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Abstract

The modified Poisson regression coupled with a robust sandwich variance has become a 

viable alternative to log-binomial regression for estimating the marginal relative risk in cluster 

randomized trials. However, a corresponding sample size formula for relative risk regression via 

the modified Poisson model is currently not available for cluster randomized trials. Through 

analytical derivations, we show that there is no loss of asymptotic efficiency for estimating the 

marginal relative risk via the modified Poisson regression relative to the log-binomial regression. 

This finding holds both under the independence working correlation and under the exchangeable 

working correlation provided a simple modification is used to obtain the consistent intraclass 

correlation coefficient estimate. Therefore, the sample size formulas developed for log-binomial 

regression naturally apply to the modified Poisson regression in cluster randomized trials. We 

further extend the sample size formulas to accommodate variable cluster sizes. An extensive 

Monte Carlo simulation study is carried out to validate the proposed formulas. We find that the 

proposed formulas have satisfactory performance across a range of cluster size variability, as 

long as suitable finite-sample corrections are applied to the sandwich variance estimator and the 

number of clusters is at least 10. Our findings also suggest that the sample size estimate under the 

exchangeable working correlation is more robust to cluster size variability, and recommend the use 

of an exchangeable working correlation over an independence working correlation for both design 

and analysis. The proposed sample size formulas are illustrated using the Stop Colorectal Cancer 

(STOP CRC) trial.
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1 Introduction

Cluster randomized trials (CRTs), or sometimes called group randomized trials, allocate 

entire groups of participants to interventions.1,2 These trials have been frequently used in 

public health, epidemiology and medicine. Methods for the design and analysis of CRTs 

have been developed over the past few decades, and these developments were summarized 

in a pair of recent review articles.3,4 Compared to individually randomized trials (IRTs), 

an important feature of CRTs is that observations taken from individual participants within 

the same cluster are often correlated, and therefore the intraclass correlation coefficient 

(ICC) must be accounted for in both the sample size calculation and the analysis.5 The 

ICC measures the degree of similarity between outcomes measured among participants in 

the same cluster and reflects extra variation attributed to each cluster. This extra variation 

inflates the required number of participants in an IRT to achieve a desired level of statistical 

power.

Binary outcomes are commonly reported in CRTs, especially in pragmatic trials that involve 

an implementation primary endpoint. For example, the Stop Colorectal Cancer (STOP CRC) 

trial is a pragmatic trial that randomizes 26 federally qualified health clinics to either active 

intervention designed to increase colorectal cancer screening or the usual care.6 The primary 

endpoint is the completion status of fecal immunochemical test (FIT) within one year since 

study initiation, and is a binary outcome measured at the participant level.7 Typical effect 

measures of binary outcomes are on the relative scale and include relative risk (or risk 

ratio) and odds ratio. While the odds ratio is commonly used perhaps due to its intrinsic 

connection to the canonical logistic regression, it is often misinterpreted as the relative risk 

and could over-state the magnitude of relative risk when the outcome is not rare.8–10 There 

is also a consensus in the epidemiologic literature that relative risk is more interpretable and 

is preferred over odds ratio for most prospective studies.11,12 For these reasons, relative risk 

regression has received increasing attention for analyzing binary data,13 and was recently 

extended to the analysis of CRTs.14

Although the log-binomial model is a natural choice for direct regression analysis of the 

relative risk, such a model could fail to report an estimate due to non-convergence.15,16 In 

contrast, the modified Poisson regression uses the working Poisson variance to circumvent 

this convergence issue, and serves as a practical alternative to estimate the relative risk.13 

The modified Poisson regression, proposed in Zou and Donner,14 further uses the robust 

sandwich variance to adjust for clustering as well as variance function misspecification. In 

the context of clustered binary outcomes, empirical simulation studies such as those in Zou 

and Donner14 and Yellend et al.17 indicate that the modified Poisson regression has adequate 

performance in terms of the type I error rate and coverage even with a limited number 

of clusters, as long as suitable finite-sample bias-corrections are applied to the sandwich 

variance estimator. Although the modified Poisson model has been suggested as a promising 

analytical approach for CRTs, the sample size requirement under such models remains 

unclear. In particular, the efficiency implication of misspecifying the variance function has 

not been formally explored, and a corresponding sample size formula for relative risk 

regression via the modified Poisson regression in CRTs is currently not available. Through 

an analytical exploration, we establish the asymptotic equivalence between the modified 
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Poisson analysis and the log-binomial analysis of CRTs when the marginal mean model 

includes only the intervention indicator, and develop suitable sample size procedures for 

analyzing marginal relative risk in CRTs based on the method of generalized estimating 

equations (GEE).18

The remainder of this article is organized as follows. Section 2 briefly reviews the sample 

size equation for IRTs, introduces the modified Poisson regression in the context of 

CRTs, and develops corresponding closed-form sample size formulas accounting for both 

clustering and variable cluster sizes. A simulation study is carried out in Section 3 to 

investigate the accuracy of the proposed sample size formulas for relative risk regression in 

CRTs. In Section 4, we illustrate the proposed formulas using the STOP CRC pragmatic 

CRTs. Section 5 offers concluding remarks.

2 Statistical methods

2.1 Sample size formula for IRTs

To help clarify the key difference between sample size methods developed for IRTs and 

CRTs, we first briefly review the existing formula developed for IRTs. We focus on the 

relative risk as the effect measure. Assuming a two-arm IRT with πN patients (0 < π < 1) 

and (1 − π)N patients randomized to intervention and control, Blackwelder19 developed a 

normality-based sample size equation

N =
zϵ1/2 + zϵ2

2λ2

Δ2
(1)

where Δ = logP1 − logP0 is the effect size on the log relative risk scale, P1 and P0 are the 

expected prevalence of outcome in the intervention and control groups, zq is the qth quantile 

of the standard normal distribution, ϵ1 and ϵ2 are the nominal type I and type II error rates, 

and

λ2 = 1 − P1
πP1

+ 1 − P0
(1 − π)P0

(2)

Under equal randomization with π = 1/2, formula (1) becomes the special case introduced 

in Lemeshow et al.20 While this formula is widely used in IRTs, it is inappropriate for 

designing CRTs as it has not accounted for the ICC. It is well known that failure to account 

for ICC will result in an unrealistically small sample size for CRTs and therefore lead to an 

underpowered study.1,21,22

2.2 Modified Poisson analysis of CRTs

We now consider a parallel CRT with n clusters, where nπ clusters are randomized to 

intervention and the remaining n(1 − π) clusters to the usual care. Let Yij represent the 

binary outcome for participant j (j = 1, …, mi) in cluster i (i = 1, …, n). The cluster sizes mi 

are allowed to be variable, and the total sample size N = ∑i = 1
n mi. Write μij = E(Yij) as the 
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marginal mean, and the following log-linear model is often used to estimate the relative risk 

in a CRT

log μij = β0 + β1Xi (3)

where Xi = 1 indicates that cluster i receives intervention and Xi = 0 otherwise, β0 is the 

grand mean, and β1 is the marginal log relative risk parameter of interest. Write θ = (β0, 

β1)′, Ai = diag(νi1, …, νimi) where νij is a working variance function, and Ri(α) is the 

common working correlation structure indexed by parameter α, and one could solve the 

following GEE to estimate θ

∑
i = 1

n
Di′Ai

−1/2Ri
−1(α)Ai

−1/2 Y i − μi = 0 (4)

where Y i = Y i1, …, Y imi ′ is the collection of outcomes in cluster i, μi = μi1, …, μimi ′, and 

Di = ∂μi/∂θ′ = (1, Xi) ⊗ μi. In CRTs, two typical choices of working correlation structure 

Ri(α) are the independence and exchangeable structure. The former assumes that Ri(α) = Imi, 

i.e. the mi × mi identity matrix, while the latter assumes Ri(α) = (1 − α)Imi + αJmi with 

Jmi defined as the mi × mi matrix of ones and α defined as the common ICC. These 

two working correlation structures are implemented in standard statistical software for 

fitting GEE models, such as the gee or geeglm package in R, PROC GENMOD or PROC 

GLIMMIX in SAS and xtgee module in Stata.

