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Summary

Rhabdomyosarcoma (RMS) is a pediatric cancer with features of skeletal muscle; patients with 

unresectable or metastatic RMS fare poorly due to high rates of disease recurrence. Here, we 

use single cell and single nucleus RNA-sequencing to show that RMS tumors recapitulate the 

spectrum of embryonal myogenesis. Using matched patient samples from a clinical trial and 

orthotopic patient-derived xenografts (O-PDXs), we show chemotherapy eliminates the most 

proliferative component with features of myoblasts within embryonal RMS; after treatment, 

the immature population with features of paraxial mesoderm expands to reconstitute the 

developmental hierarchy of the original tumor. We discovered that this paraxial mesoderm 

population is dependent on EGFR signaling and is sensitive to EGFR inhibitors. Taken together, 

these data serve as a proof-of-concept that targeting each developmental state in embryonal RMS 

is an effective strategy for improving outcomes by preventing disease recurrence.

Graphical Abstract

Rhabdomyosarcoma is a pediatric cancer with features of skeletal muscle. Patel et al. show 

that intratumoral heterogeneity within rhabdomyosarcoma mimics the developmental states of 

embryonal myogenesis. Furthermore, treatment selects for cells in a mesoderm-like state that 

are vulnerable to EGFR inhibition. Combining EGFR inhibitors with chemotherapy therefore 

improves treatment outcomes.
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Introduction

Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma and has 

molecular, cellular and histopathologic features of developing skeletal muscle (Chen et 

al., 2013; Kahn et al., 1983; Ries et al.). The alveolar form of RMS (ARMS) is more 

differentiated than the embryonal form (ERMS) and each subtype has distinct genomic 

and epigenomic landscapes (Chen et al., 2013; Shern et al., 2014; Stewart et al., 2018). 

For newly diagnosed RMS patients, the overall survival rate is 70% using multiagent 

chemotherapy combined with radiation and/or surgical resection (Arndt et al., 2018; Pappo 

and Dirksen, 2017). Unfortunately, a subset of patients experience disease recurrence after 

treatment completion; for those patients, 5-year overall survival rate drops below 20% 

(Pappo et al., 1999). Genomic studies have shown that clonal selection occurs with disease 

recurrence, but no recurrent genetic lesion has been identified that contributes to survival 

of the rare clones of cells for RMS (Chen et al., 2013; Shern et al., 2014; Stewart et al., 

2017). This raises the possibility that other, non-genetic mechanisms may contribute to drug 

resistance and disease recurrence in RMS.

To explore this possibility, we performed single cell (sc) and single nucleus (sn) RNA-seq 

of RMS patient tumors and matched orthotopic patient-derived xenografts (O-PDXs). We 

also performed lentiviral barcode labeling to trace the clonal expansion of individual 

tumor cells during normal growth and in response to treatment. Taken together, these 

studies showed that individual tumor cells transition through myogenesis and the underlying 

myogenic developmental hierarchy contributes to clonal selection with treatment. We used 

the developmental program in RMS to identify therapeutic vulnerabilities that could be 

exploited to reduce disease recurrence. Overall, this study reveals a developmental hierarchy 

with embryonal RMS and introduces an alternate approach to treating pediatric cancers, 

wherein targeting specific developmental states that are destined to persist during therapy 

can be used to improve treatment efficacy.

Results

RMS tumors have developmental heterogeneity

Skeletal muscle develops from the mesodermal cells of the somites during embryogenesis 

and undergoes stepwise differentiation, which is typified by the expression of myogenic 

regulatory factors (MRFs, Figures 1A and 1B; Buckingham and Rigby, 2014; Chal and 

Pourquié, 2017). RMS tumors have features of skeletal muscle including myofibers and 

heterogenous expression of proteins such as myogenin (MYOG; Kahn et al., 1983; Sebire 

and Malone, 2003). To further investigate the transcriptomic heterogeneity within RMS, 

we performed droplet-based single-cell RNA-sequencing (scRNA-seq). We obtained fresh 

ERMS and ARMS patient tumor tissue (Figures 1C and 1D) following surgical resection 

and generated single-cell suspensions (>90% viable cells) for 3’-directed scRNA-seq. 

Inference of somatic copy number alterations (Slyper et al., 2020; Tirosh et al., 2016) was 

used to distinguish malignant cells from non-malignant cells (Figure S1).

Single-cell analysis showed there were distinct populations of cells expressing transcription 

factors characteristic of paraxial mesoderm (MEOX2, PAX3), myoblasts (MYF5, MSC) 
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and myocytes (MYOG, MEF2C; Figures 1E and 1F). The proportion of MYOG 
expressing cells in the scRNA-seq data was consistent with the proportion measured by 

immunohistochemical staining (IHC; Figures 1C-1D). The ARMS sample had fewer tumor 

cells expressing the early paraxial mesoderm MRF MEOX2 (2.1%) than the ERMS sample 

(29.4%), and more cells expressing the late myocyte MRF MYOG (75.2% versus 25.6%; 

Figures 1E and 1F). RNA velocity analysis, which leverages the simultaneous measurement 

of spliced and unspliced RNA transcripts to generate a model of the future state of cells 

(Manno et al., 2018), showed unidirectional transit of cells from the paraxial mesoderm 

through myoblast to the myocyte state in the ERMS tumor (Figure 1G); the ARMS tumor, 

in contrast, did not demonstrate unidirectional transit (Figure 1H). Non-malignant cells 

including monocytes, fibroblasts, lymphocytes, and vascular endothelial cells were readily 

identifiable in our scRNA-seq dataset (Figure S1).

The rarity of childhood cancers limits the ability to obtain fresh tissue samples for 

scRNA-seq. To increase the number of evaluable tumors, we validated single-nucleus 

RNA-sequencing (snRNA-seq) of frozen tumor tissue and adapted our computational 

pipeline to accommodate data generated from snRNA-seq (Slyper et al., 2020). Specifically, 

we compared scRNA-seq from fresh tumors (SJRHB030680_R1 and SJRHB031320_D1; 

Figures 1E and 1F) to snRNA-seq of matched frozen tumor specimens (Figure S1G-L). 

As shown previously for neuroblastoma (Slyper et al., 2020), we were able to recover 

more fibroblast and epithelial cells of the tumor microenvironment (TME) by snRNA-seq 

compared to data generated by scRNA-seq (Figure S1G-L). To extend our single cell 

transcriptional profiling, we performed snRNA-seq on 18 RMS tumors (12 ERMS and 

6 ARMS; Tables S1 and S2). In total, 122,731 nuclei were analyzed from the patient 

tumors. As for the fresh tumors, copy number inference was used to distinguish malignant 

nuclei (111,474) from the normal nuclei (11,257) in the TME. The malignant nuclei were 

integrated using Conos (Barkas et al., 2019), an approach that leverages inter-sample 

mappings to generate a unified graph for the identification of communal cell clusters 

(Figure 2A). Unsupervised Leiden clustering identified 7 clusters, that differed in patterns 

of MRF expression, which we grouped into mesoderm (1 cluster), myoblast (4 clusters) and 

myocyte (2 clusters) states (Figure 2B). The 4 myoblast populations were distinguished by 

ribosomal genes (p=4.3x10−40) and muscle differentiation genes (p=0.0005). We identified 

954 differentially expressed genes, of which 945 were cluster-type specific (Table S3). 

