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Abstract

Phenotypes associated with genetic variants can be altered by interactions with other genetic 

variants (GxG), with the environment (GxE), or both (GxGxE). Yeast genetic interactions have 

been mapped on a global scale, but the environmental influence on the plasticity of genetic 

networks has not been examined systematically. To assess environmental rewiring of genetic 

networks, we examined 14 diverse conditions and scored 30,000 functionally representative yeast 

gene pairs for dynamic, differential interactions. Different conditions revealed novel differential 

interactions, which often uncovered new functional connections between distantly related gene 

pairs. However, the majority of observed genetic interactions remained unchanged in different 

conditions, suggesting that the global yeast genetic interaction network is robust to environmental 

perturbation and captures the fundamental functional architecture of a eukaryotic cell.
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Graphical Abstract

Systematic analysis of environmental impact on the global yeast genetic interaction network. 
Mapping gene-by-environment (GxE) interactions and gene-by-gene-by-environment (GxGxE) 

differential interactions reveals the environmental robustness of the global yeast genetic interaction 

network, highlighting new and distant functional connections associated with novel differential 

interactions.

Abstract

Introduction: Genetic interactions are identified when variants in different genes combine to 

generate an unusual phenotype compared to the expected combined effect of the corresponding 

individual variants. For example, a synthetic lethal genetic interaction occurs when two mutations, 

neither of which is lethal on their own, combine to generate a lethal double mutant phenotype. 
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While there are millions of possible gene-gene combinations for any eukaryotic cell, only a 

rare subset of gene pairs will display a genetic interaction. Digenic, or gene-by-gene (GxG), 

interactions appear to underlie key aspects of biology, including the relationship between genotype 

and phenotype. Environmental conditions can modulate the phenotype associated with genetic 

variants, giving rise to gene-by-environment (GxE) interactions, when a single variant phenotype 

is modified, or gene-by-gene-by-environment (GxGxE) interactions when a genetic interaction is 

changed.

Rationale: A global genetic interaction network has been mapped for the budding yeast 

Saccharomyces cerevisiae, identifying thousands of connections that often occur between 

functionally related genes. Because the global genetic network was mapped in a specific reference 

condition, the potential for different environmental conditions to rewire the network remains 

unclear. Automated yeast genetics, combined with knowledge of a reference map, enables 

quantification of the extent to which new environmental conditions either modulate known genetic 

interactions or generate novel genetic interactions to influence the genetic landscape of a cell.

Results—We tested ~4,000 yeast single mutants for GxE interactions across 14 diverse 

environments, including an alternative carbon source, osmotic and genotoxic stress, and 

treatment with 11 bioactive compounds targeting distinct yeast bioprocesses. To quantify GxGxE 

interactions, we constructed ~30,000 different double mutants, involving genes annotated to all 

major yeast bioprocesses, and we scored them for genetic interactions. The plasticity of the 

network is revealed by differential genetic interactions, which occur when a genetic interaction 

observed in a particular condition deviates from that scored in the control reference network.

Although ~10,000 differential interactions were discovered across all 14 conditions, we observed 

~3-fold fewer differential interactions per condition compared to genetic interactions in the 

reference condition, indicating that GxGxE interactions are rare relative to GxG interactions. 

On average, a single environmental perturbation modulated ~14% of the reference genetic 

interactions and revealed a smaller subset of ~7% novel differential interactions. While GxG 

genetic interactions tend to connect pairs of genes that share a close functional relationship, novel 

differential GxGxE interactions mediate weaker connections between gene pairs with diverse 

roles.

Conclusion—Although different environments have the potential to reveal novel interactions 

and uncover new but weaker functional connections between genes, the vast majority of genetic 

interactions remained unchanged in different conditions, suggesting that the global yeast genetic 

interaction network is largely robust to environmental perturbation.

Extrapolation of our findings suggest that a systematic survey of genetic interactions in a sensibly 

chosen model cell may be sufficient to map a reference genetic network that encompasses a core 

set of widely expressed genes, providing a basic scaffold for the genetic wiring of a human cell.

Because the yeast genetic network is robust to environmental perturbation, we suspect it will 

be robust to genetic background changes, which further suggests that a systematic survey of 

genetic interactions in a sensibly chosen model cell should be sufficient to map a reference genetic 

network that encompasses a core set of widely expressed genes, providing a basic scaffold for the 

genetic wiring of a human cell.
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Genetic interactions are identified when two or more different gene variants combine to 

cause an unusual phenotype that deviates from a model based on the combined effects 

of the corresponding single variant phenotypes (1). Digenic or gene-by-gene (GxG) 

interactions appear to underlie diverse and fundamental aspects of biology, including the 

relationship between genotype and phenotype, the evolution of sexual reproduction, and 

speciation (2–6). The phenotype associated with genetic variants can also be modulated by 

environmental factors, including growth conditions, age, cell type, or microbe exposure, 

giving rise to gene-by-environment (GxE) interactions, or gene-by-gene-by-environment 

(GxGxE) interactions if a genetic interaction is modified. Eukaryotic genomes contain 

thousands of different genes, millions of possible genetic interactions and function in many 

environmental contexts, meaning that our ability to explore the extent to which genetic 

interactions contribute to trait heritability is a major combinatorial and statistical challenge 

(3).

Efforts to address this challenge have involved the systematic mapping of genetic 

interactions in accessible model systems, primarily the budding yeast, Saccharomyces 
cerevisiae. Large-scale application of an automated genetic approach, Synthetic Genetic 

Array (SGA) analysis, enabled the majority of all possible gene pairs to be tested for 

negative and positive genetic interactions (7, 8). A negative genetic interaction corresponds 

to a synthetic lethal or sick interaction when a double mutant shows a fitness defect greater 

than the expected effect of the combined single mutant fitness phenotypes. Conversely, a 

positive genetic interaction is scored in a double mutant that grows better than expected (9). 

Genetic suppression represents an extreme type of positive interaction, where the double 

mutant fitness phenotype is greater than that of the least fit single mutant (10). The resultant 

global digenic interaction network comprises ~350,000 positive and ~550,000 negative 

interactions, which tend to connect pairs of functionally related genes (11, 12). Genes 

encoding members of the same biological pathway or protein complex often share similar 

patterns or profiles of negative and positive genetic interactions, and a global network 

clusters genes with similar genetic interaction profiles together into a hierarchy of organized 

modules, corresponding to protein complexes/pathways, biological processes and cellular 

compartments, revealing the functional architecture of a eukaryotic cell (Fig. 1A)(11, 12).

The reference yeast genetic network was mapped in a single genetic background in a 

specific reference condition. The phenotypes of both single and double mutant cells can be 

modulated by the environment, which leads to GxE and more complex GxGxE interactions. 

For example, subsets of functionally biased yeast genes have been surveyed in response to 

several different environmental conditions, and condition-specific genetic interactions have 

been identified (13–18). However, given the focus so far on specific bioprocesses, such 

as DNA repair, the plasticity of genetic networks across a broad array of environmental 

conditions remains unclear. Here, we systematically assess GxE and GxGxE effects in 

the context of the structure and topology of the global yeast genetic interaction network. 

This powerful model system allows us to assess the extent to which the environment 

modulates genetic interactions to influence the overall genetic landscape of a cell and 

provides important insights into the utility of genetic network reference maps.
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Single mutant fitness and gene-environment interactions

Quantitative analysis of digenic interactions depends on accurate assessment of single and 

double mutant phenotypes (19). Therefore, to accurately measure the effect of environment 

on the yeast genetic network, a baseline of quantitative measurements of condition-specific 

effects on single mutant fitness (GxE interactions) is required. To identify GxE interactions 

in the context of an SGA screen, we subjected an array of single mutants to SGA analysis 

using a neutral (control) “query” locus and assessed colony size following growth in 

different conditions. We examined 14 diverse conditions, including an alternative carbon 

source, osmotic stress, genotoxic stress and 11 bioactive compounds that target distinct yeast 

biological processes within the global genetic interaction profile similarity network (Fig. 