When the working variance function is correctly specified as the binomial variance function 

νij = μij(1 − μij), model (3) is referred to as the log-binomial model with the estimating 

equations given by equation (4). Although this binomial variance function is a natural 

choice for binary data, the log-binomial regression frequently results in non-convergence, 

rendering this approach less attractive. Of note, an alternative approach to marginal model 

(3) is a log-binomial mixed-effects model, which similarly estimates the marginal relative 

risk due to collapsibility. However, the log-binomial mixed-effects model is also prone to 

non-convergence, especially with the addition of the random cluster effect. Zou et al.14 

proposed the modified Poisson regression in the GEE framework for estimating relative 

risk that bypasses the convergence problem. The modified Poisson regression assumes the 

Poisson variance function νij = μij, under which case the estimating equation (4) can be 

further simplified. For example, under the independence working correlation, equation (4) 

becomes

∑
i = 1

n 1
Xi

∑
j = 1

mi
Y ij − μij = 0 (5)

Further, under the exchangeable working correlation, equation (4) becomes
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∑
i = 1

n 1
Xi

∑
j = 1

mi Y ij − μij
1 + mi − 1 α = 0 (6)

In the latter case, the estimation of θ and α proceeds via a modified Fisher-scoring 

algorithm, and α is estimated by the all-available-pairs estimator by Liang and Zeger18

α =
∑i = 1

n ∑j > j′ Y ij − μij Y ij − μij′ / μijμij′

∑i = 1
n mi mi − 1 /2 − 2

(7)

In the special case when the cluster sizes are all equal and mi = m, it is easy to see that 

equations (5) and (6) become identical for solving θ, and therefore the point estimates for 

the marginal relative risk are numerically equivalent under either one of these two working 

correlation structures.

To simultaneously account for clustering and variance function misspecification, Zou 

et al.14 suggested using the robust sandwich variance to quantify the uncertainty of 

the GEE estimator θ . Specifically, with a large number of clusters (usually n larger 

than 40), the variance of θ  can be consistently estimated by Σ1
−1Σ0Σ1

−1, where 

Σ1
−1 = ∑i = 1

n Di′Ai
−1/2Ri

−1(α)Ai
−1/2Di

−1
 is the model-based variance, and

Σ0 = ∑
i = 1

n
Di′Ai

−1/2Ri
−1(α)Ai

−1/2cov Y i Ai
−1/2Ri

−1(α)Ai
−1/2Di (8)

where cov Y i = Y i − μi Y i − μi ′, and all components are evaluated at θ  and α. With a small 

number of clusters, the sandwich variance estimator tends to be biased towards zero, and so 

inflates the type I error rate of the test. To maintain the test size, finite-sample adjustments 

to the sandwich variance estimator such as those developed in Mancl and DeRouen,23 

Kauermann and Carroll,24 and Fay and Graubard25 could be considered in conjunction with 

the t-test with n − 2 degrees of freedom (the between-within degree of freedom26). Explicit 

expressions of these bias-corrected sandwich variance estimators are provided in Section 

3.1. Yelland et al.17 have demonstrated the adequacy of the bias-corrected sandwich variance 

estimators for modified Poisson analysis of clustered data in simulation studies with a small 

number of clusters. The t-test with such bias-corrected variance estimators has also been 

considered in GEE analysis of alternative cluster randomized designs and has demonstrated 

good finite-sample properties across a wide range of scenarios.27–30

To summarize, the modified Poisson regression and the log-binomial regression assume 

the same marginal mean model. However, while the log-binomial regression assumes 

the binomial variance function in the GEE, the modified Poisson regression assumes a 

Poisson working variance function in the GEE to avoid convergence issues. Because the log-

binomial model assumes the correct variance function, when the correlation model is also 

correctly specified, valid inference can proceed with the model-based variance. In contrast, 

because the Poisson working variance is misspecified for binary outcomes, inference under 
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the modified Poisson regression should always use the robust sandwich variance estimator, 

regardless of the specification of the working correlation model.14

2.3 Sample size estimation based on modified Poisson analysis

For the general set up of sample size requirements, one would specify the hypothesis of 

interest as H0 : β1 = 0 versus H1 : β1 = Δ, when Δ is the effect size expressed in log relative 

risk. Given the pre-specified type I error rate ϵ1, and type II error rate ϵ2, the general sample 

size requirement based on a t-test is given by

n ≥
tn − 2, ϵ1/2 + tn − 2, ϵ2

2σ2

Δ2
(9)

where tn−2,q is the qth quantile of the t distribution with n − 2 degree of freedom, and 

σ2 = nvar β1  is the asymptotic variance of the GEE estimator for β1. We choose the t-test 

over the z-test because the former provides better control of empirical type I error rates in 

CRTs especially when the number of clusters n is not large.31 Operationally, a closed-form 

sample size formula thus critically depends on the expression of the variance σ2.

With the knowledge of the potential variable cluster sizes mi, we follow the approach 

outlined in Pan32 to derive the explicit form of σ2 for the modified Poisson regression 

analysis. Denote 1mi as the mi × 1 vector of ones, and Ri = Ri(α) is the working correlation, 

and we have

Σ1
−1 = ∑

i = 1

n
Di′Ai

−1/2Ri
−1Ai

−1/2Di

−1
= ∑

i = 1

n
1mi′ Ri

−11mi

−1
M−1 (10)

where

M−1 = 1
(1 − π)P0

1 −1
−1 1 + (1 − π)/π P0/P1

and P0 = eβ0, P1 = eβ0 + β1 are the prevalence in the control and treatment arms, respectively. 

In addition, assume Ri* is the true correlation structure common to all clusters, and we have

Σ0 = ∑
i = 1

n
Di′Ai

−1/2Ri
−1Ai

−1/2cov Y i Ai
−1/2Ri

−1Ai
−1/2Di

= ∑
i = 1

n
1mi′ Ri

−1Ri*Ri
−11mi G

(11)

where cov Y i = Ai
* , 1/2Ri*Ai

* , 1/2, Ai* = diag μi1 1 − μi1 , …, μimi 1 − μimi  is the true variance 

structure, and hence
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G =
πP1 1 − P1 + (1 − π)P0 1 − P0 πP1 1 − P1

πP1 1 − P1 πP1 1 − P1

These expressions allow us to obtain

σ2 =
n∑i = 1

n 1mi′ Ri
−1Ri*Ri

−11mi

∑i = 1
n 1mi′ Ri

−11mi
2

1 − P1
πP1

+ 1 − P0
(1 − π)P0

(12)

Throughout, we assume that the true correlation model is exchangeable with a common ICC 

parameter ρ. This is a typical assumption used in parallel CRTs,4 and under this assumption, 

the true correlation model is written as Ri* = (1 − ρ)Imi + ρJmi. It is then straightforward to 

show that when the working correlation has the independence structure, we have

σindep 
2 =

n∑i = 1
n mi 1 + mi − 1 ρ

∑i = 1
n mi

2
1 − P1

πP1
+ 1 − P0

(1 − π)P0
(13)

After some algebra, we can also show that when the working correlation has the 

exchangeable structure

σexch 
2 =

n∑i = 1
n mi 1 + mi − 1 ρ / 1 + mi − 1 α 2

∑i = 1
n mi/ 1 + mi − 1 α 2

1 − P1
πP1

+ 1 − P0
(1 − π)P0

(14)