The 2 myocyte populations were distinguished by expression of genes involved in muscle 

differentiation and function (Table S3). Extracellular matrix and cell adhesion pathways 

were enriched in the paraxial mesoderm-like tumor cells, ribosome biosynthesis pathways 

were enriched in the myoblast-like cells and pathways involved in muscle function were 

enriched in the myocyte-like cells (Table S3). Mesoderm cells also expressed significantly 

higher levels of the xenobiotic transporter ABCG2, which has been correlated with 

multidrug resistance to chemotherapy (Doyle and Ross, 2003).

Importantly, unsupervised clustering revealed further refinement of the myoblast and 

myocyte groups that reflect transitions through developing myogenic states. For example, 

myoblast group 1 had expression of both PAX3 (a mesodermal marker) and MYF5 (a 

myoblast marker); likewise, myocyte group 1 had expression of MSC (a myoblast marker) 

and MYOG (a myocyte marker). Thus, the unsupervised analysis is consistent with the 
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developmental trajectory of normal myogenesis with cells in the midst of transition between 

myogenic states. For simplicity, we will refer to the 3 groups (mesoderm, myoblasts and 

myocytes) throughout the remainder of our analyses, but this subdivision may be relevant in 

future studies. Also, we have developed a Cloud based viewer for researchers to mine the 

data based on individual gene expression patterns for specific developmental stages (https://

pecan.stjude.cloud/static/RMS-scrna-atlas-2020/).

While all the tumors had a mixture of cells with mesoderm, myoblast, and myocyte 

signatures, ARMS tumors contained significantly fewer cells with the mesodermal gene 

expression signature (p=0.008; unpaired t-test) (Figures 2C and S2A). One ERMS tumor 

(SJRHB010928_R1) was notable in that it contained a majority (97%) of tumor cells 

with the mesodermal signature (Figures S2A and S2B). This sample was collected during 

extensive treatment and was noted to have rare nests of viable cells (<5% of the tumor), 

suggesting that mesodermal cells are more resistant to treatment than the other cell 

populations in ERMS. The proliferating cells were significantly enriched in the myoblast 

population (p<0.0001; one-way ANOVA with multiple comparisons; Figures 2E and 2F). 

All data can be viewed using an interactive viewer at: https://pecan.stjude.cloud/static/RMS-

scrna-atlas-2020/.

The same approach was used to cluster the non-malignant cells within the TME (Figures 

S2C-F). Comparing normal cell populations between ERMS and ARMS showed that 

fibroblasts in ARMS were significantly enriched in pathways involved in extracellular 

matrix synthesis and organization as well as cell adhesion. In addition, SFRP2 and SFRP4 
were significantly (p<1x10−90) enriched in fibroblasts from ARMS (45% and 56% of cells, 

respectively) relative to ERMS (1% and 3%, respectively; Table S4). The HLA-A,B,C,E 
and B2M and CD74 genes were significantly upregulated in lymphocytes from ARMS and 

HLA-DRA, DRB1 and DPB1 were significantly upregulated in monocytes from ERMS 

(Table S4).

We next investigated the spatial heterogeneity of malignant subpopulations using single 

and multiplex immunohistochemistry (IHC) on 12 patient tumor specimens. Consistent 

with our transcriptomic findings, there was heterogenous expression of MEOX2, MYF5 

and MYOG protein (Figure 2G). The proportion of immunopositive cells were correlated 

with the proportion of each population from the sc/snRNA-seq (Figure 2H). Double IHC 

showed that these proteins were expressed in a mutually exclusive pattern consistent with 

the distinct clusters of mesoderm, myoblast and myocyte populations in RMS tumors from 

sc/snRNA-seq (Figures 2I and J).

Developmental indexing of RMS using embryonic snRNA-seq data

In our initial analysis, we identified and classified nuclei based on the expression of MRFs 

from embryonic mesoderm, myoblast and myocyte states. However, we noted that there 

were unsupervised clusters of cells that expressed MRFs from both mesoderm and myoblast 

states or both myoblast and myocyte states (Figure 2B). To extend our analysis of the 

developmental trajectory of RMS beyond MRFs, we analyzed our RMS data within the 

context of early muscle development using a single-nucleus atlas of organogenesis from 

mouse embryos at E9.5, E10.5, E11.5, E12.5, and E13.5 (Cao et al., 2019). We extracted 
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data from the skeletal muscle lineage and performed trajectory analysis on half of the data 

to generate a training dataset (Figures 3A-D). We then adapted latent cellular analysis (LCA; 

Cheng et al., 2019) to calculate the similarity in the latent cellular space between cells in the 

remaining half of the skeletal muscle dataset to cells used for training; a normalized muscle 

developmental index was then calculated for each nucleus within the validation dataset 

(Figures 3E and 3F). The developmental index increased with embryonic age as expected 

within the validation dataset (Figures 3E and 3F).

Using this unsupervised developmental indexing approach, we confirmed that individual 

RMS tumors have cellular heterogeneity that reflects normal myogenesis. For example, 

in SJRHB030680_R1, an ERMS tumor, we identified a broad range of developmental 

indices within the malignant components of the tumor (Figure 3G). In contrast, in 

SJRHB031320_D1, an ARMS tumor, the range of developmental indices was narrower and 

more skewed toward later stages of myogenesis (Figure 3H). Using our entire patient cohort 

of 18 tumors, we were able to generalize these findings to RMS tumors - ERMS tumors 

had a wide diversity of developmental indices while ARMS tumors narrowly centered with 

developmental indices from later stages of murine myogenesis (Figure 3I).

O-PDXs and organoids recapitulate clonal heterogeneity in RMS

We have previously established a panel of RMS O-PDXs and shared those models through 

the Childhood Solid Tumor Network (Stewart et al., 2017). These O-PDXs encompass the 

clinical and molecular diversity of RMS, and have previously undergone bulk genomic, 

transcriptomic, proteomic and epigenomic analyses (Chen et al., 2013; Stewart et al., 2017, 

2018). We expanded our single-cell transcriptomic profiling to include the O-PDXs that 

correspond to the 18 patient tumors profiled here (Table S2 and https://pecan.stjude.cloud/

static/RMS-scrna-atlas-2020/). We performed the same analyses, including developmental 

indexing (Figure 3J). All 3 cell types (mesoderm, myoblast, and myocyte) were preserved 

in the O-PDXs in the snRNA-seq and IHC analysis (Figures S3F and S3G). As expected, 

the O-PDXs lacked normal cells from the patient TME but contained infiltration of murine 

monocytes (Figures S3F and S3G). The patient tumor that was collected during treatment 

and was enriched in cells with the mesodermal signature, SJRHB010928_R1, re-established 

the developmental hierarchy in the O-PDX, SJRHB010928_X1 (Figure S3B).

To complement the O-PDXs, we also evaluated the transcriptomic heterogeneity of ex vivo 

organoids derived from the O-PDXs. Malignant cells within organoids shared the cellular 

diversity seen in the originating patient tumor and O-PDX by single cell transcriptional 

profiling (Figures S3F and S3G). IHC for MEOX2, MYF5 and MYOG for the organoids 

showed a similarity to their matched patient tumor and corresponding O-PDX (Figure S3H).

