromising of cellular and non-cellular components.85 Mechanical unloading with LVAD 

is associated with significant reductions in myocardial pro-inflammatory cytokine levels 

including TNF-α, IL-6, IL-1β, Fas, and FLICE.86–88 However, circulating levels of TNF-α 
as well as several other chemokines including monocyte chemoattractant protein 1 (MCP-1), 

IP-10, IL-8, and C-reactive protein (CRP) remain persistently elevated after LVAD support, 

suggesting incomplete normalization of inflammatory signaling cascades during mechanical 

unloading.89–92

Immunohistochemical analysis of failing human heart samples before and after LVAD 

support did not reveal a significant difference in cardiac resident macrophage density 

determined by CD68 staining.93, 94 While the total number of CD68 positive cardiac 

resident macrophages remains unchanged with LVAD support, growing lines of evidence 

suggests presence of macrophage phenotype switch with mechanical unloading. Gene 

expression studies of isolated cardiac macrophages have shown reduced expression of 

pro-fibrotic M2 macrophage genes including KLF-4, TGM2, and MRC1 and a trend 

towards reciprocal increase in pro-inflammatory M1 macrophage genes including IL-1β 
and TNF-α with mechanical unloading.93 LVAD-induced changes in macrophage gene 

expression profile also includes a significant reduction in MMP2 gene transcription, which 

likely contributes to persistent myocardial fibrosis with mechanical unloading. Patients with 

improved left ventricular systolic function on LVAD support had lower absolute numbers 

and percentage of pro-inflammatory CCR2+ macrophages both at the time of LVAD 

implantation and at the time of explant.94 The percentage of CCR2+ macrophages, but 

not CD68+ macrophage abundance, correlated with left ventricular systolic improvement 

following LVAD implantation. These observations suggest that functionally distinct subsets 

of cardiac macrophages play important roles in LVAD-induced reverse remodeling.

Impact of Mechanical Unloading on Failing Myocardial Transcriptome

Transcriptional profiling has been used extensively to gain insights into mechanisms 

of LVAD-induced reverse remodeling and to identify novel biomarkers of myocardial 

recovery. Early transcriptional profiling studies used hybridization-based approaches such 

as microarray which are limited by the probe content, while more recent studies used 

next-generation RNA-sequencing which allows for unbiased identification of splice variants 

as well as noncoding transcripts. Aside from the platform used, these studies also differ 

with regards to the etiology of HF, concomitant medical therapy, duration of LVAD support, 

statistical criteria used to detect differentially expressed transcripts, and whether or not “non-

failing” control cardiac tissue samples have been included in the experimental design (Table 

1). In the largest and the most comprehensive analysis to date, Margulies et al. reported 

that of 3088 transcripts dysregulated in heart failure, only 238 exhibited a statistically 

significant change in expression levels after LVAD support.95 Moreover, HF genes which 

were significantly regulated with LVAD support were more likely to exhibit further 

deviation from the non-failing transcription levels (exacerbation or persistence) instead 

of returning towards normal levels (partial recovery, normalization, or overcorrection). 
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While only a small proportion of HF-dysregulated genes normalize with LVAD support, 

several mRNAs enriched in inflammatory (C/EBPβ, NFKBIA, CXCL12, CCL2, CD14) and 

oxidative stress pathways (MT1F, MT1X) were detected in at least 3 independent LVAD 

transcriptional studies, suggesting that mechanical unloading could have a unique gene 

signature irrespective of the changes in cardiac function.96

The recent advances in sequencing technology demonstrated that the majority of cellular 

transcriptome consists of RNAs transcribed from the non-coding region of the genome.97 

These include microRNAs (miRNAs) and long-non coding RNAs (lncRNAs), which have 

important regulatory and functional roles in the pathophysiology of HF. Matkovich et al. 