1A,B). Relative fitness measurements were obtained for 3,704 viable deletion mutant strains 

and 782 temperature-sensitive (TS) alleles, corresponding to 553 essential genes, both in the 

reference SGA condition and in each of the 14 diverse conditions (Data File 1)(20–23).

To identify GxE interactions from our single mutant fitness measurements, we calculated a 

differential fitness score for each mutant by measuring the difference between mutant fitness 

in the reference condition versus each of the 14 conditions (fig. S1A)(23). More than half of 

all the genes that we examined (59%) were associated with a significant differential single 

mutant fitness defect (P < 0.05, differential fitness score < −0.08)(see Method Summary and 

(23) for details) in at least one condition (fig. S1B). The union of all genes that displayed 

fitness defects in each condition revealed that 6 to 8 conditions identified the majority 

of unique genes associated with condition-specific growth defects (fig. S1C). Additional 

conditions captured relatively few new genes, perhaps because different conditions can lead 

to a similar stress response (24). Thus, our set of 14 conditions affects a wide range of 

functionally diverse genes and should be useful for exploring how different environments 

impact overall structure and topology of the global genetic interaction network.

The total number of strains with detectable differential fitness defects in a single condition 

ranged from ~250 (4.5%) to ~1,200 (22%), with the largest number of condition-specific 

fitness defects observed in the presence of Benomyl, a microtubule depolymerizing agent 

(fig. S1D). Stronger negative differential fitness scores were associated with genes encoding 

known targets of compounds (fig. S1A). More generally, genes with differential fitness 

defects in a particular growth condition were often involved in a specific function perturbed 

by the corresponding growth condition (fig. S2, Data File 2)(20). For example, in Benomyl, 

numerous genes involved in mitosis or DNA replication and repair were enriched for 

differential fitness defects (Fig. 1C, Data File 2)(20). A number of genes involved in mRNA 

processing also displayed fitness defects in Benomyl, which may reflect that genes encoding 

α-tubulin, TUB1 and TUB3, are among the relatively few yeast genes with introns (Fig. 1C, 

Data File 2)(20, 25). In contrast, the differential fitness defects in Monensin, an intracellular 

traffic inhibitor (26), were most enriched among genes involved in vesicle trafficking, 

glycosylation, and cell wall biosynthesis (Fig. 1D, Data File 2)(20).

Some mutants (1,083) had positive differential fitness scores, indicating better growth 

relative to a wild-type strain in a particular condition compared to the corresponding 

mutant growth relative to wild-type in the reference condition (fig. S1A, B, D). For 
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example, although all strains, including wild type, grew more slowly in the presence of 

the proteasome inhibitor, Bortezomib, strains carrying TS alleles of essential genes were 

enriched among the set of mutant strains that showed positive differential fitness scores in 

this condition (fig. S3A; P < 10−27, Fisher’s exact test). This finding mirrors a previous 

observation from analysis of the global genetic interaction network where hypomorphic 

alleles of proteasome genes show positive genetic interactions, which likely reflects reduced 

degradation of the products of TS alleles, providing a growth advantage (11). Similarly, 

~6-fold more TS alleles showed positive differential fitness, relative to those with a negative 

differential fitness, when grown in sorbitol, which may reflect a general effect of increased 

intracellular osmolarity (fig. S3B; P < 10−13, Fisher’s exact test)(27). In contrast, TS alleles 

of essential genes were depleted for positive differential fitness effects in certain conditions, 

including growth in the presence of the HSP90 inhibitor, Geldanamycin (fig. S3A; P < 10−4, 

Fisher’s exact test). This suggests that the fitness of different TS mutants is dependent on 

HSP90 activity, which is consistent with the known role of HSP90 as a phenotypic capacitor 

(11, 28–30).

Finally, we compiled a list of ~350 dynamic, “condition-responsive” genes, corresponding 

to the top ~5% of all tested genes based on the number of conditions in which they showed 

either a significant positive differential fitness score in 2 or more conditions or a significant 

negative differential fitness score in 4 or more conditions (Data File 1)(20). Consistent with 

our findings, condition-responsive genes identified in our assay were also often sensitive to 

multiple chemicals when assayed as homozygous gene deletion mutants (fig. S3C; 2.7-fold, 

P < 10−12, Fisher’s exact test)(31). Moreover, condition-responsive genes were more likely 

to be essential or to have a significant growth phenotype as a deletion mutant in the 

reference condition, were often highly connected on the global yeast genetic interaction 

network, and often encode highly conserved, multifunctional proteins (fig. S3D).

Mapping genetic interactions across different environments

Our systematic assessment of GxE interactions involving single mutants provides a 

foundation for comprehensive analysis of how genetic interactions are modulated by 

environment (GxGxE interactions). To do this, we took advantage of a diagnostic array 

used previously to survey complex, trigenic interaction networks (Data File 1)(6, 20). This 

array consists of ~1,200 strains, comprising ~1,000 nonessential gene deletion mutants and 

~200 TS alleles of essential genes, spanning ~20% of all yeast genes and representing the 

functional breadth of the yeast genome (Data File 1)(6, 20). We note that mutant strains 

included on the diagnostic array exhibited a range of fitness defects and are generally 

representative of the genome-wide distribution of differential single mutant fitness effects 

(Data File 1)(20). For condition-specific genetic interaction analysis, we selected 26 query 

genes, each of which shows a substantial number of genetic interactions in the global 

network (11) and a functionally coherent genetic interaction profile that localizes the query 

gene to a specific biological process cluster on the reference genetic interaction similarity 

network (Fig. 1B).

We crossed the 26 query strains to the diagnostic mutant array resulting in ~30,000 unique 

double mutant strains, which were each assessed for environmental modulation of genetic 
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interactions in all 14 conditions. To measure condition-dependent genetic interactions, every 

double mutant array generated from a single query gene was screened 3 times. One copy 

was grown in the standard SGA condition, while the two other copies were each grown 

in different conditional media (fig. S4). This configuration provided a matched reference 

control for every condition, which facilitated normalization of systematic experimental 

artifacts and improved accuracy of condition-specific genetic interaction measurements (32). 

The entire screening pipeline was repeated twice, providing two independent biological 

replicates for every query gene in every test condition, each one with 4 separate double 

mutant colonies (8 tests of each double mutant per condition), and 14 independent biological 

replicates of each query screen in the standard reference SGA condition (23).

Negative and positive genetic interactions were quantified as previously described (19). We 

identified an average of ~2,100 negative and ~1,400 positive genetic interactions on the 

basis of 14 biological replicate screens performed in the standard, reference condition, at 

an intermediate confidence threshold (fig. S5A, Data File 3)(20, 23). A similar number of 

gene pairs exhibited a genetic interaction in any single test condition, with an average of 

~2,150 negative and ~1,500 positive genetic interactions identified per condition (fig. S5A). 

Our genetic interaction measurements were reproducible, and those interactions identified 

in the reference condition in this study overlapped substantially with interactions derived 

from our previous genome-wide study (fig. S5B)(11). Comparison of the overlap of genetic 

interaction profiles between a specific condition screen and its matched control to that seen 

with an unmatched control suggested that comparison to a matched reference provides the 

necessary sensitivity to detect rare condition-specific interactions (fig. S5C, Table S1-S2, 

Data File 3)(20), consistent with previous studies (32).

Quantifying and classifying differential interactions

To discover differential or GxGxE interactions in our scored data, we quantified the 

difference between genetic interaction scores derived from each conditional screen and its 

corresponding matched reference (fig. S4)(23). We scored a differential negative interaction 

when a genetic interaction score observed in a particular condition was less than the genetic 

interaction score measured in the corresponding reference control. Conversely, a genetic 

interaction that was stronger in a given condition compared to the matched reference 

control was scored as a differential positive interaction. Analysis of biological replicates 

confirmed the reproducibility of differential interaction scores and enabled scoring of 

dynamic, differential genetic interactions while controlling for the false discovery rate (fig. 