RMS cells transition through developmental states

RNA velocity analysis (Figures 1G and 1H) suggests that individual RMS tumor cells may 

transition through developmental stages from mesoderm to myoblast and myocyte (Figure 

4A). Alternatively, it is possible that there are distinct clones of cells that are restricted to 

their developmental stage (Figure 4B). To distinguish between these two possibilities, we 

used a lentiviral barcoding library (Adamson et al., 2016; Dixit et al., 2016) that incorporates 
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a unique oligonucleotide barcode into the 3’-untranslated region of blue fluorescent protein 

(BFP; Figures 4C and 4D). We infected 15 of the O-PDX models with the barcode library 

at a low multiplicity of infection (MOI < 0.1) and analyzed the barcode distribution in vivo 

by scRNA-seq. Following scRNA-seq library generation, the barcode is retrievable by a 

separate PCR amplification step. Following sorting and passing, we observed attrition of the 

lowest frequency barcodes, but the rank of prevalence for each barcode was fixed (Figure 

4D). In each of the tumors that we analyzed, individual barcodes were found across all 

tumor cell types (mesoderm, myoblast and myocytes; Figures 4E-4G and Table S5). Taken 

together, these lineage tracing data, RNA-velocity analyses and genetic clonal analyses 

are consistent with a model in which individual ERMS tumor cells can transition through 

developmental stages. The same was true for ARMS tumors but the population of cells with 

paraxial mesoderm gene expression signature was lower so some barcodes were found only 

in the myoblast and myocyte population (Table S5).

Tumor cell heterogeneity reflects differential enhancer activity

Several of the MRF genes that are turned on and off as cells transition through 

developmental stages have core regulatory circuit super-enhancers (CRC-SEs, Figure 4H 

and Table S6; Stewart et al., 2018). For example, MEOX2 and NFIX (mesoderm), PAX7 
and CREB5 (myoblast) and FOXO1 and SOX6 (myocyte) each have CRC-SEs (Table 

S6). To determine if the chromatin accessibility of those CRC-SEs changes as individual 

cells transition through the myogenic differentiation program, we performed droplet-based 

single-cell assay of transposase-accessible chromatin sequencing (scATAC-seq) of 7 O-PDX 

tumors. We integrated scATAC-seq and scRNA-seq profiles to investigate the chromatin 

accessibility of CRC-SEs for MRFs in developmentally distinct subpopulations. Transferring 

cell labels between scRNA-seq data and scATAC-seq data in SJRHB010927_X1 enabled 

us to identify cell-type specific enhancer regions in MYOD1, MSC, MEOX2 and several 

other myogenic genes within previously reported core regulatory circuit domains (Table S6; 

Gryder et al., 2017; Stewart et al., 2018). For example, we evaluated chromatin accessibility 

in a CRC-SE upstream of MYOD1, which overlaps with the previously described distal 

regulatory region of MYOD1 (Figures 4H-4J; Chen et al., 2002; Wardle, 2019). Analysis 

of all 7 O-PDX tumors showed CRC-SEs that change in their chromatin accessibility in 

tumor cells with mesoderm (MEOX2, SMAD3), myoblast (CREB5, PAX7), and myocyte 

(MYOD1, FOXO1) features (Figure S4 and Table S6). Collectively, these scATAC-seq 

studies indicate that heterogeneity of developmental states within RMS tumors is reflected in 

chromatin dynamics for myogenic CRC-SEs and genes.

The mesoderm-like RMS cells are drug resistant

Current chemotherapeutic regimens for RMS include drugs that target proliferating cells. 

The myoblast population has the highest proportion of dividing cells in the patient tumors, 

the O-PDXs, and the ex vivo organoids (Figures 5A and 5B). In a pair of matched ERMS 

samples obtained before and during treatment, SJRHB000026_R2 and SJRHB000026_R3 

(Figure S2A), we noted that the post-treatment sample was skewed towards mesoderm 

signature-expressing cells (28.6% post-treatment versus 3.4% pre-treatment) with a 

concomitant reduction in cells expressing the myocyte signature (1.4% post-treatment versus 

31.4% pre-treatment). Additionally, one ERMS patient tumor, SJRHB010928_R1, was 
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obtained during treatment with fewer than 5% viable cells by histology. In this sample, 

the majority (97%) of remaining viable cells expressed the mesoderm signature; after 

xenotransplantation, the O-PDX SJRHB010928_X1 showed expansion of the myoblast and 

myocyte compartments (Figure S3B). Taken together, these data suggest that the myoblast 

population may be more sensitive to chemotherapy and the mesoderm-like population is 

more likely to survive treatment in ERMS.

The limited availability of frozen tumor tissue at diagnosis precluded our ability to evaluate 

matched pairs of RMS samples using snRNA-seq. To investigate further, we obtained 

matched formalin-fixed paraffin embedded (FFPE) tissue from 11 patients obtained at 

diagnosis and mid-treatment on a single therapeutic clinical trial, RMS13 (NCT01871766). 

We quantitated the number of cells in each sample expressing MEOX2 and MYOG 

(Table S7). There was a significant enrichment in MEOX2 immunopositive cells in the post-

treatment tumors relative to the matched pre-treatment RMS samples and a corresponding 

decrease in MYOG immunopositive cells (Figure 5C).

To model clonal selection in the laboratory, we generated longitudinal samples from repeat 

biopsy of O-PDXs treated with a standard drug combination used to treat patients with RMS 

(vincristine and irinotecan, VCR+IRN) at clinically relevant doses and schedules (Figure 

5D; Stewart et al., 2017, 2018). For each O-PDX (SJRHB000026_X1, SJRHB013758_X1, 

SJRHB011_X, SJRHB013757_X1 and SJRHB013759_X14), biopsies were performed at 

multiple timepoints (before treatment (day 0), day 3, day 7, day 14 and day 21 of the 

first course) when sufficient tumor was present to sample (Figures 5E and 5F). We also 

collected tumor biopsies after the tumors recurred. A portion of each biopsy underwent 

formalin-fixation for IHC staining for MEOX2, MYF5 and MYOG (Figures 5G and 5H). 

The remaining biopsy portion was utilized for quantitative RT-PCR for 21 genes expressed 

in mesoderm, myoblast and myocyte-like RMS tumor cells or snRNA-seq. In total, 250 

biopsies were collected and 6,480 qRT-PCR reactions were performed (Tables S8-S13). As 

in patient samples, the myoblast and myocyte populations were sensitive to treatment and 

the mesoderm tumor cells population was enriched (Figures 5I-5K and Tables S8-S13).

Taken together, our data suggest that ERMS tumor cells transition through distinct states 

that represent progressive stages of myogenesis. These different states (paraxial mesoderm, 

myoblast, myocyte) have differential sensitivity to chemotherapy. To further refine our 

understanding of the cellular heterogeneity of ERMS tumors, their developmental trajectory 

and clonal selection with treatment, we developed a mathematical model that follows the 

fate of cells in both 3-dimensional space and time (Supplemental Method S1). Importantly, 

we used experimentally determined barcode distributions within each compartment to 

develop the model (Figure 5L), and barcode diversity was tracked over time. We assumed 

that upon cell division, cells maintain their barcodes and we included barcoded and non-

barcoded cells to reflect the in vivo experiments. The relative proportion of different division 

types (self-renewing/differentiating) in the mesodermal compartment determines whether 

the tissue remains in homeostasis and influences the degree of clonal diversity loss over 

time. To parameterize the model, we used experimental data from 10 barcoded ERMS 

xenografts. The fraction of dividing cells and distribution of cells across compartments was 

determined from the sc/snRNA-seq data. Our ERMS model predicts a decrease in clonal 
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diversity (as measured by barcode diversity) over time and clonal selection with treatment 

for individual tumors (Figures 5M and 5N).