In the special case when the cluster sizes are all equal such that mi = m for all i, both 

variances simplify to

σindep 
2 = σexch 

2 = 1 + (m − 1)ρ
m

1 − P1
πP1

+ 1 − P0
(1 − π)P0

(15)

which indicates that using an independence working structure does not lead to efficiency 

loss in estimating the relative risk with the modified Poisson regression. This finding is 

consistent with that of Pan32 for logistic GEE, and in fact analytically explain the simulation 

results of Zou and Donner,14 who showed almost identical finite-sample efficiency using 

these two working correlations when the cluster sizes vary only within a small range, 

i.e. Uniform(5, 10). Equation (15) also clearly explains the role of the ICC parameter in 

designing CRTs compared to designing IRTs. Because mσindep 
2 = mσexch 

2 = 1 + (m − 1)ρ λ2, 

where λ2 is the variance parameter defined in Section 2.1 for IRTs, the factor {1 + (m − 

1)ρ} is known as the design effect that inflates the variance of log relative risk due to cluster 

randomization.1,5 The design effect increases when either the cluster size m or the ICC ρ 
increases. This connection suggests that, with equal cluster sizes, one could compute the 

sample size in a CRT by first using the formula developed under individual randomization, 

and then inflating the estimate by the usual design effect.
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In the case when cluster sizes are known a priori, sample size estimation can proceed by 

combining equations (9) with equation (13) or (14). However, a particular issue with using 

variance expression (14) is that while ρ reflects the anticipated ICC for a binary outcome in 

the usual sense, α is defined as the probability limit of the correlation under the misspecified 

Poisson variance. Because α differs from the true ICC, a good estimate of α may not be 

available during the design stage, rendering expression (14) less useful, with one exception 

where the cluster sizes mi’s are all large. With large cluster sizes (e.g. typically seen in 

pragmatic trials embedded in health care delivery systems), we have

n∑i = 1
n mi 1 + mi − 1 ρ / 1 + mi − 1 α 2

∑i = 1
n mi/ 1 + mi − 1 α

2 ≈ ρ ≈ 1
n ∑

i = 1

n mi
1 + mi − 1 ρ

−1

thus removing the dependence of σexch 
2  on the nuisance parameter α. In fact, such an 

approximation may not be required once a simple modification is provided to the correlation 

estimator under the exchangeable correlation structure, as we demonstrate in Section 2.4.

2.4 A simple modification and efficiency consideration

In CRTs, it is recommended practice to report the ICC parameter, which facilitates 

the design of future studies with similar endpoints.33 However, with an exchangeable 

correlation, the default correlation estimator with the modified Poisson analysis is α, which 

is a biased estimator of the true ICC ρ due to the misspecification of the variance function. 

This makes the estimated α difficult to interpret and as we explained before, specifying a 

reasonable value of α in σexch 
2  for sample size estimation is challenging. Because μij is in 

theory contained between zero and one, the Poisson variance function is larger than the true 

binomial variance, such that α has a positive bias for estimating ρ, namely, α ≥ ρ. However, 

if we replace equation (7) with a consistent estimator of ρ by using the correct binomial 

variance such as

α =
∑i = 1

n ∑j > j′ Y ij − μij Y ij − μij′ / μijμij′ 1 − μij 1 − μij′

∑i = 1
n mi mi − 1 /2 − 2

(16)

then the variance of the marginal relative risk estimator (14) simplifies to

σexch 
2 = 1

n ∑
i = 1

n mi
1 + mi − 1 ρ

−1 1 − P1
πP1

+ 1 − P0
(1 − π)P0

(17)

which becomes much easier to use as it no longer depends on the nuisance parameter α. 

Because of this convenience, we will work with the modified correlation estimator (16) 

throughout.

Through a simulation study with a single cluster-level exposure, Zou and Donner14 indicated 

that the modified Poisson regression has almost identical efficiency to the log-binomial 

regression for estimating relative risks. In fact, we can show analytically that the large-
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sample variances obtained under the modified Poisson regression, σindep 
2  and σexch 

2  (with the 

modified correlation estimator (16)), are identical to those obtained under the log-binomial 

regression, even when the cluster sizes are variable. In other words, using the misspecified 

Poisson variance can improve the convergence property but results in no loss of efficiency 

for estimating the marginal relative risk. To see why, we can repeat the derivation in Section 

2.3 by assuming the correct binomial variance function. With the binomial variance used in 

the log-binomial regression, equation (10) becomes Σ1
−1 = ∑i = 1

n 1mi′ Ri
−11mi

−1L−1, where

L−1 =
1 − P0

(1 − π)P0
1 −1

−1 1 + (1 − π)/π P0 1 − P1 /(P1 1 − P0

Similarly, equation (11) becomes Σ0 = ∑i = 1
n 1mi′ Ri

−1Ri*Ri
−11mi Q where

Q =
πP1/ 1 − P1 + (1 − π)P0/ 1 − P0 πP1/ 1 − P1

πP1/ 1 − P1 πP1/ 1 − P1

Multiplying out the sandwich variance gives the general expression of τ2 = nvar β1  under 

the log-binomial model as

τ2 =
n∑i = 1

n 1mi′Ri
−1Ri*Ri

−11mi

∑i = 1
n 1mi′/Ri

−11mi
2

1 − P1
πP1

+ 1 − P0
(1 − π)P0

= σ2
(18)

In other words, this suggests that under the independence working correlation

τindep 
2 =

n∑i = 1
n mi 1 + mi − 1 ρ

∑i = 1
n mi

2
1 − P1

πP1
+ 1 − P0

(1 − π)P0
= σindep 

2
(19)

and under the exchangeable working correlation

τexch
2 = 1

n ∑i = 1
n mi

1 + mi − 1 ρ
−1 1 − P1

πP1
+ 1 − P0

(1 − π)P0
= σexch 

2 (20)

These results formally establish the asymptotic equivalence between the modified Poisson 

regression and log-binomial regression when a cluster-level treatment indicator is involved 

in the marginal mean model (provided a simple modification of the ICC estimator is used 

under the exchangeable working correlation structure).

2.5 Further approximations with unequal cluster sizes

Recall that the sample size formula critically depends on the variance expressions σindep 
2  and 

σexch 
2 , which requires the exact information of cluster sizes mi. Although the cluster sizes 

or estimates of them are available in some situations, estimates of the mean and standard 

deviation of cluster sizes may be more accessible in other cases. Therefore, it would be 
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desirable to approximate the variance expressions of the marginal relative risk using the 

distributional characteristics of mi.

For the variance expression derived under the independence correlation structure, we have

n∑i = 1
n mi 1 + mi − 1 ρ

∑i = 1
n mi

2

=
n−1 ∑i = 1

n mi(1 − ρ) + ∑i = 1
n mi2ρ

∑i = 1
n n−1mi

2

≈
1 + 1 + CV2 m − 1 ρ

m

where m is the average cluster size, and CV is the coefficient of variation of the cluster sizes. 

Therefore, the variance becomes

σindep 
2 ≈

1 + 1 + CV2 m − 1 ρ
m

1 − P1
πP1

+ 1 − P0
(1 − π)P0

(21)

Interestingly, 1 + 1 + CV2 m − 1 ρ is the design effect with variable cluster sizes 

previously derived for the weighted cluster-level analysis of continuous, binary and count 

outcomes.21,34–37 The above approximation indicates that the same design effect applies 

to the individual-level modified Poisson analysis assuming an independence working 

correlation structure. Further, it is clear from equation (21) that the required sample size 

increases when either the ICC or the coefficient of variation of cluster sizes increases.

For the variance expression derived under the exchangeable correlation structure, recall that

1
n ∑

i = 1

n mi
1 + mi − 1 ρ ≈ 1

ρE
mi

mi + (1 − ρ)/ρ

Based on the Taylor expansion results of van Breukelen et al.38 and Candel and van 

Breukelen,39 the second-order approximation of the above expression can be written as

E
mi

mi + (1 − ρ)/ρ ≈ m
m + (1 − ρ)/ρ 1 − CV2 m(1 − ρ)/ρ

m + (1 − ρ)/ρ 2

This provides an approximation of the variance expression so that

σexch 
2 ≈ 1 − CV2 mρ(1 − ρ)

1 + (m − 1)ρ 2

−11 + (m − 1)ρ
m

1 − P1
πP1

+ 1 − P0
(1 − π)P0

(22)

Expressions (21) and (22) require the average cluster size m and coefficient of variation of 

cluster sizes as key input parameters, which may be more convenient to obtain in the design 
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stage. For ease of reference, Table 1 summarizes the various expressions of σ2 = nvar β1 , 

depending on the working correlation structure and the information of cluster sizes.