S5D, Table S1-S2)(23).

The Benomyl screen showed the largest number of differential, condition-specific fitness 

defects and genetic interactions, providing a rich context for developing a general scheme 

for defining various classes of differential interactions. We measured Benomyl differential 

interactions as described above, adopting an intermediate confidence threshold (|ε| > 0.08, 

P < 0.05, see Method Summary and (23) for details)(Fig. 2A, left panel). In total, we 

identified 1,367 differential interactions in Benomyl, which was ~3-fold less than the 

3,845 genetic interactions identified in the matched reference condition (Fig. 2B). Thus, 

the majority of the genetic interactions observed in the reference condition were also 

Costanzo et al. Page 7

Science. Author manuscript; available in PMC 2022 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observed in the presence of Benomyl. To determine if the prevalence of Benomyl differential 

interactions derived from the diagnostic array was generalizable to the whole genome, we 

also screened the same set of 26 SGA query mutant strains against the complete collection 

of nonessential gene deletion mutants and essential gene TS alleles, in the absence or 

presence of Benomyl (fig. S6A-B, Data File 3)(20, 23). This analysis also revealed ~3-fold 

fewer differential interactions relative to genetic interactions indicating that trends observed 

with the diagnostic array accurately reflect an unbiased genome-scale analysis (fig. S6C).

In an effort to discover what new functional information might be associated with 

differential interactions, we divided them into four classes: reversed, modified, masked 

and novel (Data File 3)(20, 23). These classes of differential interactions can be depicted 

schematically for those with either negative (Fig. 2A, right panel) or positive (fig. S7A) 

scores. The reversed class was the rarest and included gene pairs that showed significant but 

opposite genetic interactions in a condition versus the matched reference, accounting for less 

than 1% of all Benomyl differential interactions (Fig. 2B). Often these differentials involved 

at least one relatively weak interaction, which means they are likely more prone to false 

positives and false negatives. Thus, the sign of a fitness-based genetic interaction does not 

frequently change in an altered environment. The remaining classes were roughly equivalent 

in size and accounted for the majority (> 99%) of all Benomyl differential interactions (Fig. 

2B, Data File 3)(20). We identified 538 (538/1,367; ~39%) novel differential interactions, 

which were not observed as genetic interactions in the reference network. The remaining 

(829/1,367; ~61%) differential interactions were either modified or masked, meaning that 

they were scored as genetic interactions in a particular condition as well as in the reference 

control, but differed in relative strength, and thus were modulated by the environment. 

Genome-wide analysis revealed similar fractions of modified, masked and novel Benomyl 

differential interactions (fig. S6D).

Analysis of specific examples of modified differential interactions from the Benomyl 

screens revealed that modified differential interactions could arise in two ways (Fig. 2A, 

fig. S7A). First, a genetic interaction detected in the reference network may be exacerbated 

in a specific condition, resulting in a significant differential score. For example, a negative 

genetic interaction between MYO2 and DYN2 was stronger in Benomyl, reflecting the 

importance of these two motor proteins in nuclear positioning and spindle orientation, 

especially when microtubule function is compromised (Fig. 2B). In another example, 

a positive genetic interaction between the proteasome gene, RPN12, and TCP1, which 

encodes an essential subunit of the chaperonin-containing T-complex involved in tubulin 

folding (Fig. 2B), was enhanced in the presence of Benomyl. In this case, compromising 

proteasome function may impair the degradation of the TCP1 TS allele product, which is 

particularly important in the presence of Benomyl.

Second, a negative differential score may arise when a positive genetic interaction in the 

reference network is weakened in a specific condition (Fig. 2A, fig. S7A). For example, 

a positive genetic interaction between GIM3 and RPN12, which encode subunits of the 

Prefoldin chaperone complex and the 19S proteasome, respectively, was weaker in the 

presence of Benomyl, resulting in a negative differential score (Fig. 2B). Similarly, a 

positive differential score can result from a condition-specific change in magnitude of 
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a negative genetic interaction. For example, in the reference condition, GIM3, which is 

involved in tubulin folding, showed a relatively strong negative genetic interaction with 

DAD1, an essential kinetochore gene (Fig. 2B). In Benomyl, the GIM3-DAD1 negative 

genetic interaction was significant but much weaker, resulting in a differential positive 

interaction (Fig. 2B), which may reflect that Benomyl perturbs the microtubule cytoskeleton 

in a manner that encompasses the cell physiology associated with the GIM3-DAD1 
interaction.

We also categorized a specific subset of modified differential interactions, which we 

call ‘masked’, where positive or negative genetic interactions were only identified in the 

reference condition (Fig. 2A, fig. S7A). For example, while a negative genetic interaction 

was scored in the reference condition for GIM3 and TUB3, which encodes alpha-tubulin, 

no genetic interaction was observed in the presence of Benomyl, leading to a GIM3-
TUB3 differential positive interaction (Fig. 2B). Positive genetic interactions scored in the 

reference condition can also be masked. For example, a positive genetic interaction between 

the yeast actin gene, ACT1, and the microtubule motor encoding gene, KAR3, was no longer 

detectable in Benomyl, leading to an ACT1-KAR3 differential negative interaction (Fig. 

2B).

Although relatively rare, novel differential interactions are particularly interesting because 

they are revealed only in a specific condition but not in the reference condition, and thus 

should reflect functional links between genes that are driven by condition-dependent cellular 

physiology (Fig. 2A, fig. S7A). For example, we identified a novel negative differential 

interaction between DSN1 and KIP3 in Benomyl highlighting a functional link between the 

kinetochore and a microtubule motor protein involved in spindle assembly (Fig. 2B).

Multiple environments, differential interactions, and the reference genetic 

network

We applied our scoring and classification system for differential genetic interactions, 

described above, to all 14 conditions surveyed. On average, less than 3% of all gene pairs 

tested in any given condition showed a differential interaction as compared to ~13% of all 

gene pairs that exhibited a genetic interaction in the reference condition, consistent with 

the percent of overlapping gene pairs that show a genetic interaction in the context of a 

genome-wide study (fig. S7B-C, Data File 3)(11, 20). Comparison of negative interactions, 

in particular, revealed a striking difference where ~1% of tested gene pairs exhibited a 

significant differential negative interaction, relative to ~8% of all gene pairs that showed a 

negative genetic interaction in any single condition tested (Fig. 3A, S7C, Data File 3)(20). 

Importantly, two-thirds of all differential interactions were classified as modified or masked 

because they overlapped a genetic interaction in the reference condition (Fig. 3B). On 

average, modified and masked differential interactions from a single condition accounted 

for ~14% of all genetic interactions in the reference network (Fig. 3B). Depending on the 

condition, we estimate that between ~5–24% of genetic interactions detected in a reference 

genetic network can be modulated in a different environment.
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Novel differential interactions provide a direct estimate of the additional functional 

information that different environments can contribute to a genetic network. On average, 

when compared to a matched reference control, ~7% of genetic interactions identified in a 

single condition were classified as novel differential interactions (Fig. 3B, Data File 3)(20). 

Thus, the vast majority (~93%) of the genetic interactions mapped in different environmental 

conditions were also on the reference network. Novel differential negative interactions 

were also significantly weaker in magnitude compared to genetic interactions measured 

in the reference condition (Fig. 3C). Detailed analysis of previously reported differential 

interaction networks (14, 15, 17) confirmed that differential interactions, in particular, novel 

differential interactions, were much less abundant than genetic interactions (fig. S7D).