We then compared results from our mathematical model to experimental data generated 

from barcoded ERMS O-PDXs that were subjected to selection under chemotherapy 

(Table S14 and Figures S5A-C). scRNA-seq data was obtained from O-PDXs after initial 

labeling and after subsequent passaging in the presence or absence of clinically relevant 

chemotherapy (VCR+IRN). As predicted by the three-compartment model, there was 

a decrease in clonal diversity over time and clonal selection with treatment (Figures 

5O-5Q and S5A-C). Additional iterations of modeling and comparison to in vivo barcode 

distribution data are consistent with differential cytotoxicity across the cellular populations 

(mesoderm, myoblast, myocyte). In particular, we found that inclusion of a subset of 

mesoderm-like cells that are sensitive to chemotherapy was required to account for the 

clonal selection we observe experimentally in O-PDXs.

EGFR is a therapeutic vulnerability in paraxial mesoderm RMS cells

Having shown that the paraxial mesoderm RMS cells are more drug resistant than 

the myoblast population, we set out to identify therapeutic vulnerabilities unique to 

this population using a systems biology algorithm, NetBID (data-driven Network-based 

Bayesian Inference of Drivers; Du et al., 2018; Wijaya et al., 2020). NetBID, which was 

originally developed for bulk -omics data, was adapted to analyze snRNA-seq profiles of 

our panel of 18 RMS patient tumors. We first used the SJARACNe algorithm (Khatamian 

et al., 2018) to reverse engineer cell type–specific interactomes for each of the 5 major 

cell types from the integrated snRNA-seq profiles (Figure 6A). With a focus on signaling 

drivers, we used the cell type–specific interactomes of 2,543 genes/proteins and inferred 

their network activities in each nucleus using the NetBID algorithm. We then performed 

differential activity analysis to identify cell type–specific therapeutic vulnerabilities in the 

RMS tumor cells with the mesodermal signature. EGFR was significantly activated in the 

mesoderm population compared to myoblasts (p=4.4x10−135) and myocytes (p=1.8x10−174) 

and the network was rewired as cells transition through the developmental hierarchy (Figure 

6B). EGFR network activity was also significantly higher in ERMS relative to ARMS 

(p=5.4x10−36) (Figures 6C and 6D). These data are consistent with previous integrated 

epigenetic/proteomic analyses for differential pathway activity in ERMS and ARMS 

(Stewart et al., 2018). In addition, previous studies have shown heterogenous expression 

of EGFR protein in FFPE samples of RMS (Ganti et al., 2006; Grass et al., 2009; Wachtel 

et al., 2006). To validate these data, we performed IHC for EGFR alone and in combination 

with markers of each cell population. There was co-localization of EGFR with MEOX2 in 

2-color IHC and EGFR was mutually exclusive with MYOG (Figures 6E and 6F). Finally, 

we used flow sorting for EGFR-positive and -negative cells from an ERMS O-PDX to 

demonstrate the EGFR+ cells expressed additional markers of the mesoderm population 

(CD44 and MEOX2) and scRNA-seq showed EGFR+ sorted cells were highly enriched 

(>97%) for mesoderm cells (Figures S5D-H). Additionally, EGFR+ sorted cells were able to 

readily form organoids ex vivo and rapidly formed xenografts with cells expressing markers 

of all 3 developmental states (Figure S5I-K).
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To determine if EGFR is a therapeutic vulnerability in RMS, we exposed 3D ERMS 

organoids that contain all 3 cell populations (Figure S6A) to two different EGFRi’s 

(gefitinib and afatinib) with increasing concentrations of SN-38, the active metabolite of 

irinotecan. The EGFRi’s alone had no effect on overall organoid viability as measured 

with CellTiter-Glo 3D which is not surprising given the low percentage of mesoderm-like 

cells in the organoids (Figure S6). However, when the proliferating myoblast population 

was targeted with increasing concentrations of SN-38, the addition of EGFRi’s significantly 

reduced viability in two different ERMS O-PDX models (Figures S6D-I). In contrast, 

EGFRi’s did not enhance SN-38 toxicity in two ARMS organoid models (Figures S6J-O). 

These results led us to question whether EGFR is a unique vulnerability of ERMS tumors 

that can be exploited in combination with chemotherapy.

To extend our observation in ERMS organoids, we tested the combination of EGFRi with 

VCR+IRN using ERMS O-PDX models. We tested two therapy schedules: an up-front 

schedule (‘U’) where VCR+IRN and EGFRi were co-administered, and a maintenance 

schedule (M’) where VCR+IRN therapy was followed by 3 weeks of daily EGFRi 

administration. In a representative ERMS O-PDX (SJRHB013758_X1), there was a 

significant improvement in outcome when gefitinib was combined with VCR+IRN in the 

up-front schedule (p = 0.0288; Figures 6H, 6I and S7A); the up-front combination of 

VCR+IRN with afatinib trended towards improved outcome but was underpowered to 

meet statistical criteria for significance. Using the maintenance schedule with gefitinib or 

afatinib did not meet statistical criteria for significance (Figure S7B). Based on these results, 

we expanded our preclinical testing to test the up-front combination of VCR+IRN with 

afatinib in an additional 5 ERMS O-PDX models. In addition to our initial preclinical 

study, we observed that the addition of an EGFR inhibitor significantly improved survival 

in three models (SJRHB013758_X1, SJRHB00026_X1 and SJRHB00026_X2); one model, 

SJRHB010927_X1 was unevaluable because that xenograft robustly responded to standard-

of-care (VCR+IRN); finally, two models (SJRHB013759_X2 and SJRHB012_Y) did not 

significantly benefit from the addition of afatinib to chemotherapy (Figures 6J and S7).

Discussion

Using a combination of single-cell/nucleus RNA-sequencing and patient-derived models of 

RMS, we have discovered that ERMS tumor cells can transition through different stages 

of myogenesis from an immature paraxial mesoderm state through a highly proliferative 

myoblast stage and into a more differentiated myocyte state. Not only do cells undergo 

changes in gene expression during these developmental transitions but super-enhancer 

chromatin accessibility is also dynamic.

We observed that treatment of ERMS tumors resulted in selection against myoblast-like 

cells and enriched for cells in the mesoderm state. Consistent with a model where cytotoxic 

chemotherapy selectively reduces tumor volume by killing rapidly proliferating cells, we 

observed that myoblast-like RMS tumor cells were enriched for cells in S or G2/M of the 

cell cycle and rapidly depleted during therapy. In contrast, the mesoderm subpopulation was 

chemotherapy-resistant and contained a significantly lower proportion of proliferating cells 

compared to the myoblast state. In addition to a lower proliferation rate, it is notable that 
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mesoderm-like cells expressed a xenobiotic transporter ABCG2, which may also contribute 

to underlying treatment-resistance. Finally, mesoderm-like cells were able to expand and 

repopulate the myogenic developmental hierarchy after treatment. Collectively, these results 

highlight the importance of the mesoderm subpopulation in driving ERMS tumor recurrence 

and are consistent with decades of clinical research showing that combinations of broad-

spectrum chemotherapy or intensification of existing regimens have failed to improve 

outcomes for children with RMS (Arndt et al., 2018; Pappo and Dirksen, 2017).