The variance expressions (21) and (22) allow us to analytically explore the efficiency 

implications for the modified Poisson analysis of CRTs under variable cluster sizes. 

Equation (15) provides the variance expression of β1 under both the independence and 

exchangeable working correlation models with equal cluster sizes, or equivalently when the 

CV parameter equals zero. We define the variance inflation factor (VIF) due to unequal 

cluster sizes as the ratio of variances obtained under unequal cluster sizes (CV > 0) and 

under equal cluster sizes (where mi = m), and plot the VIF in Figure 1. The upper panels of 

Figure 1 present the VIF

VIFindep  ≈
1 + 1 + CV2 m − 1 ρ

1 − (m − 1)ρ
(23)

by values of the ICC (x-axis) and CV of cluster sizes (colored lines) under the independence 

working correlation. Because commonly reported ICC rarely exceeds 0.2,1 we only vary ρ ∈ 
[0, 0.25) with the largest value representingm the extreme case. Three values of mean cluster 

sizes are considered, corresponding to small (m = 20), moderate (m = 50) and relatively large 

(m = 100) average cluster sizes. It is evident that large values of the ICC, CV as well as large 

average cluster sizes lead to a more pronounced variance inflation. In particular, when the 

average cluster size is large (m = 100) and the CV further deviates from zero, the variance 

inflation becomes very sensitive to even a slight change in ICC, highlighting the potential 

inefficiency of using an independence working correlation model in those scenarios.

Under the exchangeable working correlation model, a similar variance inflation factor is 

defined as

VIFexch  ≈ 1 − CV2 mρ(1 − ρ)
1 + (m − 1)ρ 2

−1

which is plotted in the lower panels of Figure 1. Unlike the results under the independence 

correlation, the variance inflation under the exchangeable correlation structure due to 

cluster size variation is less sensitive, and exhibits a parabolic relationship with the ICC. 

Some algebra shows that VIFexch reaches its maximum when the ICC ρ = 1/(m + 1),38 and 

monotonically decreases towards 1 when ICC further increases. In sharp contrast with 

the results under independence correlation, the variance inflation under the exchangeable 

correlation is minimum when the average cluster size is larger and the ICC deviates from 

1/(m + 1). Given that the asymptotic efficiency is identical between the independence and 

exchangeable working correlation models under equal cluster sizes (common denominator 

used when defining VIFind and VIFexch), a direct comparison between the upper panels 

and lower panels in Figure 1 reveals the relative efficiency of modeling the correlation 

under variable cluster sizes. Importantly, when the average cluster size is large (typical in 

embedded pragmatic CRTs) and when the true correlation is farther away from zero, VIFexch 

tends to converge to unity while VIFindep diverges; this is the most typical scenario where 

Li and Tong Page 11

Stat Methods Med Res. Author manuscript; available in PMC 2022 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



employing the exchangeable correlation structure leads to efficiency gain for the modified 

Poisson analysis.

3 A simulation study

3.1 Simulation design

In this section, we investigate the accuracy of the sample size procedure for modified 

Poisson analysis of parallel CRTs. For simplicity, we focus on the scenario where the 

clusters are randomized in a 1:1 ratio so that π = 1/2. We consider two levels of baseline 

prevalence P0 ∈ {0.15, 0.30}, with the former value resembling the STOP CRC study, and 

five levels of ICCs ρ ∈ {0.01, 0.05, 0.10, 0.15, 0.20}; these values are within the commonly 

reported range in CRTs.1,40 Under the null, we set P1 = P0, and under the alternative, 

we consider P1 = 0.3 when P0 = 0.15 (relative risk = 2) and P1 = 0.5 when P0 = 0.3 

(relative risk = 1.67). Two levels of mean cluster sizes m ∈ 50, 100  are examined. We 

do not further examine m = 20 because under equal conditions, the required sample size 

may be much larger and becomes less practical for pragmatic CRTs. Five levels of CV 

of cluster sizes are considered with CV ∈ {0, 0.2, 0.4, 0.6, 0.8}, representing commonly 

used values used in simulations for CRTs.31,38,41 Given each value of m and CV, the actual 

cluster size mi~Gamma(a, b), where the shape parameter a = CV−2 and the rate parameter 

b = m−1CV−2. We further round mi to the nearest integer and ensure the minimum of mi 

is at least 2 for computational stability. In total, we have a factorial design with 2 × 5 

× 2 × 5 = 100 scenarios. Throughout, we fix the nominal type I error rate at 5%. For 

each scenario, we combine equation (9) with equation (21) or (22) to estimate the required 

number of clusters n to achieve 80% power for a two-sided Wald t-test, under either the 

independence or exchangeable working correlation model. We then simulate 1000 data 

sets with correlated binary outcomes using the method of Qaqish42 based on n, the set of 

cluster sizes mi, prevalence P1, P0 and the ICC ρ, and fit the modified Poisson analysis 

with either the independence or exchangeable working correlation model. Under the null 

such that P1 = P0, we report the empirical type I error rate of the Wald t-test as the 

proportion of false rejections over the 1000 simulations. Under the alternative, we report the 

empirical power of the Wald t-test, and the proposed sample size procedure is considered 

accurate if the empirical power agrees well with the nominal value 80%. Further, when using 

the exchangeable working correlation, we consider the modified correlation estimator (16) 

throughout the simulation.

As alluded to in Section 2.2, a complication in this empirical evaluation is that the 

Wald t-test with the original sandwich variance estimator of Liang and Zeger18 may 

be liberal when there is a limited number of clusters, and therefore modifications of 

the sandwich variance estimator are required to properly evaluate the empirical power. 

On the other hand, we wish to identify valid tests that carry the nominal type I 

error rate and have empirical power that agrees well with the prediction. For this 

reason, we consider three popular bias-corrections to the sandwich variance estimator. 

The Mancl and DeRouen (MD) variance estimator modifies equation (8) by setting 

covMD Y i = I − Hi
−1 Y i − μi Y i − μi ′ I − Hi′

−1, where Hi = DiΣ1
−1Di′Ai

−1/2Ri
−1(α)Ai

−1/2

is the cluster leverage matrix. Because the diagonal entries of the leverage matrix are 
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between 0 and 1, the MD variance estimator inflates the robust sandwich variance estimator 

to reduce its negative bias in small samples.23 The Kauermann and Carroll (KC) bias-

correction corresponds to setting covKC Y i = I − Hi
−1/2 Y i − μi Y i − μi ′ I − Hi′

−1/2 in 

equation (8) and has been shown to avoid the potential over-correction of the MD variance 

estimator.24,43 The validity of these two bias-corrected variance estimators requires that the 

matrix inverses, I − Hi
−1 and I − Hi

−1/2, are well defined. The Fay and Graubard (FG) 

variance sets equation (8) as

Σ0, FG = ∑
i = 1

n
CiDi′Ai

−1/2Ri
−1(α)Ai

−1/2cov Y i Ai
−1/2Ri

−1(α)Ai
−1/2DiCi (24)

where Ci = diag 1 − min 0.75, Qi jj
−1/2  and Qi = Di′Ai

−1/2Ri
−1(α)Ai

−1/2DiΣ1
−1. Scott et 

al.44 has shown that the KC variance estimator can be derived as a modified version 

of the FG variance estimator, which underlies their similarity in previous simulations 

with linear or logistic GEE27–29; however, their performance could differ under variable 

cluster sizes, as shown in Li and Redden31 with logistic GEE. Although there are several 

other bias-corrected variance estimators available in the literature,45–47 we mainly focus 

on the above three approaches because (i) they are readily implemented in SAS PROC 

GLIMMIX, the geesmv package in R,48 and a Stata module xtgeebcv,49 and (ii) the KC 

and FG variance estimators have been shown to perform adequately well in small samples 

with logistic GEE and correct variance and correlation specifications.27–29,31,43 Based on 

these three bias-corrections, we further examine three hybrid bias-corrected standard error 

estimators in constructing the Wald t-test: the average MD/KC standard error, the average 

MD/FG standard error and the average KC/FG standard error. Because the MD variance 

estimator tends to over-correct the bias, while the KC or FG variance estimators occasionally 

under-correct the bias, averaging two bias-corrected standard errors may lead to better finite-

sample behavior. In fact, with logistic GEE and under the null hypothesis of no intervention 

effect, while Li and Redden31 recommended either KC or FG variance estimator depending 

on the CV of cluster sizes, Ford and Westgate41 showed that the average MD/KC standard 

error estimator has the best performance under variable cluster sizes over a range of CV. 