It is critical to account for the false negative rate associated with high-throughput genetic 

interaction screens because failure to detect a true reference condition genetic interaction 

can be mistakenly classified as a novel differential interaction. We applied a Markov 

Chain Monte Carlo (MCMC)-modelling approach to generate a robust consensus set of 

negative and positive reference condition genetic interactions for each of the 26 SGA query 

genes based on the collection of 14 independent, biological replicate screens (23). The 

resultant consensus genetic interaction profiles were used as a gold-standard to estimate 

false discovery and false negative rates at defined confidence thresholds (Table S1-S2; 

Data File 4)(20). From analysis of reference condition replicate screens, we estimated false 

negative rates of 39% and 52% for negative and positive genetic interactions, respectively 

(Table S1)(23). In the case of Benomyl, we mapped 538 novel differential interactions when 

compared to a reference condition network derived from a single, matched control (Fig. 3D, 

fig. S7C). However, a more rigorous comparison of Benomyl genetic interactions versus 

the MCMC consensus reference genetic interaction profile identified 454 novel differential 

interactions or ~15% fewer interactions than comparison to a matched control screen (Fig. 

3D). A third comparison using a saturated reference network, on the basis of a reference 

network derived from the union of all the control screens (fig. S7E), which is less prone 

to false negative interactions, identified 319 novel differential interactions, or ~40% fewer 

interactions compared to those identified using a single matched reference control (Fig. 

3D)(23). Indeed, the number of novel differential interactions could decrease by as much as 

~60% depending on the condition and whether the reference was based on a single matched 

control, a consensus network control (23), or the union of reference control screens (Fig. 

3D; Data File 4)(20). Our analysis highlights the importance of a robust reference network, 

replicate screens and rigorous estimates of false negative rates for comparative study of 

genetic interactions in an alternative environmental condition.

Properties of differential interactions

Comparing all 14 conditions to their matched controls identified a combined total of 

~10,000 differential interactions, the majority (61%) of which were unique to a single 

growth condition, with differential negative interactions being less prevalent and relatively 

weaker than differential positive interactions (Fig. 3B, fig. S7F). Genes that were highly 

connected hubs on the global genetic network were also more likely to be hubs on a 

differential network, since the average number of differential interactions for an individual 

array gene, across all 14 conditions, was significantly correlated to the interaction degree 
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in the global genetic network (Pearson correlation, r = ~0.7, P < 10−16, fig. S8A, B). The 

number of novel differential interactions associated with each query mutant examined in 

this study was also correlated to interaction degree in the global genetic network (Pearson 

correlation, r = ~0.5, P < 0.006, fig. S8C), suggesting that the frequency of novel differential 

interactions observed using a diagnostic set of genes should reflect the genome-wide 

prevalence of novel differential interactions. Consistent with these observation, gene features 

associated with hubs on the reference network were shared with differential network hubs 

(fig. S8D)(11). Notably, high novel differential interaction degree was associated with genes 

whose loss-of-function resulted in a single mutant fitness defect in the reference condition 

(fig. S8E), and genes with condition-dependent fitness defects had proportionally more 

novel differential interactions than genes lacking condition-dependent fitness defects (fig. 

S8F). Like genetic interaction hubs, genes with many novel differential interactions were 

associated with multiple Gene Ontology (GO) annotations, and lower dN/dS suggesting that 

they are more functionally pleiotropic and tend to be under stronger evolutionary constraints 

(fig. S8D-E). Conversely, transcript levels of high differential interaction degree genes did 

not vary substantially across different environments or genetic backgrounds, suggesting 

that environmentally responsive gene expression patterns are not generally predictive of 

differential interactions (fig. S8D).

Negative genetic interactions measured in any condition tended to connect functionally 

related gene pairs and overlapped with other types of molecular interaction networks (Fig. 

4A-B). Differential negative interactions also identified functionally related gene pairs, but 

to a lesser extent (Fig. 4A-B). Closer examination revealed that most of the functional 

signal associated with differential negative interactions was captured by the modified class, 

whereas those belonging to the novel or masked categories did not overlap substantially 

with other molecular interaction datasets (Fig. 4B). Thus, negative genetic interactions that 

occurred in a condition-specific manner (i.e. novel differential negative interaction; Fig. 

2A), and positive genetic interactions that are masked in a particular condition (i.e. masked 

differential negative interaction; Fig. 2A) often involve gene pairs with unrelated functional 

annotations.

Consistent with previous observations (11), positive genetic interactions identified in either 

the reference or alternative conditions were less functionally informative than negative 

genetic interactions (Fig. 4A, C). However, the complete set of differential positive 

interactions appeared to connect functionally related genes more often than positive 

genetic interactions measured in either the reference or individual test conditions (Fig. 

4C). Modified and masked differential positive interactions were the most predictive of 

functionally related gene pairs, often connecting members of the same protein complex 

and overlapping significantly with protein-protein interactions (Fig. 4B). Further analysis 

revealed that the functional signal associated with the masked and modified classes was 

largely attributable to gene pairs that displayed negative genetic interactions in the reference 

condition but were either weaker (modified) or no longer detectable (masked) in a particular 

condition (Fig. 4D). This may reflect a particular environmental perturbation that mimics the 

cellular physiology associated with a double mutant strain grown in the reference condition, 

obscuring a phenotype associated with a genetic interaction. Thus, while modified and 

masked differential positive interactions tend to connect functionally related gene pairs, this 
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same information is captured by negative genetic interactions identified in the reference 

condition. We note that genome-wide analysis revealed similar functional trends associated 

with Benomyl differential negative and positive interactions (fig. S6E-F).

To further explore the functional information associated with condition-specific interactions, 

we grouped together array genes that belong to the same biological process cluster 

represented on the global genetic profile similarity network (Fig. 1A) and measured how 

often each query gene showed either genetic or novel differential interactions with each 

functional group (Fig. 5, Data File 5)(11, 20, 23). Query and array genes within the same 

bioprocess cluster were often connected by negative genetic interactions in the reference 

condition (~3.6-fold enrichment within bioprocess, Fig. 5A, on-diagonal). For example, in 

the reference condition, the VTI1 query gene, which encodes an essential SNAP receptor 

(v-SNARE) involved in multiple protein sorting pathways (33–35) and located in the vesicle 

traffic bioprocess cluster, showed strong enrichment for negative genetic interactions with 

functionally-related array genes located in the same vesicle traffic bioprocess cluster (Fig. 

5B).

In contrast, novel differential negative interactions did not connect query and array 

genes annotated to the same biological process (Fig. 5C). While VTI1 showed the most 

novel differential interactions of any query gene tested (Data File 3)(20), most of these 

interactions did not involve other vesicle traffic-related genes. Instead, we observed modest 

but significant enrichment for novel differential negative interactions between the VTI1 
query gene and array genes with roles in cell polarity and nuclear transport (Fig. 5D). 

Indeed, the vast majority (1489/1553, ~96%) of all novel differential negative interactions 

identified using a matched reference control connected pairs of genes located in different 

bioprocess clusters on the global similarity network. These results further indicated that 

condition-specific genetic interactions do not identify gene pairs with a close functional 

relationship in the same general bioprocess but rather have the potential to uncover weaker 

functional associations between distinct biological processes.

Differential interactions capture distant but coherent functional 

relationships

We next explored the functional distribution of novel differential interactions across each 

of the 14 different conditions. In particular, we tested if array genes annotated to the 

same function showed more novel differential interactions in a particular condition (Fig. 6). 