Our findings contribute to a body of research centered on identifying cells capable of 

initiating and propagating RMS tumors. Work by Walter et al. identified CD133+ cells 

within ERMS cell lines that were able to generate spheroids in culture and capable of 

propagating RMS tumors in vivo (Walter et al., 2011). Likewise, serial transplantation 

studies with zebrafish models of ERMS have been used to demonstrate that ERMS 

tumors have a subset of cells that are capable of propagating tumors (Ignatius et al., 

2012; Langenau et al., 2007). Moreover, introducing oncogene expression into myogenic 

precursors or mesenchymal stem cells produce a variety of tumor phenotypes, some of 

which histologically mimic ERMS (Blum et al., 2013; Linardic et al., 2005). These 

observations have led to a model whereby RMS tumors arise from cells in the myogenic 

developmental trajectory (Hettmer and Wagers, 2010). Consistent with this model, we 

identified cells from multiple myogenic stages within RMS including paraxial mesoderm, 

myoblasts and myocytes. Importantly, we did not identify cells expressing earlier mesoderm 

progenitor markers such as Brachyury (TBXT) suggesting that RMS tumors arise after 

specification of paraxial mesoderm. Interestingly, a genetically engineered mouse model 

of head/neck ERMS has been generated by expressing SmoM2, a constitutively active 

Smoothened allele, within aP2-expressing endothelial progenitors (Drummond et al., 2018; 

Hatley et al., 2012), raising the question whether reprogramming of cell lineages contributes 

to sarcomagenesis. Future studies comparing our patient and O-PDX transcriptomic atlas 

of RMS to animal or cell culture models of RMS will be critical, particularly to clarify 

whether the developmental hierarchy we identified within patient tumors are also present in 

genetically engineered mouse models.

We have leveraged our transcriptomic atlas to identify therapeutic vulnerabilities in 

mesoderm-like ERMS cells. We detected significantly higher EGFR signaling activity 

within mesodermal cells, and we have shown that the addition of EGFR inhibitors can 

enhance therapeutic efficacy in ERMS organoids and O-PDXs as a proof-of-concept. 

Outcomes for unresectable and metastatic RMS remain very poor despite attempts to 

escalate therapy with additional cytotoxic chemotherapy drugs (Pappo and Dirksen, 2017; 

Weigel et al., 2015); innovative strategies are needed to address this urgent clinical need. 

Our study provides an approach for the treatment for RMS and possibly other pediatric 

solid tumors, in which we focus on total elimination of the diverse malignant states within 

tumors. This ‘total clonal’ strategy stands in contrast to conventional drug screening, which 

to-date have focused on single-agent drugs or drug combinations that have the most potent 

activity against the bulk of a tumor with no regard for underlying intratumoral heterogeneity. 

Instead, we propose that by understanding the dynamics of selection within a tumor 

population, we can identify agents that augment current therapy by targeting the minor 
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cell population responsible for tumor recurrence. Such an approach may reduce disease 

recurrence and improve survival and quality of life for children with solid tumors.

Limitations of the study

Although our findings demonstrated a developmental hierarchy within ERMS, the hierarchy 

governing cell state dynamics in the ARMS remains unclear. Despite having few to no 

mesoderm cells, fusion-positive ARMS tumors are clinically aggressive and are correlated 

with worse prognoses compared to ERMS (Missiaglia et al., 2012). Moreover, we did 

not observe enhanced cytotoxicity when combining chemotherapy with EGFRi in ARMS 

organoids consistent with the limited number of mesoderm-like cells in ARMS. Our findings 

suggest that the dynamics and mechanism of treatment resistance within ARMS are distinct 

from ERMS, and further study focused on the biology of ARMS is warranted.

An additional limitation of this study is that our single-nucleus atlas of RMS was heavily 

enriched for malignant cells (90.8% of nuclei). As a result, our ability to draw conclusions 

about the TME was limited. For example, we identified upregulation of SFRP2 and 

SFRP4 within fibroblasts from ARMS tumors relative to ERMS. Though a previous pan-

cancer analysis showed that SFRP2 and SFRP4 represent a tightly regulated transcriptional 

program in cancer stroma that correlates with poor prognosis, EMT and angiogenesis 

(Vincent and Postovit, 2017), future studies focused on the TME of RMS will be needed 

to establish whether expression of SFRP2 and SFRP4 impact RMS prognosis. Additionally, 

methods to interrogate heterogeneity within a spatial context will provide even more detail 

about potential contributions of the TME to the underlying behavior and organization of 

RMS tumors. Finally, the use of the O-PDX models used in this study were performed in 

immunocompromised mice, which limited our ability to model immune-tumor interactions; 

future use of humanized animal model systems will enable scientists to experimentally 

model tumor-immune interactions.

A final limitation of our preclinical study was that we were unable to discern whether 

EGFR-expressing mesodermal cells were truly dependent on the EGFR pathway for 

survival. This may explain the variability of treatment efficacy when we combined 

chemotherapy with EGFRi. Additionally, though EGFR inhibitors have been the clinical 

mainstay for the treatment of non-small cell lung cancer (Tan et al., 2015), small molecular 

inhibitors of EGFR have off-target effects and can inhibit other receptor tyrosine kinases 

(Davis et al., 2011; Solca et al., 2012). Further study using agents that directly target EGFR, 

such as antibody-drug conjugates or chimeric antigen receptor T cells, could overcome these 

limitations. Moreover, further studies are needed to identify patients most likely to benefit 

from EGFR targeted therapy.

STAR Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Dr. Michael Dyer 

(michael.dyer@stjude.org).
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Materials availability—This study did not generate new unique reagents.

Data and code availability—All raw and processed single-cell/nucleus RNA-sequencing 

data have been deposited at GEO and are publicly available as of the date of publication. 

Accession numbers are listed in the key resources table. Processed and integrated single-cell/

nucleus RNA-sequencing data are accessible via an interactive visualizer available at https://

pecan.stjude.cloud/static/RMS-scrna-atlas-2020/.

The paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Orthotopic patient-derived xenografts (O-PDXs)—The mouse experiments in this 

study were approved by the Institutional Animal Care and Use Committee (IACUC) of St. 

Jude Children’s Research Hospital. Mice were housed in accordance with IACUC standards 

in barrier conditions with micro-isolation cages to minimize pathogen exposure. The mouse 

housing facility operates on a 12-12 automated lighting system (12 hours light on, 12 hours 

light off) with an isolated ventilation system. Mice were fed and provided water ad libitum.

Orthotopic patient-derived xenografts (O-PDXs) described in this paper were obtained 

through the Childhood Solid Tumor Network (https://www.stjude.org/research/resources-

data/childhood-solid-tumor-network.html (Stewart et al., 2016, 2017). Clinical details 

related to these samples are provided in Table S1. Single-cell suspensions of O-PDXs were 

diluted to 10,000 cells/μl in 100 μl Matrigel prior to intramuscular injection into the right 

hindlimb of mice. Female NSG mice (Jackson Laboratories, strain code 005557) were used 

for initial engraftment, and female athymic nude mice (Charles River Laboratories, strain 

code 553) were used for passaging of O-PDXs. Tumor-bearing mice were euthanized once 

tumors reached 20% total body weight or once tumor size limited mobility.

To perform longitudinal biopsy sampling of O-PDXs, we anesthetized mice with inhaled 

1-3% isoflurane. The skin overlying the tumor was sterilized with an alcohol prep before 

making a small, approximately 3 mm incision through the skin. A 23-gauge needle loaded 

with 0.3-0.5 ml of sterile saline was then passed through the tumor while applying negative 

pressure to the syringe plunger. The incision was then resealed using one drop of VetBond 

(3M Corporation). For pain control, mice were dosed with subcutaneous injections of 5 

mg/kg Rimadyl (Zoetis) every 12 hours for 2 doses following the biopsy procedure.