demonstrated that out of 28 “heart failure” miRNAs, which were significantly upregulated at 

least 2 fold in the failing human hearts, 20 (71.8%) showed full normalization or significant 

reduction in expression levels following LVAD support, suggesting that miRNAs could be 

more sensitive than mRNAs in relation to the functional status of the failing human heart.98 

These LVAD-responsive miRNAs included myomiRs (miR-1, miR-133, miR-499) and other 

miRNAs implicated in cardiomyocyte hypertrophy (miR-23a and miR-195), metabolism 

(miR-378), and fibrosis (miR-21 and miR-29).98 In contrast, Ramani et al. demonstrated 

only 10 myocardial miRNAs out of 108 screened to be differentially expressed in LVAD 

patients, including miR-23a and miR-195 which were expressed at lower levels at the 

time of LVAD implantation in patients who recovered on LVAD support.99 Akat et al. 

examined circulating levels of cardiac- and muscle-specific miRNAs including miR-1–1, 

miR-208-a, and miR-208-b, which were increased up to 140-fold in advanced HF patients 

and demonstrated a near complete normalization of expression following LVAD support, 

suggesting that circulating miRNAs could potentially serve as biomarkers of myocardial 

recovery.100

Yang and colleagues for the first time performed first sequencing-based transcriptional 

profiling of the failing human heart before and after LVAD support and provided 

comprehensive analysis of LVAD induced changes in mRNA, microRNA (miRNA), and 

long noncoding RNA (lncRNA) expression signatures in the failing human heart.101 Their 

analysis suggested that of all transcripts examined, lncRNAs exhibited the highest level 

of improvement (defined as correction of expression level by at least 25%) with LVAD 

support including 8.1% and 9.8% of lncRNAs dysregulated in ICM and NICM, respectively. 

(Figure 4).101 Only 4.4% vs 7.5% of miRNAs and 5.1% vs. 4.3% of mRNAs dysregulated 

in ICM vs. NICM, respectively, showed improvement in expression levels with LVAD 

support. Expression signature of lncRNAs, but not mRNAs or miRNAs, distinguished 

heart failure (HF) samples before and after LVAD in clustering and principal component 

analysis, suggesting that non-coding transcripts are more likely to improve with mechanical 

unloading compared to protein-coding transcripts. Nevertheless, confirming prior microarray 

studies, >90% of myocardial transcriptome including coding and non-coding elements 

remained persistently dysregulated by RNA sequencing following LVAD support.

The majority of the transcriptional studies performed to date on LVAD supported patients 

utilized RNA extracted from the myocardium and do not account for the complexity and 

heterogeneity of cell populations with potentially diverse origins in the failing human 

heart. Recent advances in low-input RNA sequencing allowed for definitions of cellular 
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transcriptomes at single-cell resolution scale, highlighting more than 20 cell subtypes within 

the human heart.102, 103 Wang et al. performed single-cell RNA sequencing using cells 

isolated from two patients before and after LVAD support and showed that cell-specific 

transcriptional profiles obtained from an LVAD supported heart with improved cardiac 

function have increased similarity of cell-specific gene expression to profiles obtained from 

non-failing control hearts, which was most notable for the endothelial cell compartment.104 

In contrast, cell-specific transcriptional profiles obtained from the second LVAD patient 

without significant improvement of cardiac function on LVAD showed no changes in 

including cardiomyocyte, fibroblast, or endothelial cell specific gene expression profiles.

