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Abstract

Lineage analysis has been an important method for understanding the mutation patterns and 

the diversity of genes, such as antibodies. A mutation lineage is typically represented as a tree 

structure, describing the possible mutation paths. Generating lineage trees from sequence data 

imposes two unique challenges: (1) Types of constraints might be defined on top of sequence data 

and tree structures, which have to be appropriately formulated and maintained by the algorithms. 

(2) Enumerating all possible trees that satisfy constraints is typically computationally intractable. 

In this paper, we present a COnstrained Lineage Tree generation framework (COLT) that builds 

lineage trees from sequences, based on local and global constraints specified by domain experts 

and heuristics derived from the mutation processes. Our formal analysis and experimental results 

show that this framework can efficiently generate valid lineage trees, while strictly satisfying the 

constraints specified by domain experts.
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I. INTRODUCTION

Lineage analysis is a widely used method for analyzing biological evolution and mutation 

[1]. With the development of next-gen high-throughput sequencing techniques, we can now 
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study mutations at the molecular level via lineage structures extracted from sequences. 

Lineage analysis for sequence data is extremely useful for studying mutation-abundant 

biological mechanisms, such as the immune system. On virus infection our body can 

generate numerous mutated genes in a short period that direct the synthesis of various 

antibodies [1]. Studying this complicated mutation process can help us understand how 

our immune system works. Lineage analysis for sequence data has also been applied to 

studies on HIV and cancers. We believe it will be an essential method for many emerging 

applications of next-gen high-throughput sequencing techniques.

There are two major categories of algorithms for lineage tree generation, based on 

phylogenetic tree [2] and IgTree [3], respectively. During the early years (e.g., before 

2008), phylogenetic trees have been the major tool for presenting and analyzing lineages. 

A phylogenetic tree generation algorithm typically employs a hierarchical clustering 

algorithm on the sequences to form a binary tree by progressively merging close sequence 

clusters. However, phylogenetic trees do not well serve the need of molecular-level studies. 

Specifically, its structure does not directly tell how a sequence mutates to another. It only 

tells the similarity between two sequences at the leaf nodes and any two groups of sequences 

at the internal nodes. It is also impossible to find which sequence is the origin of mutation 

and which sequences are the ancestors of a specific sequence.

Barak et al. [3] proposed the IgTree algorithm to address these problems. In an IgTree, each 

node represents a sequence. A path from the root to a leaf represents one of the possible 

mutation processes. The IgTree algorithm consists of two phases. With a given root, the first 

phase will grow the initial tree based on the minimum mutation cost assumption, where each 

node represents an actual sequence. The second phase will insert artificial internal nodes so 

that only one-base mutation happens from any parent to any of its children. The inserted 

artificial nodes aims to help researchers better understand the possible mutation processes.

However, the IgTree algorithm has not addressed several important features of sequence-

level mutation analysis that are highly demanded by biomedical researchers. First, the IgTree 

algorithm assumes the root node is known (i.e., the corresponding sequence is known to 

be the root of mutations). This is only valid when researchers know the root sequence, 

for instance, by tracing back the sample that the root sequence comes from, or using 

the well-known germline sequence as the root. However, in many cases it is difficult to 

designate the root sequence of a lineage tree. In particular, mutations in the immune system 

can happen quickly. As a result, multiple mutated sequences can be possibly found in one 

sample, where the root sequence is difficult to determine. Second, when constructing a 

lineage tree, many constraints may have to be considered and maintained. For example, 

sequences from older samples cannot appear as the children of the sequences from newer 

samples; the sequences of isotype “IgM” in the immune system cannot be mutated from 

other non-“IgM” sequences. Mutations also follow a certain pattern that good mutations tend 

to survive and thus descendants’ mutations are unlikely to revert to ancestors’ sequences. 

All these unique requirements demand a new unified framework for lineage tree construction 

algorithm.
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Scope of Research.