Our empirical validation of the sample size formula can help us assess the generalizability 

of these previous findings to modified Poisson regression, both under the null and the 

alternative. For fitting GEE with independence working correlation, we use our own R code 

to obtain the bias-corrected variance estimators. For fitting the GEE with exchangeable 

working correlation and the modified correlation estimator (16), we use our own R code to 

implement the modified Fisher-scoring algorithm and the bias-corrected variance estimators. 

The R code is provided in Web Appendix A.

3.2 Simulation results

Table 2 summarizes the empirical power and type I error rates (in parenthesis) for the 

modified Poisson regression under the independence working correlation when the mean 

cluster size is m = 50, the baseline prevalence P0 = 0.15 and under five levels of the 

cluster size variability. Notably, the required sample size under the independence working 

Li and Tong Page 13

Stat Methods Med Res. Author manuscript; available in PMC 2022 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



correlation can be very sensitive to the change in CV of cluster sizes, especially when 

the ICC becomes large. For example, when ICC is 0.15, the required sample size n = 46
when CV=0, but becomes n = 71 when CV = 0.8. Further, it is clear that the t-test with the 

conventional robust sandwich standard error estimator has an inflated test size in almost all 

cases. Therefore, although the power of this test is consistently higher than nominal, the 

test is not appropriate due to its liberal size. Although the set of bias-corrected standard 

error estimators generally lead to more accurate test sizes, the t-test with the KC standard 

error or the average KC/FG standard error estimator occasionally lead to inflated type I error 

rate when the CV is large. Further, the t-test with the MD standard error estimator and the 

average MD/FG standard error estimator could occasionally lead to empirical power below 

80%. These findings are consistent with previous observations with equal cluster sizes27 

and unequal cluster sizes31 under logistic GEE models. Across all tests, the t-test coupled 

with the FG standard error estimator or the average MD/KC standard error estimator has 

the best performance because they most frequently produce the closest nominal test size and 

maintain power close to prediction. This finding strengthens the previous recommendation 

in Ford and Westgate,41 by further showing that the t-test with the average MD/KC standard 

error estimator has adequate power (in addition to being valid) in the context of modified 

Poisson analysis.

Table 3 parallels Table 2 and summarizes the empirical power and type I error rates (in 

parentheses) for the modified Poisson regression with the exchangeable working correlation. 

With an exchangeable working correlation, the required number of clusters n is relatively 

insensitive to cluster size variability. For example, when the ICC is 0.15, the required 

sample size n = 46 when CV = 0, but becomes n = 49 when CV = 0.8, suggesting that the 

additional number of clusters required to compensate unequal cluster sizes is much smaller 

than that using independence working correlation. This pattern confirms the analytical 

findings in Figure 1. On the other hand, findings concerning the validity and power of 

the t-test under the exchangeable working correlation largely agree with those under the 

independence working correlation. In particular, both the t-test with the FG standard error 

estimator and the t-test with the average MD/KC standard error estimator have optimal 

and comparable performance in terms of controlling for test size and providing adequate 

power. Interestingly, the performance of these two t-tests is also slightly improved under 

the exchangeable working correlation versus the independence working correlation. The 

similarity in the performance of these two tests suggests that either one could be used for the 

modified Poisson analysis with exchangeable correlation.

In our factorial simulation study design, we have additionally considered the baseline 

prevalence P0 = 0.3 and mean cluster size m = 100; the corresponding results are summarized 

in Web Appendix B. Specifically, Web Tables 1 and 2 present the simulation results with 

P0 = 0.3 and m = 50. The findings there are consistent with the results under P0 = 0.15 and 

m = 50, suggesting the superior performance of t-tests coupled with the FG or the average 

MD/KC standard error estimator. However, these tests may be occasionally underpowered 

when the number of clusters is smaller than 10. Web Tables 3 to 6 present the simulation 

results with a larger mean cluster size m = 100, under both levels of baseline prevalence. 

When the mean cluster size is large, it is evident that the required sample size under the 
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exchangeable working correlation is almost unaffected by CV of cluster sizes (no more than 

2 additional clusters are required when CV increases from 0 to 0.8), whereas the required 

sample size under the independence working correlation is equally sensitive as the m = 50
scenario. The results of type I error and power under the m = 100 scenario further reveal that 

(i) the t-tests coupled with the FG or the average MD/KC standard error estimator have the 

best control of empirical test size throughout, and have power close to prediction when the 

number of clusters is at least 10; (ii) the performance of these two t-tests seems to be further 

improved in terms of type I error rate when the exchangeable correlation structure is used. In 

fact, across all scenarios, as long as the exchangeable working correlation structure is used, 

these two t-tests have rarely carried an inflated test size.

With an interest to further explore the implications of ignoring variable cluster sizes in the 

sample size calculation stage, we replicate the above simulation where n is now estimated 

using the formula assuming equal cluster sizes m. This is sometimes referred to as the 

“average cluster size method” by simply plugging in the average cluster size in formula (15). 

In this case, we have also shown that the sample size estimates are identical regardless of 

the use of the independence or exchangeable working correlation structure. Web Tables 7 

to 10 summarize the corresponding results when m = 50. When the independence working 

correlation is used in fitting the modified Poisson GEE, the power of the t-test quickly 

declines when the CV of cluster size increases. In some cases, the largest power loss due 

to variable cluster sizes may be nearly 20%. However, under the exchangeable working 

correlation structure, the largest power loss due to variable cluster sizes is usually at most 

5%, as long as the number of clusters is greater than 10. This clearly indicates that the power 

of modified Poisson analysis with exchangeable working correlation is generally insensitive 

to cluster size variability, whereas the modified Poisson analysis with independence working 

correlation can be subject to notable inefficiency under cluster size variability. In other 

words, ignoring cluster size variability has a substantially larger chance to result in an under 

powered study if the pre-specified analysis uses the independence working correlation, but is 

less likely to incur substantial power loss if the pre-specified analysis uses the exchangeable 

working correlation. The results for m = 100 are qualitatively similar and presented in Web 

Tables 11 to 14.

4 Illustrative calculation for the STOP CRC trial

We perform an illustrative sample size calculation based on the proposed formula, in the 

context of Stop Colorectal Cancer (STOP CRC) trial. As we mentioned in Section 1, the 

STOP CRC is a CRT that randomizes 26 federally qualified health clinics to an active 

intervention designed to increase colorectal cancer screening or usual care.6 The active 

intervention includes an automated, data-driven program embedded in EHR for mailing 

FIT kits with pictographic instructions to patients due for colorectal cancer screening. In 

the usual care arm, patients are only provided opportunistic colorectal cancer screening. 