Impact of Mechanical Unloading on Myocardial Protein Composition

While transcriptional studies provided insight into LVAD-induced reverse remodeling, 

changes at the mRNA level do not always correlate with corresponding protein levels 

due to post-translational regulatory mechanisms. Towards this goal, several investigators 

used mass spectrometry technique to quantify proteins that change abundance following 

LVAD support.47, 105 de Weger et al. identified 16 proteins (all 16 downregulated) which 

were differentially regulated in non-Ischemic failing human hearts and 50 proteins (38 

downregulated, 12 upregulated) which were differentially regulated in ischemic failing 

human hearts with mechanical unloading. LVAD-induced changes in myocardia proteome 

included downregulation of several cytoskeletal proteins including desmin, vinculin, α-actin 

as well as upregulation of several metabolic enzymes including NADH dehydrogenase, 

pyruvate dehydrogenase, ATP synthase, and creatine kinase.47 Using pathway enrichment 

analysis, Shahinian and colleagues demonstrated down-regulation of proteins mapping to 

extracellular matrix, TGF-β signaling, complement system, and cardiac peptide hormones 

as well as up-regulation of proteins mapping to innate immune system, metabolism, 

and protein synthesis following mechanical unloading.105 Serine protease inhibitor α−1-

antichymotrypsin (ACT) has been identified as a candidate protein that is consistently 

down-regulated in LVAD supported failing hearts by mass spectrometry and validated 

by immunosorbent assays.47, 105 Further work suggested that LVAD support results in a 

significant reduction of stromal ACT staining as well as circulating ACT levels.106 While 

implications of ACT for reverse remodeling are unknown, mast-cell derived serine protease 

Cathepsin G, which is an ACT target and activator of TGF-β signaling, is significantly 

downregulated following LVAD support.107

Impact of Mechanical Unloading on the Epigenetic Landscape of Failing 

Myocardium

Epigenetic mechanisms associated with the development of pathological cardiac 

hypertrophy include DNA methylation, histone modifications, and ATP-dependent 

chromatin remodeling. While changes in genome-wide myocardial DNA methylation has 

not been yet characterized, LVAD support was associated with a significant increase in 

the protein levels of repressive histone marks including H3K4me2, H3K4me3, H3K9me2, 

and H3K9me2.108 These changes were accompanied by a significant upregulation of 

histone methylators including H3K9 methyltransferase and suppressor of variegation 3–
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9 homologue 1 (SUV39H1) and a reciprocal downregulation of histone demethylators 

including H3K9 demethylase and jumonji domains (JMJD1A, JMJD2A, and JMJD2D) 

at the transcript level. Importantly, changes in histone methylation negatively correlated 

with changes in NPPA and NPPB gene expression in LVAD supported hearts. Class II 

histone deacetylases are signal responsive repressors of hypertrophy and transition to heart 

failure. Phosphorylated HDAC4 levels remained persistently elevated in the failing human 

heart following LVAD support which was associated with nuclear accumulation of MEF-2 

signal.63

Animal Models of Reversible Cardiomyopathy

While examination of paired cardiac tissue before and after LVAD support provides a unique 

opportunity to study structural and functional changes induced by mechanical unloading 

at the cellular and molecular levels, animal models are necessary to gain mechanistic 

insights into biology of myocardial recovery. Pharmacological, surgical, and genetic 

strategies have been successfully employed to develop models of reversible cardiomyopathy. 

Pharmacological models include administration of pro-hypertrophic agonists (Angiotensin 

II or Isoproterenol) or inflammatory cytokine (Interleukin-β1) followed by drug withdrawal 

resulting in normalization of heart weight / body weight ratio and echocardiographic indices 

of LV systolic function.109, 110 Surgical models of reversible cardiomyopathy include 

aortic banding-debanding111–115, heterotopic cardiac transplantation77, 116, and aorta-

caval fistula reversal117, 118. Genetic models include tetracycline-regulated expression of 

transgene in the cardiomyocyte using either “tet-off” (Ro-178, antisense mRNA against the 

murine mineralocorticoid receptor [MR]119, TRAF279) or “tet-on” approach (peroxisome 

proliferator-activated receptor γ coactivator-1α [PGC-1α]120). Finally, inducible cre 

recombination strategy can be utilized for transient activation of target gene by tamoxifen 

administration (GαqQ209L121) followed by withdrawal resulting in reversible heart failure 

phenotype.