Preclinical testing was performed in nude mice bearing luciferase-labelled O-PDXs (Stewart 

et al., 2017, 2018). After injection, mice were observed weekly and were randomly 

enrolled into treatment groups once tumors became large enough for a pretreatment biopsy 

(approximately 3 mm3). Mouse enrollment in treatment groups are shown in Tables S14 

and S15. Vincristine was dosed at 0.19 mg/kg (50% dose group) or 0.38 mg/kg (100% dose 

group) once a week intraperitoneally, and irinotecan was administered at doses of either 

1.56 mg/kg (50% dose group) or 3.125 mg/kg (100% dose group) on days 1-5; gefitinib and 
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afatinib were orally gavaged daily at doses of 15 mg/kg and 30 mg/kg, respectively. Tumor 

volume was ascertained by Xenogen bioluminescence, and mice were euthanized on study 

once tumor volume exceeded 20% of total body weight. During chemotherapy treatment, 

mice were monitored daily.

Human subjects—Fresh primary patient rhabdomyosarcoma (RMS) tissue samples were 

obtained through the Molecular Analysis of Solid Tumor protocol (St. Jude Institutional 

Review Board ID XPD09-234) at St. Jude Children’s Research Hospital (Stewart et al., 

2017). Specific details about age of diagnosis and tumor characteristics are provided 

in Table S1. All de-identified tissue samples were obtained after patient/family consent 

in agreement with local institutional ethics guidelines and institutional review board 

approval. Flash-frozen tissue samples were obtained through the St. Jude Children’s 

Research Hospital Biorepository after approval by the St. Jude Children’s Research 

Hospital Institutional Review Board (protocol ID XPD17-183). Formalin-fixed tissue from 

pre-treated and mid-treatment RMS resections were obtained as part of the RMS13 trial at 

St. Jude Children’s Research Hospital (NCT01871766).

METHOD DETAILS

Tumor Dissociation—Fresh tumor fragments from either patient or O-PDXs (< 500 mg) 

were rinsed with phosphate-buffered saline without calcium or magnesium (PBS-minus) 

prior to mincing with sterile scalpels. Enzymatic dissociation was then performed using 

components from the Papain Dissociation System (Slyper et al., 2020). Tumor fragments 

were incubated in 5 ml papain-DNase solution at 37° C for 30 min (patient tumor) or 60 

min (O-PDX tissue), followed by trituration with a 10 ml pipette and filtration through a 

40 μm strainer. Single-cell suspensions were then pelleted at 500xg for 5 min. Cells were 

resuspended in resuspension buffer (2.7 ml Earle’s buffered salt solution, 300 μl albumin-

ovomucoid inhibitor solution, 150 μl DNase solution). Resuspended single-cell suspensions 

were layered over 5 ml albumin-ovomucoid inhibitor solution and centrifuged at 100xg for 

6 min. The cell pellet was resuspended in PBS-minus buffer and filtered through a 40 μm 

strainer prior to downstream single-cell RNA-sequencing (scRNA-seq).

Flash-frozen tumor fragments were processed for single-nucleus RNA-sequencing (snRNA-

seq) according to the TST extraction protocol (Slyper et al., 2020). Flash-frozen tumor 

fragments (approximately 50-100 mg) were incubated for 10 minutes in 1 ml TST buffer (73 

mM sodium chloride, 5 mM Tris [pH 8.0], 0.5 mM calcium chloride, 10.5 mM magnesium 

chloride, 0.01% bovine serum albumin, 0.03% Tween-20) while mincing with Noyes spring 

scissors. Nuclei suspensions were then filtered through a 40 μm filter, followed by rinsing 

of the filter with an additional 1 ml of TST buffer. Nuclei suspensions were diluted with 3 

ml of ST buffer (73 mM sodium chloride, 5 mM Tris [pH 8.0], 0.5 mM calcium chloride, 

10.5 mM magnesium chloride) and centrifuged for 5 min at 500xg at 4° C. The nuclei pellet 

was then resuspended in 100-500 μl ST buffer and filtered through a 40 μm strainer prior to 

snRNA-seq.

For single-cell ATAC-sequencing (scATAC-seq), flash-frozen tumor fragments were 

processed according to the 10x Genomics recommended protocol for flash-frozen tissue 
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with modifications. Frozen tumor fragments were placed in a microcentrifuge tube and lysed 

in 500 μl lysis buffer (10 mM Tris-HCl [pH 7.5], 10 mM sodium chloride, 3 mM magnesium 

chloride, 1% bovine serum albumin, 0.01% Tween-20, 0.01% NP-40, 0.001% digitonin). 

Tissue fragments were immediately homogenized 15 times using a microcentrifuge pellet 

pestle (Thermo Fisher Scientific). Homogenized nuclei suspensions were then incubated on 

ice for 10 min and diluted with 1 ml chilled wash buffer (10 mM Tris-HCl [pH 7.5], 10 mM 

sodium chloride, 3 mM magnesium chloride, 1% bovine serum albumin, 0.01% Tween-20). 

Nuclei suspensions were filtered through a 40 μm strainer prior to centrifugation at 500xg 
for 5 min at 4° C. Pelleted nuclei were resuspended in diluted nuclei buffer (10x Genomics), 

filtered through a 40 μm strainer, and then processed for scATAC-seq.

Single cell/nucleus RNA-sequencing—scRNA-seq and snRNA-seq were performed 

using version 2 or 3 of the 10x Genomics Single Cell RNA Expression Solution 

kits. Ten-thousand cells or nuclei were input into the 10x Chromium controller for 

droplet partitioning with barcoded beads. Barcoded libraries were generated according to 

manufacturer instructions. Each library underwent paired-end sequencing (50,000 paired 

end reads/cell) on an Illumina NovaSeq 6000 sequencer and processed using bclfastq to 

generate: Read 1 - 26 nucleotides, Read 2 - 100 nucleotides, Index - 8 nucleotides.

For barcoded O-PDXs, a separate dial-out PCR was performed 

on scRNA-seq libraries of barcoded O-PDXs using the primers 5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG CTACACGACGCTCTTCCGAT-3’ 

and 5’- GTCTCGTGGGCTCGGAGATGTGTATAAGAG 

ACAGTAGCAAACTGGGGCACAAGC-3’. Amplification was performed using Ex Taq 

polymerase (Takara) with 1 μl of scRNA-seq library and 80 nM of each primer. We used the 

PCR program:

98° C for 1 min

98° C for 10 sec, 65° C for 10 sec, 72° C for 20 sec for 35 cycles

72° C for 1 min

PCR product underwent clean-up using a PCR Purification Kit (Qiagen) or SPRIselect beads 

(Beckmann Coulter) before next-generation sequencing (5 million reads per sample, 100 

bp paired-end reads) on an Illumina MiSeq sequencer. Sequencing data was then analyzed 

to generate cell identifier-barcode index tables using UMI-tools whitelist command (Smith 

et al., 2017). The resulting index table was filtered to apply only those lineage barcodes 

for which at least 5 reads connected a barcode to a cell. The filtered table connecting 10x 

cell identifier to lineage barcode was then imported into Seurat metadata for downstream 

analysis.