Eligible patients are accrued in a comparable manner for intervention and control clinics 

over a one-year period and, once accrued, individuals are followed for 12 months to observe 

the completion of a CRC screening test. The primary outcome is the completion status of 

FIT at follow-up and is measured at the patient level. The actual sample size estimation is 
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presented in Coronado et al.,6 from which the numbers will be drawn in this illustration. 

Suppose the primary analysis is the modified Poisson regression for the relative risk, and 

the FIT completion rate is P0 = 0.15 under usual care. It was hypothesized that the effect 

size corresponds to a 10% increase in the completion rate, which corresponds to a marginal 

relative risk, eΔ = 1.67. Although the original sample size estimation conservatively assumed 

an equal clinic size 450, the actual baseline statistics suggest that the clinic sizes vary from 

461 to 3299, with mean m = 1584 and CV = 0.475. We will use this more accurate clinic size 

information to illustrate the implications of variable cluster sizes. Throughout, we consider a 

two-sided Wald t-test and fix the nominal type I error rate at 5%.

Assuming mi = m = 1584 for each clinic i and no cluster size variability, the smallest n that 

ensures sample size equation holds with 80% power is n = 19, which becomes 20 if rounded 

to the nearest even integer. Therefore, at least 10 clusters are required in each arm to ensure 

80% power to detect the desired marginal relative risk. As we explained in Section 2.3, the 

sample size estimate is identical under either the independence or exchangeable working 

correlation if the clinic sizes are the same. Accounting for the variable cluster sizes through 

CV, we estimate the required number of clusters to be n = 22 under the independence 

working correlation, and n = 19 under the exchangeable working correlation. This suggests 

that at least two additional clusters would be required to power the study if the primary 

relative risk analysis is based on an independence working correlation, while the sample 

size estimate is virtually unaffected under the exchangeable working correlation. Next, we 

replicate the above calculation to achieve 90% power for the study. In this case, assuming 

equal cluster sizes, the required number of clusters is estimated as n = 24 under either 

working correlation structure. When we take the cluster size variability into account, the 

required number of clusters is inflated to n = 29 under the independence working correlation, 

while the required number of clusters remains unchanged (n = 24) under the exchangeable 

working correlation structure. Because the study can afford to randomize 26 clinics, the trial 

may be under powered if the primary analysis uses the modified Poisson regression coupled 

with the independence working correlation. Using an exchangeable working correlation, 

however, would adequately power the study based on the affordable number of clinics, 

regardless of whether CV is taken into account during sample size calculation.

While the above calculation focuses on determining the required number of clusters given 

full information of the cluster sizes, our sample size formula can also be used to jointly 

determine the required number of clusters and cluster sizes. Assuming an independence 

working correlation, panel (a) of Figure 2 plots the values of (m, n) that ensure the STOP 

CRC trial has 80% power to detect a relative risk of 1.67 for five different levels of cluster 

size variability measured by CV. As the mean cluster size m increases from 50 to 2000, 

the required number of clusters decreases from 28 to 19 under equal cluster sizes (CV = 

0). Given the same mean cluster size, increasing the CV of cluster sizes could substantially 

inflate the required number of clusters. For example, when the CV of cluster sizes becomes 

0.8, the required number of clusters will decrease from 38 to 28 as the mean cluster size 

increases from 50 to 2000. On the other hand, the relationship between the required number 

of clusters and mean cluster size appears more robust to cluster size variability, under the 

exchangeable working correlation. In panel (b) of Figure 2, as long as the mean cluster 
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sizes reaches 670, the required number of clusters will always be 19 for all CV ≤ 0.8, 

and increasing the CV of cluster sizes only affects the rate at which the required number 

of clusters reaches the minimum value, 19. These results further confirm that the loss of 

efficiency due to variable cluster sizes is much smaller when the correct correlation structure 

is considered in the analysis. Further, calculations such as those done in Figure 2 present a 

number of design options so that investigators could jointly decide the number of clusters 

and mean cluster sizes, after taking the logistical and financial factors into consideration.

5 Discussion

In this article, we have studied the sample size requirement for modified Poisson 

analysis of parallel CRTs, and proposed closed-form sample size formulas under both 

the independence and exchangeable working correlation structures. With an independence 

working correlation, we have shown that the asymptotic variance of the marginal relative 

risk estimator from the modified Poisson regression is identical to that from the log-

binomial regression. This asymptotic equivalence also extends to the exchangeable working 

correlation, provided a simple modification is used to obtain a consistent estimate of the 

ICC parameter. From a design perspective, these results suggest that the sample size formula 

derived for log-binomial analysis of CRTs can be directly applied to modified Poisson 

analysis of CRTs. From a trial analysis perspective, the asymptotic results imply that the 

misspecification of the variance function does not lead to efficiency loss for estimating the 

marginal relative risk in CRTs and could have better convergence property14; this further 

supports the application of the modified Poisson model over log-binomial model in CRTs.

We have also clarified the implication of variable cluster sizes for modified Poisson analysis 

of CRTs by deriving the required sample size as a function of the CV of cluster sizes. The 

results, however, diverge between the independence and exchangeable working correlation 

structures. Interestingly, while the sample size requirement under the independence working 

correlation is quite sensitive to changes in CV of cluster sizes, the sample size requirement 

under the exchangeable working correlation is generally stable to the changes in CV of 

cluster sizes; see, for example, Figure 2 in our illustrative example. This finding shows that 

the impact of variable cluster sizes critically depends on whether the analytical strategy 

exploits the within-cluster correlation, an observation that is not explicitly emphasized in 

the current CRT literature. In fact, the expressions of the variance inflation factor, VIFindep 

and VIFexch themselves are not new, as they have been previously derived for cluster-level 

analysis,21,34–37 as well as mixed-effects regression of CRTs.38,39 The contribution of this 

article is then to connect these separate results under the same marginal modeling framework 

but allowing for differences in working correlations. From this perspective, the statements 

of van Breukelen et al.38 that “the loss of efficiency due to variation in cluster sizes rarely 

exceed 10%” and of Liu and Colditz50 that “the efficiency loss (due to unequal cluster 

sizes) could be approximately 14% in CRTs with large cluster sizes” would apply only 

to the modified Poisson analysis coupled with the exchangeable working correlation; the 

efficiency loss under the independence working correlation could easily exceed 14% even 

with a moderate CV. In fact, because the asymptotic variance of the intervention effect 

estimate under GEE analyses of CRTs shares a similar form for continuous, binary and 

count outcomes,50,51 the expressions of VIFindep and VIFexch apply more generally to 
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marginal analyses of CRTs with an arbitrary generalized linear mean model. To summarize, 

from a trial design perspective, while there is a deleterious consequence by ignoring cluster 

size variability in sample size estimation under an independence working correlation, the 

sample size estimate under the exchangeable working correlation should be more robust 

to cluster size variability. From an analytical perspective, we also recommend marginal 

analysis of CRTs that exploits within-cluster correlation (e.g. using an exchangeable 

working correlation), not only because it adheres to the recommendation of the CONSORT 

extension to CRTs33 by offering a valid ICC estimate, but also because the efficiency of 

intervention effect estimator would be less affected by cluster size variability.

In an attempt to validate our sample size formula for modified Poisson analysis of CRTs, 

we carry out an extensive simulation study under various parameter constellations. Several 

key messages are clear from our simulation study. First, the Wald t-test with the original 

sandwich variance estimator carries an inflated type I error rate, even when the number of 

clusters is over 90 and an independence working correlation is used (Table 2). While all 

finite-sample bias-corrections generally improve the test size, the t-tests coupled with the 

FG standard error estimator25 and the average MD/KC standard error estimator41 should be 

preferred due to their optimal control of type I error rate and close-to-nominal empirical 

power. However, these two tests may be occasionally under powered when no more than 

10 clusters are randomized. Second, the additional simulation results in Web Appendix 

B further illustrates that ignoring cluster size variability in the design stage can result 

in a severely underpowered CRT, if the primary analysis uses the independence working 

correlation. Even when the number of clusters are larger than 50, the power loss due to 

unequal cluster sizes with an independence working correlation could frequently exceed 

15%. In contrast, as long as more than 10 clusters are randomized, the power loss due 

to unequal cluster sizes with an exchangeable working correlation is usually controlled 

within 5%, suggesting the need to account for ICC when estimating the relative risk. 