Myocardial gene expression profiling studies from animal models of reversible 

cardiomyopathy demonstrate an incomplete reversal of HF transcriptional program 

mirroring observations from genes expression profiling studies from LVAD patients. 
79, 112, 115 Persistent dysregulation of the myocardial transcriptional profile in LVAD 

supported patients may in part explain low incidence of LVAD weaning to a degree 

sufficient to permit device explantation observed in the clinical registries. 122, 123 It is 

also plausible to hypothesize that signaling mechanisms responsible for recovery of the 

failing human heart could be distinct from those responsible for its development. However, 

functionally recovered mice hearts with persistently dysregulated myocardial transcriptome 

develop an exaggerated hypertrophic response in response to pressure-overload injury 

resulting in increased mortality, which suggests that persistent transcriptional dysregulation 

following LVAD implantation may represent a maladaptive response as well as a potential 

therapeutic target for achieving myocardial recovery in larger numbers of patients.79
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Clinical aspects of myocardial reverse remodeling, remission and recovery

As studies of LVAD-induced reverse remodeling noted above began appearing in the 

literature, there were also anecdotal reports of normalized LV function.27, 69, 124 This 

led to the concept that LV function of the end-stage failing heart could recover during 

LVAD support, fostering enthusiasm for use of LVADs for bridge to recovery. However, 

those early reports of LVAD explants were soon followed by reports of relapses of heart 

failure signs and symptoms. These observations eventually led to the proposed use of the 

term remission, defined as “…the normalization of the molecular, cellular, myocardial, and 

LV geometric changes that provoke cardiac remodeling that are insufficient to prevent the 

recurrence of heart failure in the face of normal and/or perturbed hemodynamic loading 

conditions…”3 True recovery is considered to have occurred when an LVAD is explanted, 

the ventricular retains normal size and function and the patient does not experience clinical 

heart failure events despite withdrawal of medical therapies. Accordingly, recovery is a 

diagnosis that can only be made after a significant period of clinical observation following 

LVAD explant. Describing the effects of LVAD-associated improvements of ventricular 

function as remission (as opposed to recovery) is consistent with the observations detailed 

above that a vast majority of genes abnormally expressed in heart failure do not fully 

normalize during LVAD support (detailed above). In fact, some of the genetic, molecular 

and cellular characteristics described above that do not normalize during LVAD support may 

pose significant potentially non-modifiable impediments to achieving recovery.

Assessment and predicting sustainability of recovery/remission

Early studies showed low rates of remission and LVAD explants, with relatively high 

rates of heart failure relapses in those patients whose LVADs were explanted.122–124 

Nevertheless, several common factors have been identified in independent studies as 

being associated with a greater chance of successful LVAD explantation: younger age, non-

ischemic etiology, shorter duration of heart failure, smaller LV size, lack of an implantable 

cardioverter-defibrillator and better renal function.122, 123, 125 Although the overall rate 

of recovery sufficient for device explantation is less than 5% an additional 9% of LVAD 

population exhibit significant improvement in LV function (defined as LVEF >40%) on 

LVAD support termed as “partial recovery” and suggested that myocardial recovery is a 

clinical spectrum rather than a binary clinical phenomenon.123 Interestingly, it has been 

noted that characteristics of patients who are likely to recovery on LVAD support are 

similar to the characteristics of patients likely to recover spontaneously even without 

LVAD support.126 The implication of this observation is that the likelihood of a patient 

recovering is predetermined by the underlying pathophysiology (e.g., etiology and duration 

of heart failure), and the LVAD serves to ensure survival and potentially hasten the process 

through ventricular unloading, maintaining end organ function, reducing neurohormonal 

activation and permitting administration of pharmacologic agents (e.g., beta-blockers, ACE 

inhibitor or ARBs) which themselves are known to contribute to reverse remodeling. This 

concept underlies the potential benefits of intermediate-term use (weeks to months) of 

catheter-based, percutaneously deployable, full flow LVAD suitable for patients presenting 

with recent onset severe heart failure that can tide them through a period of vulnerability 
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for severe morbidities and mortality while permitting initiation of beneficial pharmacologic 

heart failure therapies.127

Efforts to enhance recovery

As implied above, use of pharmacologic therapies known to be beneficial in heart failure 

have been used in conjunction with LVADs to enhance the likelihood and extent of recovery. 