To address these unique challenges, we develop the COnstrained Lineage Tree generation 

framework for sequence data (COLT) that allows users to formulate and integrate various 

types of constraints, automatically determines the root sequence, and generates directed 

lineage trees. The developed algorithms should be efficient enough to handle a large number 

of sequences, and flexible enough to incorporate various types of constraints.

The basic idea is to formulate the problem as a constrained minimum spanning tree (MST) 

problem, where the domain-specific constraints can be mapped to sub-structures (e.g., edges 

and paths) in the graph. The problem is to find the MST in this directed graph that satisfies 

the specified constraints. The rationale using MST to model the lineage tree is that small 

progressive mutations are more likely to happen in nature than large dramatic ones, which 

can be nicely captured by MSTs.

We model the constraints in two categories: the local ones that can be mapped to single 

edges and the global ones that may involve multiple edges (and nodes) such as paths. It is 

easy to satisfy the local constraints by removing the corresponding edges from the graph, 

while the global ones are difficult to maintain. We develop an undirected MST (UMST) 

based fast approach to generating the directed trees. Because the directed edges between a 

pair of vertices have the same weight in our problem, we can treat them as undirected edges 

first and then propagate the edge directions later. The root determining heuristic and the 

constraint checking and maintaining methods are applied after initial edge propagation. We 

show that this method is much faster than the directed MST (DMST) based approach. Our 

contributions can be summarized as follows.

1. We propose a general framework that can conveniently integrate sequence-based 

constraint formulation and maintenance into the lineage tree generation process.

2. We have developed a fast lineage tree generation algorithm that uses an iterative 

process to maintain the global constraints.

3. The algorithmic results on real datasets have been validated by domain experts. 

We have also conducted extensive experiments to identify the optimal setting for 

the framework to achieve high efficiency, scalability, and tree quality.

II. PRELIMINARIES

Sequence.

A sequence is simply a string of characters from the set {‘A’, ‘C’, ‘G’, ‘T’}, i.e., the 

four nucleobases, of a certain length. We use edit distance to define the similarity between 

sequences. For a sequence v, we use v[i] to represent the nucleobase at the position i.

Graph and Tree.

A graph G(V,E) has the vertex (or node) set V and the edge set E. Let vi (or ui) denote 

a vertex (i.e., a sequence) in a graph or a node in a tree, Vi a subset of vertices (nodes), 

ei an edge, and Ei a subset of edges. We use V i  and Ei  to represent the size of the 

sets, respectively. A vertex v can also have a number of associated attributes, denoted as 
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v a1, …, am . A directed edge ei from the vertex ui to vi is also represented in the form ui vi, 

where ui is called the tail and vi the head. An edge ei is also associated with a weight 

denoted as wi and thus represented as a three-tuple e(u, v, w) for tail vertex u, head vertex v, 

and weight w. A path in the graph from u to v is represented as u v.

Minimum Spanning Tree (MST).

A MST algorithm is to find a tree with the minimum sum of edge costs from a 

weighted undirected or directed graph. The popular MST algorithms will be adopted in 

our framework, such as the Kruskal’s algorithm [4] for undirected graphs and the improved 

Edmonds’ algorithm [5] for directed graphs.

III. COLT: A FRAMEWORK FOR GENERATING CONSTRAINED LINEAGE 

TREES

We will first give the definition of the constraints, then present the details of the algorithm, 

and finally formally analyze the costs of different implementation approaches.

A. Constraints

Two types of constraints are defined in the framework.

Local Constraints.—We consider local constraints are those that can be applied to 

individual edges. We further classify the local constraints to the “forbidden” and “must-

have” types. The forbidden ones are mapped to the edges that should be excluded from the 

result, while the “must-have” ones are pre-included in the MST before the MST algorithm 

starts.

Specifically, for an edge e(u, v, w), a “forbidden” constraint is a boolean function f(u, v, w)
that checks certain relationships between the attributes of u and v and the weight w to return 

true for a constraint violation. A specific example is that, in the lineage tree the sequence 

from a new tissue sample cannot be the parent of another sequence from an old sample. This 

constraint can be specified as

f0(u, v, w) = (u.timestamp > v.timestamp)

and if f0(u, v, w) is true, the edge u v should be excluded. For another example, a sequence 

of isotype “IgM” in antibody mutation cannot be the child of another isotype, which is 

specified as

f1(u, v, w) = (v.isotype==IgM and u.isotype!=IgM)

similarly, if f1 is true, the edge u v should be excluded.