Array genes annotated to specific biological processes were enriched for novel differential 

negative interactions in response to a specific condition that perturbs the same bioprocess 

(~2.3-fold enrichment within bioprocess; Fig. 6A, on-diagonal). For example, consistent 

with previous observations (14, 15), we found that array genes in the DNA replication 

and repair bioprocess cluster were enriched for novel differential negative interactions 

in the presence of MMS (3.9-fold, Fig. 6B). But as shown above (Fig. 5), these novel 

differential interactions did not involve related query genes with roles in DNA replication 

and repair. The enrichment observed among DNA replication and repair array genes was 

predominantly driven by MMS-specific, novel differential negative interactions with the 
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MYO2 query gene, a type V myosin motor involved in actin-based vesicle transport and 

spindle orientation, and with the VTI1 and TRS20 query genes involved in vesicle transport, 

highlighting a functional link between DNA replication and vesicle trafficking (Fig. 6B)(33–

35). In another example, vesicle traffic genes were enriched for novel differential negative 

interaction in response to Monensin (2.5-fold, Fig. 6A). In this case, Monensin-specific 

negative interactions connected vesicle traffic array genes to the RSP5 query gene, which 

encodes a ubiquitin ligase involved in multi-vesicular body sorting, the heat shock response, 

endocytosis, and ribosome assembly (36), as well as the LSM6 query gene, which has a 

general role in RNA processing (Fig. 6B)(37, 38). Novel differential positive interactions 

were also not enriched among functionally related genes, and they were less informative of 

gene function than novel differential negative interactions (fig. S9A, Data File 5)(20).

A similar trend was observed in genome-scale Benomyl screens, where novel differential 

negative interactions specifically connected array genes with mitosis-related roles to 

functionally diverse query genes, such as NUP188, which encodes a nuclear pore component 

(39), and GPI15, involved in glycosylphosphatidylinositol (GPI) anchor biosynthesis (fig. 

S9B, Data File 5)(20, 40, 41). Thus, environment may sensitize genes with roles in a specific 

bioprocess to negative genetic interactions with functionally diverse query genes.

In summary, the majority of differential interactions overlap a genetic interaction identified 

in the reference condition, which often connect functionally related genes within the same 

biological process. The environmental rewiring of genetic networks is driven by rare 

condition-specific, and relatively weak novel differential interactions, which identify new 

connections between genes with diverse functions in different biological processes (Fig. 7).

Discussion

We surveyed a set of functionally diverse yeast genes and different environments, 

quantifying how the growth phenotypes associated with different single gene mutations 

were modulated by the environment (GxE), and how the growth phenotypes associated 

with different genetic interactions (GxG) respond dynamically to a particular condition to 

generate differential interactions (GxGxE). Our general findings reveal how environmental 

conditions modulate the yeast global genetic interaction network, allowing us to assess 

the plasticity of genetic networks, and the extent to which mapping genetic interactions 

in different environments can expand a reference network and generate new functional 

information.

In general, genetic interactions, especially negative genetic interactions, are rich in 

functional information because they tend to connect genes that function within the same 

biological process (GxG, Fig. 7)(11). Analogously, if an environmental perturbation affects 

a particular biological process, then genes with roles in the perturbed bioprocess tend to 

show differential sensitivity in the corresponding condition (GxE, Fig. 7). Most genetic 

interactions are not modulated by the environment and remain detectable in both a given test 

condition and the reference control condition. However, subsets of genetic interactions can 

be modified by a particular condition, leading to a differential interaction (GxGxE, Fig. 7). 
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Differential interactions are relatively rare because, on average, we observed ~3-fold fewer 

differential interactions compared to genetic interactions detected in the reference condition.

Most differential interactions belonged to the modified or masked classes, which overlapped 

with a negative or positive genetic interaction in the reference genetic network. The majority 

(~70%) overlapped specifically with negative genetic interactions and thus were functionally 

informative, connecting genes belonging to the same general biological process (GxGxE 

– e.g. modified, Fig. 7). However, because they recapitulate connections that are captured 

in the global genetic network mapped in the reference condition, modified and masked 

differential interactions do not contribute new functional information. On the other hand, 

novel differential interactions correspond to condition-specific genetic interactions between 

genes that do not interact in the reference condition. The rare sub-class of novel differential 

negative interactions does not typically include functionally related gene pairs. Instead, these 

interactions tend to connect groups of genes that are sensitive to a particular environmental 

perturbation to functionally distant genes (GxGxE – novel, Fig. 7). Thus, novel differential 

interactions highlight new connections between distinct cellular functions and, as a result, 

have the potential to expand upon the global genetic network.

Although detecting novel differential interactions promises to add new information to 

genetic networks, an accurate definition of novel differential interactions is challenging 

as it depends on the quality and comprehensiveness of the reference genetic network. 

For example, multiple independent replicate screens reduce the number of false negative 

interactions observed in the reference condition but consequently, also decrease the number 

of differential interactions classified as novel upon environmental perturbation (Fig. 3D). 

Indeed, the relative fraction of novel differential interactions contributed to the reference 

network by a single environmental condition can vary widely when using a single, matched 

control (~7%) or the union of all available replicate controls (~1%)(Data File 4)(20). 

Using a high confidence consensus reference network (Data File 4)(20), we estimate that 

screening one additional environmental condition contributes less than ~4% (191/5174) 

novel interactions relative to the reference network, suggesting that most genetic interactions 

are captured in a single condition. Hence, while differential interaction analysis in multiple 

diverse conditions reveals the subset of genetic interactions that are modulated upon 

environmental perturbations (i.e. modified or masked interactions), they can only marginally 

expand the size of the network (i.e. novel interactions) highlighting that the global genetic 

interaction network is generally robust to environmental perturbations.

While our study involved the use of a diagnostic array of yeast genes, selected 

environmental conditions and functionally diverse query genes, several observations suggest 

that our results capture the general resilience of the global yeast genetic interaction network 

to environmental perturbation. First, our genome-scale single mutant fitness analyses 

suggested that the selected set of conditions and small molecules elicited widespread 

but distinct cell physiological effects. Second, a genome-wide comparison of genetic 

interactions measured in the absence and presence of Benomyl yielded a similar fraction 

of differential interactions seen using a diagnostic mini-array of genes. Finally, analysis 

of several independent interaction datasets, derived from SGA-based approaches using 

various subsets of yeast genes and a number of different conditions, including various DNA 
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damaging agents and stress-response conditions, confirmed that differential interactions are 

substantially less prevalent than the genetic interactions observed in the reference condition 

(fig. S7D) (14, 15, 17).

Consistent with our results, previous surveys of subsets of genes involved in a specific 

cellular function perturbed by a particular condition revealed an enrichment for differential 

interactions that often occurred between functionally distant gene pairs (14, 15, 17). We 

note that, although included in previous studies, a subset of differential interactions, based 

on statistically insignificant genetic interaction scores, was omitted from our analysis (23). 

However, these particular differential interactions were not enriched among functionally 

related genes and did not appreciably increase the total number of differential interactions 

relative to the size of the reference genetic interaction network examined here or reported 

in other studies (fig. S7D, S10). Thus, in general, genetic interactions between the 

vast majority of genes and their corresponding functional modules (e.g. complexes and 

pathways) are not dynamic or rewired in response to environmental stimuli. Moreover, 

we found that the ~20% of yeast genes with relatively sparse genetic interaction profiles 

(11) are statistically depleted for condition-specific fitness defects (~3-fold depletion, P 
< 10−99, Fisher’s exact test, one-tailed). The relationship between fitness and interaction 

degree (fig. S8) along with the strong correlation observed between interaction degree for 

a given gene in the global genetic and differential networks (fig. S8), further suggests 

that condition-specific genetic interactions will not appreciably increase the number of 

interactions associated with low degree genes in the global reference genetic network.

Differential interactions reflect the phenotypic consequences of combining three 

independent perturbations, two genetic and one environmental perturbation, and thus 

conceptually resemble trigenic interactions, which involve three independent genetic 

perturbations, especially if a condition involves a drug with a highly specific cellular 

target. As a result, differential and trigenic interaction networks share several properties in 

common: [1] As observed for differential interactions, the average trigenic interaction degree 

for a given gene was correlated to its connectivity in the global genetic network (6); [2] 

Like novel differential interactions, trigenic interactions occur at similar reduced frequencies 

relative to digenic interactions in a reference condition (fig. S7D); [3] Like modified and 

masked differentials, a substantial proportion of trigenic interactions overlapped with and 

exacerbated digenic interactions previously observed in the global digenic network (6); [4] 

As observed for novel differential interactions, novel trigenic interactions are also relatively 

rare and weaker, but highly coherent in that they often involve array genes from the same 

biological process; however, and they are also substantially more functionally diverse than 

digenic interactions (6).