As such several investigators have systematically analyzed myocardial recovery in LVAD 

patients (Table 2). This concept was first explored in a prospective study of 15 patients 

who received “intensive medical therapy” with lisinopril, carvedilol, spironolactone, losartan 

and clenbuterol during support with an early generation pulsatile LVAD. Eleven of these 

patients exhibited sufficient recovery of ventricular function to permit LVAD explantation 

after an average of ~1-year support.27, 128 There was an 88.9% freedom from heart failure 

events through 4 years of follow up and peak VO2 at 3 years averaged a remarkable 

26 ml O2/kg/min. Similar results were obtained in a follow up study of 20 recipients of 

a continuous flow LVAD by the same authors. Twelve of these patients were explanted, 

with an 83.3% 3-year heart failure event-free survival. The recent, multicenter Remission 

from Stage D Heart Failure (RESTAGE-HF) study employed reported 40% success to 

meet explanation criteria at 18 months in 40 LVAD recipients with similar intensive drug 

regimen minus clenbuterol (i.e., lisinopril, carvedilol, spironolactone, losartan).4 While these 

results are promising, it is important to recognize the limitations of the recovery literature, 

which include single arm studies without the control group, differences in pharmacological 

and device weaning protocols, and enrollment of patients who are more likely to recover 

(young age, non-ischemic etiology, shorter duration of HF) limiting generalizability to 

broader LVAD population. Cell therapy has been suggested as an adjuvant approach to 

promote myocardial recovery during LVAD support. In a multicenter randomized controlled 

clinical trial involving 159 patients with advanced heart failure, intramyocardial injection 

of allogeneic mesenchymal precursor cells during LVAD implantation did not significantly 

affect successful temporary weaning from device support or 1-year mortality.129

In summary, the current consensus is that a small percentage of the overall LVAD population 

achieves recovery of LV function to the point where LVAD explantation can be considered. 

Those most likely to recover are younger patients with non-ischemic cardiomyopathies and 

a relatively short duration of heart failure symptoms. Of patients fitting these characteristics, 

~50% will experience improvement of LV function sufficient to permit LVAD explant. Of 

patients who meet specific criteria and are explanted, ~80% will experience long term 

freedom from the need for transplant or LVAD reinsertion.

Impediments to recovery

Potential importance of promoting reverse remodeling independent of 
remission and recovery—There are at least two potentially important interrelated 

reasons to promote reverse remodeling in LVAD patients even if they don’t ultimately 

improve the rate of recovery: 1) improving LV contractility with the goal of improving 

exercise tolerance while on support and 2) the potential to induce right ventricular reverse 

remodeling to reduce RV failure and improve overall hemodynamic status.

Burkhoff et al. Page 15

Circ Res. Author manuscript; available in PMC 2022 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



It is well documented that exercise tolerance is limited in LVAD patients with peak 

VO2 values typically ranging between 12 to 16 ml O2/kg/min during optimal levels of 

support.124, 130, 131 Poor exercise tolerance has been attributed to the limited flow provided 

by LVADs at the speeds at which they are set for daily living; i.e., generally between 4 and 

5 L/min. Even at higher speeds, current mean blood flows achievable by current LVADs 

are only 7 to 8 L/min. If total cardiac output is supplied only by the LVAD, this puts a 

very limited upper limit on oxygen delivery to the periphery, even at higher than usual 

speeds. Assuming peak exercise performance is tightly coupled with peak oxygen delivery, 

there are limited approaches to increasing exercise tolerance in LVAD patients. As reviewed 

previously, strategies can include:132 1) ensuring optimal hemoglobin levels; 2) enhancing 

blood flow distribution to exercising muscle by restoring more normal peripheral arterial 

vasodilatory responses; and, 3) reversing the switch of skeletal muscle from the fast to slow 

twitch phenotype, the latter being less efficient in oxygen utilization.