Third, it is often the case that the t-test has improved control of empirical type I error rate 

once an exchangeable working correlation is used (compare to an independence working 

correlation), regardless of finite-sample bias-corrections of the variance estimators. This 

last finding enhances the recommendation that the modified Poisson analysis of CRTs 

should proceed with an exchangeable working correlation instead of assuming working 

independence. Finally, while finite-sample bias-corrections are considered in the sandwich 

variance estimators, they are not required for deriving the large-sample variance expressions 

in Table 1. This is because the true covariance cov(Yi) is used in deriving the large-sample 

variance expressions, which are estimands rather than estimators and therefore have no 

“finite-sample bias” on their own.

While we have developed our sample size requirement based on the relative risk measure of 

the treatment effect in CRTs, there exist alternative sample size formulas based on the risk 

difference measure. For example, Cornfield52 discussed a variance expression based on the 

estimated risk difference under cluster randomization, and later Donner et al.53 proposed an 

explicit sample size procedure based on the risk difference. In Web Appendix C, we show 

that the Cornfield formula and the Donner et al. formula are identical, and therefore lead 

to the same sample size estimate. We also numerically compared the estimated number of 

clusters using our formulas and the Cornfield/Donner formula across scenarios examined 
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in Section 3, and observed that the Cornfield/Donner formula frequently led to a smaller 

number of clusters compared to ours. This comparison does not necessarily indicate one 

formula is always “better” than the other, but emphasizes the importance of consistent 

choices in the effect measure during the design and analysis stages. For example, if one 

uses the Cornfield/Donner formula to power the CRTs with an assumed risk difference, 

then the study can become underpowered when the analysis proceeds with the modified 

Poisson regression and estimates the relative risk. In addition, the Cornfield/Donner formula 

assumed equal randomization (π = 1/2) and equal cluster sizes, while our formulas have 

relaxed both assumptions to accommodate unequal randomization and variable cluster sizes.

One potential limitation of the current study is that we have limited our development 

to parallel CRTs. Because there is an increasing body of literature on alternative cluster 

randomized designs with more complex assignment of interventions, such as the cluster 

randomized crossover design28 and the stepped wedge design,27,28 it would be interesting 

to examine whether similar findings concerning modified Poisson regression extend to 

those alternative designs. One complication is that the intervention status varies within each 

cluster during each period, and therefore the derivation of sample size formula requires 

additional considerations. For example, Li et al.28 proposed a sample size expression for 

log-binomial regression of the cluster randomized crossover design (Web Appendix F of Li 

et al.28), which depends on the design parameters in a more complex fashion. It remains 

unknown whether misspecification of the variance function maintains the same efficiency 

in estimating the marginal relative risk as the log-binomial model. Another complication is 

that the true correlation structure usually deviates from the simple exchangeable structure 

as measurements are taken for each cluster during multiple periods.54 Therefore, it would 

be relevant to study whether accounting for multilevel correlation structures would be 

less prone to efficiency loss compared to simply using working independence. The design 

and analysis of these alternative cluster randomized designs with a binary outcome under 

variable cluster sizes remain an active topic for statistical research, and we plan to pursue 

the extensions of modified Poisson regression under the cluster randomized crossover design 

and stepped wedge design in our future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Variance inflation factor due to variable cluster sizes for modified Poisson regression under 

the independence working correlation (a–c) and under the exchangeable working correlation 

(d–f).
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Figure 2. 
Required number of clusters n and average cluster sizes m to achieve 80% power across five 

levels of cluster size variability in the STOP CRC study. (a) Working independence and (b) 

working exchangeable.
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Table 1.

Summary of variance expressions of marginal relative risk with the modified Poisson regression.

Working correlation mi = m? Known mi Expression of κ

Independence Yes –
1 + (m − 1)ρ

m

Independence No Yes
n∑i = 1

n mi 1 + mi − 1 ρ

∑i = 1
n mi

2

Independence No No
1 + 1 + CV 2 m − 1 ρ

m

Exchangeable Yes –
1 + (m − 1)ρ

m

Exchangeable No Yes
1
n ∑i = 1

n mi
1 + mi − 1 ρ

−1

Exchangeable No No
m

1 + (m − 1)ρ)
−1

1 − CV2 mρ(1 − ρ)
1 + (m − 1)ρ 2

−1

Note: The general variance expression is σ2 = κ × {(1 − P1)/πP1 + (1 − P0)/(1 − π)P0}.
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Table 2.

Empirical power and type I error rates (in parentheses) for modified Poisson regression under independence 

working correlation when the mean cluster size is m = 50; P0 = 0.15.

ρ CV n Robust MD KC FG MD/KC MD/FG KC/FG

0.01

0 11 91.0(7.1) 79.7(3.4) 86.5(5.1) 83.3(4.0) 83.1(4.3) 82.2(3.7) 84.5(4.6)

0.2 11 89.1(7.6) 77.2(3.2) 83.6(4.8) 80.9(3.6) 81.0(4.0) 79.3(3.3) 82.3(4.2) 

0. 4 11 89.2(10.0) 75.2(3.1) 83.1(5.7) 79.6(4.6) 79.0(4.2) 77.3(3.7) 81.4(5.1) 

0. 6 12 91.4(8.6) 77.5(3.5) 85.2(6.2) 81.3(4.4) 81.6(4.6) 79.2(3.9) 83.8(5.2)

0. 8 12 89.3(10.9) 71.3(4.8) 82.0(7.5) 76.0(6.3) 76.1(6.0) 74.0(5.7) 79.2(6.6)

0.05

0 21 86.9(5.0) 82.1(3.3) 84.6(3.9) 83.5(3.7) 83.6(3.8) 82.7(3.4) 84.1(3.8)

0. 2 21 84.8(5.9) 77.3(3.8) 81.5(4.8) 79.1(4.1) 79.5(4.2) 78.2(3.9) 80.6(4.3) 

0. 4 23 86.4(5.5) 80.4(3.4) 83.4(4.4) 81.6(4.0) 81.7(4.3) 81.0(3.8) 82.5(4.4) 

0. 6 25 85.5(6.3) 78.3(3.5) 82.3(4.8) 80.5(4.2) 80.5(4.2) 79.8(3.8) 81.4(4.4) 

0. 8 29 87.5(9.0) 80.4(5.8) 84.6(7.6) 82.2(6.5) 82.0(6.8) 81.5(6.1) 83.3(7.1)

0.10

0 33 84.3(6.3) 81.7(5.4) 82.9(5.8) 82.3(5.6) 82.1(5.5) 81.8(5.4) 82.5(5.6) 

0. 2 34 83.6(6.1) 80.4(4.5) 82.6(5.4) 81.7(4.8) 81.7(4.9) 81.1(4.6) 82.1(5.3) 

0. 4 38 85.0(7.2) 81.1(5.2) 83.3(6.2) 82.5(5.6) 82.5(5.7) 82.0(5.3) 83.0(5.8)

0. 6 43 84.6(6.9) 81.3(6.0) 83.2(6.5) 82.4(6.3) 82.2(6.4) 81.6(6.3) 82.5(6.4) 

0. 8 50 89.3(8.2) 71.3(6.2) 82.0(7.2) 76.0(6.3) 76.1(6.5) 74.0(6.3) 79.2(6.9)

0.15

0 46 82.5(4.8) 79.8(3.7) 80.8(4.2) 80.2(3.8) 80.4(3.9) 80.1(3.7) 80.5(3.9) 

0. 2 48 82.5(6.9) 80.3(5.7) 81.3(6.2) 81.2(5.9) 81.0(6.2) 80.7(5.8) 81.2(6.2) 