GxE and GxGxE interactions involving the natural variation of different yeast strains can 

also be interpreted in the context of the global genetic interaction network and the properties 

of novel differential interactions. Using segregating populations of natural yeast isolates, 

recent surveys of GxG and GxGxE interactions between a deletion mutant and natural 

genetic variants showed that GxG interactions tend to connect genes within the same cellular 

function (42), whereas GxGxE interactions tend to be specific to a particular condition (43), 

and they often connected distantly related genes (44).
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Quantitative trait loci (QTL) studies, focused on the fitness variation of different segregants 

derived from yeast crosses in different environments, showed that the majority of the 

phenotypic variation can be explained by single-locus effects (GxE), whereas epistatic 

genetic interactions, analogous to GxGxE interactions, are relatively rare (4, 45), and tend to 

impact only individuals with extreme phenotypes (5). Based on our analyses, most GxGxE 

interactions involve genes with single mutant differential effects (GxE) (fig. S8E), which 

should be analogous to single-locus effects identified in QTL analyses and contribute to 

both the additive and epistatic variance. In other words, the low epistatic variance often seen 

in QTL analyses may be partly explained by the partial contribution of interacting loci to 

the additive variance component (46). As a result, the remaining epistatic effect may only 

be visible in individuals with the most extreme phenotypes (5). Given that most GxGxE 

interactions overlap a genetic interaction in the global genetic interaction network, applying 

principles and gene modules inferred from a global network should allow for the detection 

of coherent epistatic interactions with relatively small effects that cannot be recovered using 

QTL analyses (47, 48).

We conclude that the yeast genetic interaction map derived from a single reference 

condition is highly robust to environmental influences because most connections on the 

global genetic interaction network remain unchanged or unmodified in a new environment. 

Although each new condition has the potential to map a relatively small number of 

novel differential interactions, the global digenic network mapped in a single condition 

is informative of differential interactions (fig. S8A-B) and should serve as an accurate 

and representative reference network. Nonetheless, differential interactions can reveal 

new functional connections between distantly related genes and bioprocesses. Given 

the significant association between the differential single mutant fitness defect and the 

frequency of differential interactions for a given gene, a logical and efficient strategy may 

involve mapping differential interactions for specific genes required for normal growth in a 

environment of interest (i.e. stress condition, drug treatment, microbial exposure etc.).

While environment has a modest impact, cell type-specific gene regulation has the potential 

to substantially complicate genetic network analyses in more complex systems. However, 

genome-wide studies suggest that only ~8,500 genes (~45–49%) are expressed in any given 

cancer cell line and that a “core set” of ~7,700 genes are expressed in the majority of all 

cancer cell lines examined to date (49). Thus, a systematic survey of genetic interactions 

based on a single cell line grown in one environment should be sufficient to map a global 

reference genetic network that encompasses this core set of expressed genes and provide a 

basic scaffold for the genetic wiring of a human cell. As observed in yeast, a global genetic 

interaction network for a model human cell line should reveal a hierarchy of functional 

connections among genes (1, 11), and expansion of this network to specific cell types would 

enable the deciphering of mechanisms underlying cancer cell-specific genetic vulnerabilities 

(50, 51). Ultimately, reference genetic networks mapped in human cells should facilitate 

interpretation of allelic combinations of genes underlying inherited traits (3, 47, 48).
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Methods Summary

Non-essential deletion and essential TS mutant arrays

The complete nonessential gene deletion and essential gene TS allele arrays were used 

for all single mutant fitness and single mutant differential fitness (GxE) analyses and are 

described elsewhere (11).

Diagnostic mutant array

Unless otherwise noted, genetic and differential interactions were based on analysis of query 

mutant strains crossed to a previously described, functionally representative diagnostic array 

comprising 1,209 mutant strains (6). These included 1,012 nonessential deletion mutant 

array (DMA) strains (labeled_dma#), and 197 essential TS allele array (TSA) mutant strains 

(labeled_tsa#). A complete list of diagnostic mutant strains used in this study is provided 

(Data File 1)(20).

Query mutant strains

The set of 26 query mutant strains selected for this study were previously shown to have 

rich genetic interaction profiles that can recapitulate major bioprocess-enriched clusters on 

the genetic interaction profile similarity network and thus are representative of the global 

yeast genetic network (11, 52). SGA query strain construction was conducted as described 

previously (53). A list of query mutant strains used in this study is provided (Data File 

1)(20).

Conditions

A list of 14 conditions and concentrations used in this study are provide in Data File 1(20).

SGA screening procedure

SGA experiments and selection steps were conducted as previously described (11, 53) 

with the following modifications. To measure condition-dependent genetic interactions, 

every double mutant array generated from a single query SGA screen was copied 3 

times. One copy was grown in the standard SGA reference condition, while the two 

other copies were each grown in different conditional media (fig. S4). This configuration 

provided a matched, reference control for every condition, which facilitated normalization 

of systematic experimental artifacts and improved accuracy of condition-specific genetic 

interactions measurements, as described below. Because every double mutant array could be 

replicated a maximum of 3 times, each of the 26 query mutant strains was independently 

screened against the diagnostic array seven times allowing us to measure digenic interactions 

in 14 different test conditions (i.e. 2 test conditions + 1 reference condition/screen x 7 

screens/query strain)(fig. S4). The entire screening pipeline was repeated twice resulting in 

independent biological replicates for each query screen in every test condition along with 

14 biological replicates of each query screen in the standard, reference SGA condition. 

We also repeated screens for a subset of 4 query mutant strains (Data File 3)(20), where 

double mutant arrays were copied two times and each copy was grown in the standard 
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SGA reference condition to measure the reproducibility of genetic interactions derived from 

matched, reference control screens (fig. S5C).

Single mutant fitness scores

To derive accurate estimates of single mutant fitness, we applied our colony size scoring 

method (54) to a set of control SGA screens, where a query strain carrying a natMX marker 

inserted at a neutral genomic locus was crossed to the kanMX-marked DMA (_dma#) and 

TSA (_tsa#) strain collections. Colony size measurements of SGA deletion and TS array 

mutant strains were based on an average of 3 replicate control screens conducted per each 

of 14 test conditions as well as the reference condition at 26°C. Colony size measurements 

were used to estimate single mutant fitness in each condition as described previously (54) 

with the exception that bootstrapped means, instead of medians, across replicates were used 

in variance estimation and final fitness values. Due to technical reasons, single mutant 

fitness for a small subset of mutant strains (0.15% – 1.0% of all strains) are not reported.

Single mutant Differential fitness scores

To obtain condition specific fitness estimates, we computed the difference in colony size 

measured in a particular test condition versus the matched reference condition for each 

mutant. Single mutant fitness and differential fitness interaction data corresponding to all 

mutants represented in the DMA and TSA collections is provided as Supplementary data 

(Data File 1)(20). Due to technical reasons, single mutant fitness for a small subset of 

mutant strains (0.15% – 1.0% of all strains) are not reported.

Genetic interaction score

To derive quantitative genetic interactions, we modeled colony size as a multiplicative 

combination of double mutant fitness, time, and experimental factors as previously described 

(11, 19). Briefly, for a double mutant carrying mutations of genes i and j, colony size 

Cij can be expressed as Cij = fij ⋅ t ⋅ sij ⋅e, where fij is the double mutant fitness, t is 

the incubation time, sij is the combination of all systematic factors, and e is log-normally 

distributed random noise. The double mutant fitness fij can be further expressed as fij = fi f 

j+εij, where fi and fj represent the fitness of the two single mutants and εij is a quantitative 

measure of the genetic interaction (genetic interaction score) between them.

