Table 1.
Model result comparison using 5 evaluation metrics: mean accuracy, class 0 (cat) accuracy, class 1 (dog) accuracy, balanced accuracy, and log loss.
| Models | Total accuracy | Class 0 (Cat) | Class 1 (Dog) | Balanced accuracy | Log loss |
|---|---|---|---|---|---|
| Cleansed data | |||||
| Baseline | 98.44 | 98.62 | 98.26 | 98.44 | 0.061 |
| 98.42 | 98.49 | 98.35 | 98.42 | 0.045 | |
| 98.62 | 98.13 | 99.11 | 98.62 | 0.038 | |
| Noisy data | |||||
| Baseline | 75.31 | 57.34 | 93.32 | 75.33 | 1.235 |
| 78.00 | 57.68 | 98.35 | 78.01 | 0.421 | |
| 73.78 | 48.49 | 99.11 | 73.80 | 0.598 | |