Global Constraints.—Global constraints are those involving more than one edge 

(e.g., a path in the tree). We define such a constraint with a boolean function 
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g v1, …, vk , e1, …, em  for a subset of vertices and edges. For example, domain experts 

have observed that in most cases if a mutation lineage u v s exists, it is very unlikely 

that the grandchild s of u recovers from the previous mutation at the position i. This can be 

further extended to old ancestors of s. Formally, this constraint can be defined as

g(r v s) (1)

= ∃i, u ∈ r vandu[i] ≠ v[i]andv[i] ≠ s[i]
andu[i] = = s[i], i = 1..m,

If g()̇ is true for any v’s ancestor u, the constraint is violated.

It would be difficult to maintain such global constraints on the complete graph as we have 

done for local constraints. In fact, it is simply too expensive to just check constraints on 

the graph. For example, let’s assume the global constraints only involve two-hop paths like 

u v w. Then, the number of candidates will be |V | ( |V | − 1)( |V | − 2) in the complete 

graph. As a result, we would like to maintain the global constraints on a generated tree 

instead.

Algorithm 1

Sketch of COLT Framework

1:  W ← compute the distance matrix for each pair of sequences, where wij is the weight of the edge eij

2:  f0()̇ ← the “forbidden” constraints;

3:  f1()̇ ← the “must-have” constraints;

4:  g()̇ ← global constraints;

5:  E0 ← all edges of the complete graph;

6:  E0 E0 − eij, iff0 eij = = true ; // valid edges

7:  E1 eij, iff1 eij = = true ; // initial set of edges for the MST

8:  if E1 contains cycles then

9:   report error and return;

10:  end if

11:  repeat

12:   E2 ← generate_UMST (E0, E1)

13:   T ← generate_directed_tree (E2);

14:   E3 ← check_global_constraints(T, g()̇); // return a set of edges to be removed

15:   E0 E0 − E3

16:  until E3 = ϕ// all constraints are satisfied

17:  return T
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B. Framework Design

With the definitions of constraints, we are ready to discuss our framework in more details. 

Assume there are N sequences. Let vi, i = 1…N represent the sequences, and eij represent 

the edge vi vj. The algorithm first removes the “forbidden” edges and initializes the MST 

algorithm with the “must-have” edges. Then, it enters the iterations, each of which will 

generates the MST, derives the directed lineage tree, and checks the global constraints, until 

all global constraints are met. Algorithm 1 gives the sketch of the framework.

C. Tree Generation With UMST

Since the directed edges between a pair of vertices have the same weight in our problem, 

we can apply undirected MST algorithm first, and assign the edge directions later. In the 

following, we describe the method of assigning edge directions and determining the root.

To grow a directed tree from a UMST, we start propagating directions from the existing 

single-directed edges in the UMST. Edge propagation is an iterative process. With a 

direction-determined edge u v, for any neighbor of v, say w, we can decide the direction 

v w. It continues by checking the newly reached nodes and so on, until no more nodes can 

be expanded. The result of propagation has to be validated so that no vertex is the head of 

more than one edge. Figure 1 and 2 show an invalid result and a valid one, respectively.

As Figure 2 shows, after the initial propagation the directions of some bidirectional edges 

are still undetermined, which will be finally determined after the root is selected. We use the 

following heuristics to rank the candidate nodes and determine the root node.

• For a single-directed edge e:u v, v cannot be the root;

• The remaining valid candidate nodes are ranked by their outdegrees in the tree; 

the node of the highest outdegree becomes the root; for tied top candidates, 

randomly select one as the root.