Genetic interaction data corresponding to all tested gene pairs identified in the reference and 

14 different conditions is provided as Supplementary data (Data File 3)(20). The data should 

be filtered prior to use. We suggest two different thresholds [intermediate (P < 0.05 and 

|ε| > 0.08), and stringent confidence (P < 0.05 and |ε| < 0.12) that strike different balances 

between false negatives and false positives as described in our previous studies (11, 12). 

While the majority of query mutant strains were screened in all test conditions, a smaller 

subset of query mutants could not be screened in all 14 conditions due to technical and data 

quality control reasons. In total, 22/26 of query mutants were screened in at least 12 test 

conditions while 5 query mutants were screened for genetic interactions in less than 12 test 

conditions.
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Differential interaction Score

To score differential genetic interactions, genetic interaction scores derived from each 

condition were matched with a paired reference condition. Additionally, we used genetic 

interaction scores from the previously published reference genetic interaction network (11), 

termed “global” in the section below to normalize screen data before differential interaction 

scoring. The first step in scoring differential interactions was to apply a correction to each 

query, condition, and replicate screen that normalized the genetic interaction scores such that 

the corrected standard deviation for overlapping gene pairs matched the published genetic 

interaction network. We performed this per condition, per query, per replicate correction on 

reference (untreated) and condition (treated) scores as follows:

correctionc, q, r =
σ εuntreated, c, q, r

σ εglobal, c, q

εuntreated, c, q, r = correctionc, q, r × εuntreated, c, q, r

εtreated, c, q, r = correctionc, q, r × εtreated, c, q, r

where c is the condition, q is the query, r is the replicate, ε is the uncorrected epsilon 

score, σ is the calculated standard deviation of the reference condition (untreated) epsilon 

scores for that query, condition (treated) and replicate, or the global epsilon scores for that 

condition and query from our previous work (11) and ε is the corrected epsilon score. This 

conforms the variance of interaction measurements in each condition to a fixed reference 

and facilitates comparisons of interaction density across different conditions. Note that each 

condition (treated) network has a paired reference (untreated) network, which is used to 

compute the correction factor above.

Three replicate scores were collected for every differential genetic interaction measurement. 

Some screens resulted in missing data for certain pairs due to data quality issues or 

strong fitness defects in the screened conditions. To mitigate the effect of missing data, 

we only considered interactions for which we had at least two replicate measurements. 

For interactions that had three replicates, we selected the two replicates with the highest 

correlation of corrected differential interaction scores for each query-condition pair.

We found that screening genetic interactions in compound stress conditions increased the 

variance in genetic interaction estimates. In order to mitigate this effect, we applied a 

variance stabilization correction to further correct conditional epsilon scores.

variance stabilizationc =
σ εuntreated, c, r = 1 − εuntreated, c, r = 2

σ εtreated, c, r = 1 − εtreated, c, r = 2
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εtreated, c, q, r = variance stabilizationc × εtreated, c, q, r

where c is the condition, q is the query, r is the replicate, ε is the corrected epsilon score, σ 

is the calculated standard deviation and ε is the variance-stabilized, corrected treated epsilon 

score. After applying these normalizations, the differential score is calculated for each of the 

paired replicates separately, as follows:

differential scorer × εtreated, r − εuntreated, r

A final differential score, final untreated score, and final treated score are calculated 

from the mean of the two replicate differential scores, corrected untreated epsilon scores, 

and variance-stabilized, corrected treated epsilon score, respectively. Throughout these 

calculations, the standard deviations of the original measurements are propagated to derive 

an estimate of error on the final differential score. The resulting standard deviation is used to 

derive a P value for each differential interaction score, which was calculated as the two-sided 

probability of observing a more extreme score than the one measured given a background 

normal distribution centered on zero with a standard deviation equal to the one observed.

Differential interaction data corresponding to all tested gene pairs are provided as 

Supplementary data (Data File 3)(20). For analysis of individual interactions, we 

recommend that the data first be filtered prior to further analysis by applying one of our 

recommended thresholds (e.g. an intermediate threshold, P < 0.05 and |ε| < 0.08).

Classifying differential interactions

Differential interactions were categorized as either novel, modified or masked by comparing 

the genetic interaction scores for a given double mutant measured in a particular condition 

and the matched reference control (Fig. 2). Importantly, two additional categories of 

differential interactions were excluded from our analysis. First, gene pairs that did not show 

a significant genetic interaction (P < 0.05 and |ε| < 0.08) in either a given test condition, 

or the matched reference condition were excluded from further analysis as we could not 

be confident of a significant interaction in either the reference or the test conditions, 

individually, even though the differential score was significant. Second, double mutants 

that exhibited a significant and extreme negative genetic interaction (P < 0.05 and |ε| < −0.3) 

in both a condition and the matched reference control were considered synthetic lethal in 

both the reference and test conditions and also excluded from further analyses of differential 

interactions.

Evaluating functional relations captured by differential interactions

We explored the functional information associated with different types of genetic 

interactions based on Spatial Analysis of Functional Enrichment (SAFE) neighborhood 

enrichment analysis (11, 55). Query and mini-array genes were assigned to one of the 17 

bioprocesses or neighborhoods on the global genetic interaction profile similarity map based 

on SAFE analysis (11, 55). For each query in each condition, we counted the number 
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of interacting array genes that occurred in each of the 17 SAFE neighborhoods. For query-

centric analyses (Fig. 5), we summed up interactions associated with a specific query gene 

across all 14 conditions and calculated the fold enrichment for each neighborhood with a 

one-sided Fisher’s exact test, by comparing the number of interacting array genes assigned 

to a given neighborhood vs. the total number of interactions with that particular query, 

using the fraction of array genes assigned to the same neighborhood across the mini-array 

as background. For condition-centric analyses (Fig. 6), we performed the same test by 

combining all queries within each tested condition. This analysis was performed for negative 

and positive genetic interactions (Fig. 5–6, fig. S9B), novel negative differential interactions 

(Fig. 5–6, fig. S9A) using the mini-array screens, and novel negative differential interactions 

using the genome-wide screen on Benomyl condition (fig. S9A).

A more detailed description of the experimental and computational analyses are provided as 

supplementary materials.

All Data Files associated with this study are available for download from: DRYAD 

(doi:10.5061/dryad.3r2280gfd) or https://boonelab.ccbr.utoronto.ca/condition_sga/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A differential single mutant fitness catalog.
(A) A global genetic profile similarity network encompassing most nonessential and 

essential yeast genes(11). The similarity network was annotated using Spatial Analysis 

of Functional Enrichment (SAFE) (55), identifying network regions enriched for similar 

GO biological process terms, which are color-coded. (B) Conditions and query genes 

selected for this study. Location of each query gene on the global genetic interaction profile 

similarity network is indicated. Bioprocesses targeted by selected bioactive compounds are 

also shown. (C) Regions of the global similarity network significantly enriched for genes 

exhibiting differential single mutant fitness defects in Benomyl. (D) Regions of the global 

similarity network significantly enriched for genes exhibiting differential single mutant 

fitness defects in Monensin. For both (C) and (D), regions of the global similarity network 

significantly enriched for genes exhibiting negative differential fitness defects were mapped 

using SAFE. Examples of genes located in the most enriched regions are indicated in blue.
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Figure 2. Classification of differential interactions.
(A) (i) Scatter plot of genetic interaction scores between the reference condition (x-axis) and 

Benomyl-treated screens (y-axis). Gene pairs with significant differential negative (blue) or 

differential positive (yellow) interactions are indicated. Schematic examples of differential 

negative interactions from each class are indicated by a letter (a-e) on the scatter plot 

are shown in (ii); (ii) Schematic illustration of different classes of differential negative 

interactions. Specific classes of differential negative interactions are indicated and colored in 

shades of blue. Specific classes of differential positive interactions are indicated and colored 

in shades of yellow. (B) The number of genetic and differential interactions identified 

from SGA screens performed in Benomyl and in the reference condition. The fraction 

of significant reference condition genetic interactions that do not exhibit a significant 

differential interaction are shown in black. The fraction of differential interactions is shown 

in grey and white. The outer black and grey rings indicate the size of the reference 
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and differential interaction networks mapped in the reference and Benomyl conditions, 

respectively (inset). The larger chart summarizes the total number of negative and positive 