For multiplexed analysis of sorted xenograft cells (Figure S5D), approximately 0.5 million 

cells of unsorted, EGFR-positive and EGFR-negative cells were each incubated with 

different CellPlex (10x Genomics) indices for 5 minutes at room temperature. Cells were 

then washed twice by adding PBS+1% bovine serum albumin and centrifugation at 500xg 
for 5 min. Indexed cells were then pooled and 6000 cells were loaded in a single channel.
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Single cell ATAC-sequencing—scATAC-seq was performed using version 1.1.0 of the 

10x Genomics Single Cell ATAC kit, according to manufacturer instructions. Two-thousand 

nuclei underwent transposition and were input into the 10x Chromium controller for 

barcoding, followed by library generation. Barcoded libraries underwent sequencing (50,000 

paired-end reads/nucleus) on an Illumina NovaSeq 6000 sequencer and processed using 

bcl2fastq to generate: Read 1 – 50 nucleotides, Read 2 – 50 nucleotides, Index 1 – 8 

nucleotides, Index 2 – 16 nucleotides.

Data Analysis—Fastq files were aligned to human hg19 genome for patient samples 

(10x Genomics; reference version 3.0.0) or combined hg19-and-mm10 genomes for 

O-PDX samples (10x Genomics; reference version 3.0.0) using the count command 

from Cell Ranger version 3.0.2 (10x Genomics). For samples generated by snRNA-seq, 

we included intronic counts to improve cell detection using a custom “pre-mRNA” 

genome reference (Slyper et al., 2020). The mkref command from Cell Ranger 

was utilised as described in https://support.10xgenomics.com/single-cell-gene-expression/

software/pipelines/latest/advanced/references to generate the “pre-mRNA” reference.

Downstream analysis was performed in Seurat version 3.1.2 (Butler et al., 2018; Stuart 

et al., 2019). Sparse matrixes were input from the Cell Ranger filtered_bc_matrix output 

and filtered to remove low quality cells and doublets. We excluded cells or nuclei with 

less than 400 genes, more than 7000 genes (presumed doublets), or cells where more than 

10% of the unique molecular identifiers (UMIs) came from mitochondrial genes. Data was 

then normalised and transformed using scTransform version 0.2.1 (Hafemeister and Satija, 

2019) within Seurat. Normalised, transformed data underwent principal component (PC) 

analysis of the 2000 most variably expressed genes. We used the top 30 PCs as input into 

Louvain algorithmic clustering with the resolution set to 0.4. Results were visualised by 

embedding cells or nuclei transcriptomic profiles using Uniform Manifold Approximation 

and Projection (UMAP)(Becht et al., 2019) of the top 30 PCs. Cell cycle stage prediction 

was performed using Seurat’s built-in cell cycle scoring algorithm (https://satijalab.org/

seurat/v3.0/cell_cycle_vignette.html) with cell-cycle markers identified by Tirosh et al 

(Tirosh et al., 2016). To generate the marker UMAP plots in Figures 1E and 1F, cells are 

colors based on the level of expression of the listed marker (MEOX2, MYF5, or MYOG). 

Marker-positive fractions were calculated using the number of cells with log2 normalized 

expression > 1 (“marker-positive cells”) divided by the total number of cells in the dataset. 

To perform RNA velocity analysis of SJRHB030680_R1 and SJRHB031320_D1, the post-

sorted bam files from the Cell Ranger count pipeline was input into velocyto version 0.17.17 

(Manno et al., 2018), and analyzed using Scanpy version 1.4.5 (Wolf et al., 2018) and scVelo 

version 0.1.24be (Bergen et al., 2020).

For each cell subset identified by clustering, we used a combination of SingleR version 

1.0.1 (Aran et al., 2019) and manual inspection of differentially expressed genes to annotate 

whether a cluster belongs to stromal, immune or malignant subpopulations. Malignant cells 

were confirmed in patient tumor data by inference of copy-number variation using inferCNV 

version 1.1.3 of the TrinityCTAT Project (https://github.com/broadinstitute/infercnv). An 

average read count per gene cutoff of 0.1 was used. Reference cells were defined by those 

cell clusters in the Seurat analysis that expressed markers of hematopoietic or endothelial 
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cells. Analysis included denoising, implementation of inferCNV’s i6 HMM model, and 

subclustering using quantile normalization.

For the comparison of tumors that underwent both scRNA-seq and snRNA-seq in Figure 

S1, we utilized Seurat’s integration workflow to identify anchors and integrate scRNA-seq 

and snRNA-seq datasets across the first 30 canonical components (Stuart et al., 2019). For 

the large-scale integration of 18 snRNA-seq datasets from patient RMS tumors (Figure 2), 

we used Conos version 1.2.1 (Barkas et al., 2019) to build a unified graph of the datasets 

(buildgraph settings: k=30, k.self=5, n.odgenes=2000, alignment.strength=0), with mutual 

nearest-neighbor mapping of the first 50 common PCs. Shared community clustering was 

performed using the Leiden algorithm (Traag et al., 2019) with resolution 0.4, followed by 

UMAP visualization. Wilcoxon Rank Sum testing was performed within Seurat using the 

FindAllMarkers command to identify differentially expressed genes.

Mesenchymal developmental snRNA-seq data from previously published mouse 

organogenesis data (Cao et al., 2019) was downloaded from https://

oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu.mouse.rna/landing. imported into 

Seurat, and clustered with resolution 0.8 to identify subclusters associated with muscle 

development (Figure 3 A-D). Those subclusters were extracted to generate the mouse 

skeletal muscle development dataset used for downstream PC projection and trajectory 

analysis. Trajectory inference was performed on mouse skeletal muscle development 

snRNA-seq data using Slingshot via the dynverse platform (Saelens et al., 2019; Street 

et al., 2018). Output from Slingshot underwent lineage and pseudotime assignation.

scATAC-seq data were processed using the Cell Ranger ATAC version 1.2.0 (10x 

Genomics). Cell Ranger ATAC output was then imported into R via Signac version 1.1.0. 

Data was filtered to evaluate only those cells with greater than 20% of reads within peak 

fragments, between 1000 and 20000 unique fragments within peak regions, less than 5% 

of peaks within ENCODE-defined blacklisted regions, a nucleosome signal (defined as 

the ratio of mononucleosome fragments to nucleosome-free fragments) less than 10%, and 

greater than two-fold enrichment at transcription start sites as defined by ENCODE. Filtered 

datasets underwent term frequency-inverse document frequency normalization, followed by 

singular value decomposition for dimensionality reduction. We used the top 20 dimensions 

for UMAP non-linear dimensional reduction, visualization, and graph-based clustering. To 

integrate scATAC-seq and scRNA-seq data, we estimated gene activities in the scATAC data 

using the “GeneActivity” command of Seurat, which was used to perform cross-modality 

and label transfer within Seurat. Transferred cluster assignment were input into Loupe ATAC 

(10x Genomics) to generate subpopulation-specific chromatin peak accessibility profiles. 

For detection of peaks within previously determined CRC-SE regions (Stewart et al., 

2018), we generated feature matrices in Signac using the defined CRC-SE peak ranges; 

after normalization, we performed differential accessibility analysis using the FindMarkers 

command in Seurat using logistic regression while using the total number fragments as a 

latent variable for analysis.