In Figure 2, the nodes A-E are the candidates of root. Since the node A’s outdegree 4 is the 

highest among all candidates’, A is chosen as the root. As the outdegree is mapped to the 

diversity of mutations started from this node, this algorithm prefers the root as the center 

of most diversified mutations. Once the root is selected, the same propagation process is 

applied starting from the root. The following proposition says that this algorithm will not 

leave any edge direction undetermined.

Proposition 1: With a valid initially propagated tree, once the root is selected and 

direction propagation is applied, every edge’s direction will be uniquely determined.

The proof is straightforward and thus we skip the details due to the space limitation.

D. Maintaining Global Constraints

The algorithm checks the global constraints after the directed tree is formed. It first traverses 

the tree to setup the root-to-node mutation profile for each node. Then, another traversal 

is conducted to check any node v with its parent node’s and grandparent node’s mutation 

profile to see whether the constraint is violated. A node’s mutation profile M is an array of 
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the sequence length, where each element M[i] records the bases having shown in the path 

from the root to the node in the position i. If a violation is detected, the algorithm will try 

to break the path r u v using a certain policy. We will test two policies in experiments. 

(1) Choose the end edge u v to break. The intuition is to maintain the stability of the 

generated tree so that the iterations can converge quickly. (2) Choose the largest-weight edge 

in the path to break. The intuition is to maintain the overall cost of the tree as small as 

possible. We will use experiments to evaluate the validity of these methods. The primary 

goal is to obtain minimum-cost and valid lineage trees that do not break one lineage to 

multiple1.

It is easy to verify that if a common UMST algorithm (e.g., the Kruskal’s algorithm) 

with O N2logN  complexity is used, the overall complexity of the COLT algorithm is 

O dN2 + tN2logN , where d is the length of the sequence and t is the number of iterations.

IV. EXPERIMENTS

The experiments’ goal is twofold: (1) test the algorithms on the real datasets and validate 

the results, (2) evaluate different framework settings to find the best one and understand the 

actual cost distribution with simulated datasets.

Implementation.

We implemented the algorithms with C++. The local constraints include the time ordering 

and the Ig* dependency. The global constraint is the path-based mutation rule. These 

constraints have been discussed in Section III-A. The sequences in the real datasets are 

obtained from an open-source sequence processing pipeline (SeqPrep:github.com/jstjohn/

SeqPrep) and some in-house processing tools. Edit distance is used for computing 

pairwise sequence distances. We also implemented a version of DMST-based algorithm 

for comparison, using the optimized implementation of Edmonds’ algorithm (edmonds-

alg.sourceforge.net). For each node, the DMST-based algorithm generates the directed tree 

using that node as the root and then checks the global constraints. The final tree is selected 

among the valid ones using the optimal root selection heuristic.

Datasets.

Two real datasets were from our recent study on human antibody repertoire for the malaria 

disease [6]. These datasets are used to validate the generated lineage trees. We will compare 

the trees manually constructed by domain experts and those generated by our algorithm.

We also generate a bunch of simulated sequence datasets for performance and tree-quality 

evaluation. The process of generating sequences mimics the mutation process with a preset 

depth of mutation tree d (i.e., the longest path from the root to the leaves) and the upper 

bound of mutations m (i.e., the number of mutations is randomly chosen in the range [1,m]). 

The algorithm will start with a seed sequence from a real dataset to form the sequence pool. 

1Note that we assume the set of sequence under study forms one lineage. For the cases where multiple lineage may exist, the best way 
is to apply clustering first and then apply our framework on each cluster of sequences.
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In each iteration, a sequence is randomly drawn from the pool and then randomly mutated, 

satisfying the restriction of mutation depth and upper bound, and also the local and global 

constraints defined in Section III-A. The new sequence is then added to the pool for future 

iterations. In our experiments we use d = 5 and m = 10 to generate all the simulated datasets.

Validation with Real Datasets.