Benomyl differential genetic interactions identified at an intermediate score threshold. The 

fraction of negative and positive interactions classified as reversed, novel, modified or 

masked is indicated. Specific classes of differential negative interactions are indicated and 

colored in shades of blue. Specific classes of differential positive interactions are indicated 

and colored in shades of yellow. Examples of gene pairs in each interaction subclass along 

with their corresponding reference, condition and differential genetic interaction scores are 

shown.
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Figure 3. The relative contribution of reference genetic interactions and differential interactions 
to the yeast genetic network.
(A) Box plots showing the distribution of negative genetic and differential negative 

interaction density (total number of interactions/total gene pairs tested) per condition and per 

query mutant screened. The dotted line indicates the average genetic interaction density for 

the same set of array genes in the global genetic interaction network (11). (B) The average 

fraction of genetic and differential interactions identified from SGA screens performed in 

the reference and one additional condition. The fraction of significant reference condition 

genetic interactions that do not exhibit a significant differential interaction are shown 

in black. Modified and masked differential interactions, which overlap with interactions 

identified in the reference condition, and novel differential interactions are indicated. The 

outer black and grey rings indicate the average size of the reference and differential 

interaction networks mapped for one additional condition, respectively. The colored diagram 

summarizes the total number of negative and positive differential genetic interactions 

identified at an intermediate score threshold from analysis of 14 different test conditions. 

The fraction of negative (shades of blue) and positive (shades of yellow) interactions 

classified as reversed, novel, modified or masked is indicated. (C) Distribution of negative 
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genetic interaction scores (light blue) and novel differential negative interaction scores 

(dark blue). (D) The number of novel differential interactions identified per condition 

using different reference genetic interaction networks. Reference networks were defined 

by exhaustively sampling all possible combinations from 1 to 14 biological replicate screens. 

The maximum number of novel differential interactions based on comparison to a single 

matched reference network for each condition is shown in dark blue. The minimum number 

of novel differential interactions based on comparison to a saturated reference network 

that combines all 14 replicates (union) is shown in light blue. The number of novel 

interactions based on comparison to a consensus MCMC-derived reference network (23) is 

also indicated (open circles). Vertical bars indicate the median number of novel differential 

interactions across all possible reference network combinations.
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Figure 4. Functional evaluation of differential interactions.
(A) Plots of precision versus recall (number of true positives (TP)) for negative genetic and 

differential interactions, as determined by our genetic interaction score (|ε| >0.08, P < 0.05). 

True positive interactions were defined as those involving gene pairs co-annotated to a gold 

standard set of GO terms, as defined elsewhere (56). The background precision at which 

true positives are randomly identified is indicated by the dotted line. The precision and 

recall values were calculated as previously described (19). (B) Fold enrichment for negative 

(blue) and positive (yellow) genetic and differential interactions among co-localized, co-

expressed, physically interacting, or co-complexed gene pairs or their encoded proteins were 

calculated for genetic interactions identified in the reference condition, 14 conditions and 

each differential interaction class. Comparisons based on fewer than 10 overlapping gene 

pairs are indicated (open boxes). (C-D) Plots of precision versus recall (number of true 

positives (TP)) for positive genetic and differential interactions, as determined by our genetic 

interaction score (|ε| >0.08, P < 0.05). True positive interactions were defined as those 

involving gene pairs co-annotated to a gold standard set of GO terms, as defined elsewhere 

(56). The background precision at which true positives are randomly identified is indicated 

by the dotted line. The precision and recall values were calculated as described (19).
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Figure 5. Functional distribution of query gene negative genetic and novel differential negative 
interactions.
(A) Negative genetic interactions for each query gene (x-axis) in the reference condition 

were tested for enrichment for array genes in each of the biological processes indicated 

(y-axis). Node size reflects the statistical significance of enrichment and the shade boxes 

along the diagonal highlight instances where the query and array genes belong to the 

same biological process cluster on the global genetic interaction profile similarity network 

(11). Dotted lines indicate bioprocesses enriched for negative genetic interactions with the 

VTI1 query gene. The average fold enrichment of negative genetic interactions within 

and between specific biological processes is shown in the box plot. (B) Regions of the 

global genetic interaction profile similarity network significantly enriched for array genes 

exhibiting negative genetic interactions with the VTI1 query gene in the reference condition 

were mapped using Spatial analysis of functional enrichment (SAFE)(55). The functional 

regions of the global similarity network significantly enriched for interactions with VTI1 
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are indicated by blue dotted lines. Array genes enriched for negative genetic interactions 

are shown in blue. The location of the VTI1 query gene on the global similarity network 

is indicated by a white node. (C) Novel differential negative interactions for each query 

gene (x-axis) across all 14 test conditions were tested for enrichment for array genes in 

each of the biological processes (y-axis). Node size reflects the statistical significance of 

enrichment and the shade boxes along the diagonal highlight instances where the query 

and array genes would have belonged to the same biological process cluster on the 

global genetic interaction profile similarity network (11). Dotted lines indicate bioprocesses 

enriched for novel differential negative interactions with the VTI1 query gene. The average 

fold enrichment of novel differential negative interactions within and between specific 

biological processes is shown in the box plot. (D) Regions of the global genetic interaction 

profile similarity network significantly enriched for array genes exhibiting novel differential 

negative interactions with the VTI1 query gene were mapped using SAFE (55). The 

functional regions of the global similarity network significantly enriched for interactions 

with VTI1 are indicated by blue dotted lines. Array genes enriched for novel differential 

negative interactions are shown in blue. The location of the VTI1 query gene on the global 

similarity network is indicated by a white node.
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Figure 6. Functional distribution of novel differential negative interactions across conditions.
(A) Novel differential negative interactions from each of the 14 conditions (x-axis), were 

tested for enrichment for array genes grouped according to the biological processes 

indicated (y-axis). Node size reflects the statistical significance of enrichment and the 

shaded boxes along the diagonal indicate the biological process targeted by a particular 

condition. The average fold enrichment of novel negative interactions within biological 

processes targeted by a specific condition and interactions enriched within biological 

processes unrelated to the condition are shown in the box plot. (B) Regions of the 

global similarity network significantly enriched for array genes exhibiting novel negative 

differential interactions in (i) MMS or (ii) Monensin were mapped using SAFE (55). 

The functional region of the global similarity network targeted by Monensin and MMS 

are indicated by blue dotted lines. Array genes enriched for novel differential negative 

interactions are shown in blue. Query gene(s) responsible for enrichment of novel 

differential interactions with the indicated array genes are shown as white nodes.
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Figure 7. Schematic summary of functional connections mediated by gene-environment (GxE), 
gene-gene (GxG) and gene-gene-environment (GxGxE) interactions.
(A) GxE interactions. Genes will roles in the same bioprocess (illustrated by dotted outlines) 

are often sensitive to an environmental perturbation affecting that process (blue nodes – 

array genes; shaded blue area – condition perturbation). (B) GxG interactions. Genetic 

interactions (white edges) tend to connect array and query genes (white nodes) functioning 

in the same bioprocess. (C) GxGxE interactions (modified). Many genetic interactions 

are modulated by the environment (white edges) creating a modified differential genetic 

interaction that varies in magnitude when compared to the equivalent genetic interaction 

on the reference network. Modified GxGxE interactions often connect functionally related 

query-array gene pairs. (D) GxGxE interactions (novel). Novel GIs, which were not detected 

in the reference condition, often connect genes involved in a bioprocess perturbed by a 

specific condition to distant, functionally unrelated genes.
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