An alternative approach to improving oxygen delivery and exercise tolerance involves 

improving native LV and RV contractilities. A prior study showed that LVAD patients 

whose hearts are able to respond more appropriately to exercise with increased heart rates 

and contractility were better able to work in parallel with the LVAD, opening the aortic 

valve and contributing significantly to total cardiac output.133 This study demonstrated that 

total cardiac output (the sum of LVAD and native LV output) could reach ~15 L/min in 

some patients, approximately half of which was from the LV and half of which was from 

the LVAD. Overall, exercise tolerance was progressively better the more a patient’s heart 

was able to increase native output. Notably, one key indicator that proved increased LV 

contribution to total blood flow during exercise was the progressive increase of arterial pulse 

pressure.

SUMMARY AND CONCLUSIONS

In recent years LVADs have become a mainstay for treating advanced heart failure with 

outcomes mirroring short and midterm survival of heart transplantation. Furthermore, 

significant improvements in the adverse effect profile, with near elimination of device 

thrombosis and 50% reduction of the stroke rate have been reported with newer LVAD 

devices. The biological changes associated with LVAD support are complex and lead 

to significant research in the field with the hope of achieving myocardial recovery and 

increased rates of successful device explantations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Basic principles of the hemodynamics of continuous flow left ventricular assist device 

(LVAD) support. A. Each device is characterized by an RPM-dependent relationship 

between pressure gradient and flow. B. LVAD support increases aortic pressure and 

decreases LV pressure such that they can become uncoupled. As a result of the time-varying 

pressure gradient between aorta and LV (C) LVAD flow also varies over time (D). E. LVAD 

support leads to LV unloading characterized by leftward shift of the pressure-volume loop 

and loss of isovolumic phases.
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Figure 2. 
A. Time-dependent LVAD-associated reverse structural remodeling as indexed by leftward 

shifts towards normal of the end-diastolic pressure-volume relationship. B. Volume at a 

filling pressure of 30 mmHg (V30) as a function of duration of support in comparison to 

normal (open circles) and hearts that did not undergo LVAD support (diamonds); squares 

and triangles are data from patients supported by LVAD for 0–40 days and >40 days, 

respectively.19
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Figure 3. 
Effects of Mechanical Unloading on Cardiomyocyte and Non-Cardiomyocyte Components 

of LV Remodeling. LVAD support is associated with regression of cardiomyocyte 

hypertrophy29, improved calcium handling134, improved mitochondrial ultrastructure55, 

improved cytoskeletal organization45, no change in cardiomyocyte apoptosis63, improved 

cardiomyocyte regeneration50, no change or increase in myocardial fibrosis, macrophage 

phenotype switch94, endothelial cell activation24, increased microvascular density135, and 

increased fibrosis of the coronary adventitia84.
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Figure 4. 
A) Transcriptional Changes in Failing Human Hearts following Mechanical Unloading with 

LVAD Support demonstrating persistent dysregulation in >90% of coding and non-coding 

transcripts in Ischemic and Non-Ischemic Heart Failure (adopted from Yang et al.101) 

B) Transcriptional Changes in Mouse Model of Myocardial Recovery using conditional 

expression of TNF-associated factor 2 (TRAF2) demonstrating persistent dysregulation of 

HF transcriptional profile in the recovered mouse hearts (ttA-TRAF2 dox) by Venn-diagram, 

hierarchical clustering, and principal component analysis (Topkara et al.79).
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