These two real datasets are quite small, having 12 and 26 sequences, respectively. Thus, 

they are appropriate for domain experts to manually analyze the mutations and construct the 

lineage trees. Figure 3 shows the comparison between the manually constructed trees (left) 

and the automatically generated trees (right). For the first dataset the manually constructed 

tree is identical to the automatically generated one. For the second dataset, the three internal 

nodes on the backbone (i.e., the major mutation path) match exactly, while only a couple 

of leaf nodes are placed to different branches. The generated tree also leads to the same 

analytical result for the domain problem. Thus, the domain experts consider both are valid 

lineages.

Results on Simulated Datasets.

The second set of experiments focuses on the time costs of algorithms and the quality of 

generated trees. Batches of simulated datasets are used for evaluation. For each number of 

sequences, we randomly generate multiple sets of sequences and obtain the average values 

and standard deviations. We will first look at the effect of the edge breaking methods for 

maintaining the global constraints, and then compare the UMST-based method with the 

more expensive DMST-based method. Finally, we will investigate the cost distribution over 

the major components in the framework.

Since our goal is to achieve minimum cost lineage trees that satisfy all the specified 

constraints, we use the sum of edge weights as the quality of the tree and aim to find valid 

trees with smaller sums as possible. According to our method of generating the simulated 

datasets, each dataset exists one valid single lineage tree that contains all the sequences. 

Trees that do not contain all the sequences are considered invalid results.

The first experiment is focused on two edge breaking methods: Cut-the-End and Cut-the-

Max for maintaining the constraints. Specifically, we use the UMST method to generate 

trees and compare the number of iterations for each method that is proportional to the cost 

of the tree generation process. Figure 4 shows that Cut-the-Max has overwhelmingly larger 

costs than the other. Furthermore, we find that the Cut-the-Max very frequently leads to 

invalid trees if the dataset size is larger than 50. Among the sizes of 50, 100, 150, 200, 

250 sequences, we find that it only constantly generates valid trees for datasets of size 50. 

Overall, it can find valid results for only 11 of 25 datasets, while the Cut-the-End can find 

valid results for 24 of 25. Therefore, we consider the Cut-the-Max method is not an effective 

method for our framework.

Next, we study the use of UMST or DMST as the tree generation algorithm. We use the 

Cut-the-End method to maintain the global constraints. Figure 5 shows that both methods 

can find trees of about the same quality. However, the DMST-based method is much more 
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expensive than the UMST-based method, as shown in Figure 6. We conclude that the 

UMST-based method should be the method of choice for the framework.

Finally, we consider the cost distribution of the two major components in the framework: 

distance matrix computation and tree generation. We use the UMST-based method to 

generate the trees and the Cut-the-End method to maintain the global constraints. Figure 

7 shows that with the efficient UMST-based method the cost of computing distance matrix 

will become the bottleneck in analyzing a practical number of sequences.

V. CONCLUSION

Automatically generating lineage trees is appealing to many sequence-based biomedical 

studies. However, it presents several unique challenges, especially for generating trees 

under constraints. In this paper, we establish the constraint-based lineage tree generation 

framework COLT that can adapt to different types of constraints (e.g., local or global) and 

generate rooted and directed lineage trees. The algorithm uses the heuristic that evolutions 

in nature are more likely driven by a series of small mutations rather than large dramatic 

ones, which is modeled with the minimum spanning tree (MST) of the complete sequence-

sequence mutation graph. We develop an iterative UMST-based algorithm to maintain the 

global constraints. Experimental results show that the proposed approach is efficient and can 

generate high-quality lineage trees.
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Figure 1. 
An invalid result after direction propagation
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Figure 2. 
A valid edge propagation result. Node A is chosen as the root.
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Figure 3. 
A comparison between manually constructed trees (left) and automatically generated ones 

(right). The automatically generated trees are visualized with an in-house lineage tree 

visualization tool.
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Figure 4. 
Comparing the costs (i.e., the number of iterations) needed for the two edge-breaking 

methods. Y-axis is log-scale.
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Figure 5. 
Comparing the quality of trees generated by UMST and DMST. Both generate similar 

quality trees.
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Figure 6. 
The cost comparison on the UMST and DMST methods.
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Figure 7. 
Overall cost distribution. Computing distance matrix is still dominating.
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