0. 4 52 80.9(6.0) 78.2(5.1) 79.2(5.6) 79.0(5.5) 79.0(5.5) 78.8(5.3) 79.1(5.5) 

0. 6 60 84.1(6.1) 81.3(4.3) 82.8(5.1) 81.9(4.4) 82.0(4.6) 81.5(4.4) 82.4(4.6) 

0. 8 71 85.0(8.2) 80.5(6.3) 82.5(7.2) 81.4(6.7) 81.4(6.7) 81.1(6.6) 81.9(6.7)

0.20

0 59 83.6(6.4) 81.6(5.9) 82.7(6.1) 82.0(5.9) 82.1(6.0) 81.7(5.9) 82.2(6.1) 

0.2 61 82.9(6.1) 81.3(5.0) 82.0(5.7) 81.6(5.4) 81.6(5.5) 81.4(5.1) 81.8(5.7) 

0.4 67 83.4(6.4) 80.4(5.3) 82.0(5.8) 81.4(5.4) 81.3(5.4) 80.8(5.4) 81.7(5.4) 

0.6 78 84.5(7.1) 81.9(5.7) 83.1(6.4) 82.7(5.9) 82.5(6.0) 82.2(5.7) 82.9(6.2)

0.8 92 83.9(7.4) 79.3(5.6) 80.8(6.4) 80.1(5.9) 79.8(6.1) 79.6(5.9) 80.4(6.3) 

Note: Empirical type I error rate between 3.6% and 6.4% and empirical power between 77.5% and 82.5% are in bold font and considered close to 
nominal according to the margin of error under a binomial model with 1000 replications. ρ refers to ICC; CV refers to the coefficient of variation of 

cluster sizes; n refers to the estimated number of clusters. Robust refers to the t-test with the uncorrected robust sandwich variance estimator; MD 

refers to the t-test with the bias-corrected sandwich variance estimator due to Mancl and DeRouen; KC refers to the t-test with the bias-corrected 
sandwich variance estimator due to Kauermann and Carroll; FG refers to the t-test with the bias-corrected sandwich variance estimator due to Fay 
and Graubard; MD/KC refers to the t-test with the average MD/KC standard error estimator; MD/FG refers to the t-test with the average MD/FG 
standard error estimator; KC/FG refers to the t-test with the average KC/FG standard error estimator.
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Table 3.

Empirical power and type I error rates (in parentheses) for modified Poisson regression under exchangeable 

working correlation when the mean cluster size is m = 50; P0 = 0.15.

ρ CV n Robust MD KC FG MD/KC MD/FG KC/FG

0.01

0 11 91.0(7.1) 79.7(3.4) 86.5(5.1) 83.3(4.0) 83.1(4.3) 82.2(3.7) 84.5(4.6)

0.2 11 88.8(7.7) 78.1(3.5) 83.9(5.2) 81.1(4.0) 80.7(4.1) 79.6(3.4) 82.2(4.5) 

0.4 11 88.9(10.1) 75.1(3.9) 82.6(6.8) 79.3(5.4) 79.0(5.1) 77.1(4.4) 81.0(6.3) 

0.6 11 88.0(10.9) 73.1(4.0) 82.1(7.2) 78.4(5.8) 78.4(5.8) 75.4(4.8) 81.0(6.5)

0.8 12 88.7(10.9) 71.2(3.6) 81.5(7.1) 77.8(5.8) 77.6(4.7) 75.0(4.1) 80.4(6.5)

0.05

0 21 86.9(5.0) 82.1(3.3) 84.6(3.9) 83.5(3.7) 83.6(3.8) 82.7(3.4) 74.1(3.8)

0. 2 21 85.6(5.6) 78.7(3.7) 82.8(4.0) 80.4(3.8) 80.7(3.7) 79.6(3.7) 81.6(4.0) 

0. 4 21 85.3(5.9) 77.5(3.8) 81.5(4.4) 79.2(3.9) 78.9(4.1) 78.2(3.9) 80.3(4.1) 

0. 6 22 84.9(7.2) 80.1(5.3) 82.4(5.8) 81.6(5.5) 81.6(5.4) 81.0(5.4) 82.2(5.5) 

0. 8 23 85.5(7.3) 80.0(4.9) 83.4(6.2) 81.8(5.8) 81.8(5.6) 80.9(5.2) 82.3(6.0) 

0.10

0 33 84.3(6.3) 81.7(5.4) 82.9(5.8) 82.3(5.6) 82.1(5.5) 81.8(5.4) 82.5(5.6) 

0. 2 34 84.9(5.9) 81.7(4.3) 83.5(5.2) 82.5(4.6) 82.6(4.7) 81.9(4.4) 82.7(4.9)

0. 4 34 83.6(5.4) 80.2(4.7) 81.9(4.9) 81.3(4.7) 81.1(4.7) 80.7(4.7) 81.3(4.8) 

0. 6 35 83.8(5.9) 80.3(5.1) 82.2(5.4) 81.2(5.3) 81.3(5.2) 80.8(5.2) 81.7(5.3) 

0. 8 36 84.1(6.6) 81.2(5.1) 82.2(5.9) 81.8(5.4) 81.9(5.4) 81.5(5.1) 82.0(5.8) 

0.15

0 46 82.5(4.8) 79.8(3.7) 80.8(4.2) 80.2(3.8) 80.4(3.9) 80.1(3.7) 80.5(3.9) 

0. 2 46 79.9(5.1) 78.4(4.5) 79.3(4.6) 79.0(4.6) 78.9(4.6) 78.7(4.6) 79.2(4.6) 

0. 4 47 84.3(6.0) 81.8(5.1) 83.2(5.7) 82.3(5.6) 82.3(5.3) 82.0(5.3) 83.0(5.6)

0. 6 48 83.9(6.8) 81.6(5.3) 82.8(6.0) 82.2(5.5) 82.2(5.5) 81.8(5.4) 82.4(5.6) 

0. 8 49 84.0(6.2) 80.9(5.2) 82.5(5.6) 81.9(5.3) 82.0(5.3) 81.3(5.3) 82.1(5.4) 

0.20

0 59 83.6(6.4) 81.6(5.9) 82.7(6.1) 82.0(5.9) 82.1(6.0) 81.7(5.9) 82.2(6.1) 

0. 2 59 85.2(5.9) 83.0(5.3) 84.0(5.4) 83.3(5.3) 83.3(5.3) 83.0(5.3) 83.5(5.4)

0. 4 60 83.1(6.4) 81.7(5.4) 82.0(5.7) 81.8(5.6) 81.9(5.6) 81.7(5.6) 82.0(5.6) 

0. 6 60 82.4(5.6) 80.0(4.4) 81.3(5.0) 80.7(4.7) 80.8(4.6) 80.5(4.6) 81.1(4.8) 

0. 8 62 83.9(4.2) 81.7(3.8) 83.0(3.8) 82.4(3.8) 82.6(3.8) 82.2(3.8) 82.7(3.8)

Note: Empirical type I error rate between 3.6% and 6.4% and empirical power between 77.5% and 82.5% are in bold font and considered close 
to nominal according to the margin of error under a binomial model with 1000 replications. Robust refers to the t-test with the uncorrected robust 
sandwich variance estimator; MD refers to the t-test with the bias-corrected sandwich variance estimator due to Mancl and DeRouen; KC refers 
to the t-test with the bias-corrected sandwich variance estimator due to Kauermann and Carroll; FG refers to the t-test with the bias-corrected 
sandwich variance estimator due to Fay and Graubard; MD/KC refers to the t-test with the average MD/KC standard error estimator; MD/FG refers 
to the t-test with the average MD/FG standard error estimator; KC/FG refers to the t-test with the average KC/FG standard error estimator. ρ refers 

to ICC; CV refers to the coefficient of variation of cluster sizes; n refers to the estimated number of clusters.
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