Developmental Indexing—Latent cellular states identification: Mesenchymal 

developmental snRNA-seq data was combined with snRNA-seq data from 
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SJRHB030680_R1 (ERMS) and SJRHB031320_D1(ARMS) for latent cellular states (LCs) 

identification (Cheng et al., 2019). Briefly, the general difference between malignant 

(two RMS tumors) and normal mouse developmental muscle cells were corrected. LCA 

clustering analysis of the developmental muscle data only revealed both a similar structure 

with the subpopulations identified in Seurat (mesoderm, paraxial mesoderm, myoblast, 

myocytes and myotubes) and a set of 20 LCs that supports the distinguishing of the 

subpopulations.

Muscle developmental index projection: LCs for individual cells were derived from their 

global expression profiles (Cheng et al., 2019). The similarity between a testing cell b to a 

training cell a is calculated as:

similaritya, b =
∑i = 1

p LCa, i × LCb, i

∑i = 1
p LCa, i2 × ∑i = 1

p LCb, i
2

where p represents the number of LCs retained in the previous step (20 in this analysis). The 

normalized similarity for testing cell b is defined as:

normalized_similaritya, b =
similaritya, b

sd(similarity . , b)

where similarity.,b represents similarity scores between testing cell b and all cells in training 

datasets. The raw developmental index was derived from a weighted average of the k 
(default 25) nearest neighbor cells in the training samples:

Developmental_indexb =
∑a = 1

k wa, b × PSa
∑a = 1

k wa, b

where PSa represents the Slingshot inferred pseudo-temporal output for cell a in the training 

data and wa,b represents the weight between testing cell b and one of the nearest neighbor 

cell a in the training data:

wa, b = e
normalized_similaritya, b

2

Finally, the developmental index was normalized using the empirical cumulative distribution 

function estimated from the training dataset:

Normalized_developmental_indexb =
∑a = 1

n I(PSa ≤ Developmental_indexb)
n

where n represents the number of cells in the training dataset and I(true false) =1/0, 

respectively.
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NetBID Analysis and driver identification from bulk RNA-seq data and from 
snRNA-seq—The NetBID (data-driven network-based Bayesian inference of drivers) 

algorithm(Du et al., 2018; Wijaya et al., 2020) was used to identify drivers in ERMS 

and ARMS patients from bulk RNA-seq profiles of our published RMS cohort (Stewart et 

al., 2018). An RMS-specific signaling interactome (RMSi) from 77 RNA-seq profiles of 

RMS patients was generated using SJARACNe, an information theory-based algorithm for 

regulatory network inference (Khatamian et al., 2018). The parameters of SJARACNe were 

configured as the following: p value threshold p = 1e-7, data processing inequality (DPI) 

tolerance e = 0, and number of bootstraps (NB) = 100. After generating the RMSi, the 

“weighted mean” algorithm (cal.Activity function) in NetBID was utilized to infer activities 

of signaling driver candidates (e.g., EGFR) across 52 ERMS and 25 ARMS patient samples 

from their gene expression profiles. Drivers in ERMS and ARMS were identified using the 

getDE.BID.2G function in NetBID.

To adapt NetBID to snRNA-seq data, the SJARACNe algorithm was used to 

computationally reconstruct cell type–specific interactomes for cell types that have >2,000 

nuclei from the integrated snRNA-seq profiles. It resulted in 5 signaling networks for cell 

types of ERMSmesoderm (19,317 nuclei, 11,215 genes, 195,707 edges), ERMSmyoblast 

(43,667 nuclei, 11,182 genes, 257,252 edges), ERMSmyocyte (10,674 nuclei, 11,221 

genes, 732,180 edges), ARMSmyoblast (29,040 nuclei, 12,374 genes, 122,389 edges), and 

ARMSmyocyte (7,757 nuclei, 11,222 genes, 331,461 edges). With a focus on signaling 

proteins, the cell type–specific interactomes of 2,543 signaling genes were used to infer 

network activities in each nucleus using the interactome of the corresponding cell type. 

To overcome the sparseness of snRNA-seq data, the “unweighted mean” algorithm in the 

cal.Activity function of NetBID was used. Differential activity analyses to identify cell type–

specific drivers were performed by using the getDE.BID.2G function in NetBID.

Real-time PCR via Taqman Array Cards—Real-time PCR experiments were 

performed using the Applied Biosystems QuantStudio Flex 7 instrument. O-PDX tissue 

obtained after dissection or biopsy underwent RNA extraction using Trizol reagent 

(Invitrogen) as per manufacturer instructions. One microgram of extracted RNA was used 

for cDNA synthesis using the High Capacity RNA-to-DNA kit (Invitrogen). cDNA libraries 

were then mixed with TaqMan Fast Advanced Master Mix (Invitrogen) and loaded onto 

custom TaqMan Array Cards (Thermo Fisher) using primers directed against 23 human 

genes listed in Tables S8-S12. Samples were analyzed in duplicate, using GAPDH levels 

for normalization. To generate mesoderm signature scores, we averaged the fold-changes 

of MEOX2, PAX3, EGFR, DCN, CD44 and POSTN, for myoblast signature scores, we 

averaged the fold-change of PAX7, MYF5, MSC, GPC3, and VIM; for myocyte signature 

scores, we averaged the fold-change of MYOD1, MYOG, MEF2A, MEF2C, TTN, NCAM1, 
MYH3, NEB, and CDH15.

Immunohistochemistry—All formalin-fixed, paraffin-embedded (FFPE) tissues were 

sectioned at 4-μm, mounted on positively charged glass slides (Superfrost Plus; Thermo 

Fisher Scientific, Waltham, MA), and dried at 60° C for 20 min. Procedures and antibodies 
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used to detect human antigens to MEOX2, MYF5, MYOG and EGFR are listed in Table 

S16.

Human RMS O-PDX samples that were sequenced and shown to express the protein targets 

at the mRNA level were used as positive tissue controls for IHC. A neuroblastoma O-PDX 

sample was used as a negative tissue control. Isotype controls were used for monoclonal 

antibodies where appropriate.

Flow sorting of O-PDXs for EGFR-positive and -negative cells—Following 

dissociation, single-cell suspensions of YFP-labelled O-PDX cells were incubated for 15 

minutes in staining buffer (PBS-minus buffer + 5% fetal bovine serum). One hundred 

million cells were then pelleted by centrifugation at 500xg for 5 minutes. Cells were then 

stained with PE/Cy7-conjugated EGFR antibody (BioLegend) by adding 1 mg of stock 

antibody to 3 ml staining buffer. Cells were stained on ice for 15 minutes, and then washed 

twice with staining buffer. Sorting was performed on a S3e sorter (Bio-rad) using DAPI as a 

viability marker.

Lentiviral Barcoding—pBA439 barcode library (Addgene, catalog #85968) (Adamson 

et al., 2016; Dixit et al., 2016) was expanded in ElectroMAX Stbl4 E. coli cells (Thermo 

Fischer Scientific) by electroporating 50 ng of barcode library into 100 μl E. coli using a 

Bio-Rad GenePulser II instrument with the settings: 1.2 kV, 25 μF, 200 Ω. Electroporated 

cells were expanded in 4 L Luria broth supplemented with 100 μg/ml carbenicillin (Sigma 

Aldrich) for 16 hr at 37°C with shaking before isolation of plasmid DNA via Maxiprep 

Plasmid Kits (Qiagen).

Lentivirus was generated using ten 100mm tissue culture dishes of 40% confluent HEK293T 

cells. Each plate of cells underwent transfection of 6 μg of the pBA439 plasmid library 

along with third-generation lentiviral packaging vectors (3 μg CAG-kGP1.1R, 1 μg CAG4 

RTR2, and 1 μg HDM-G) using polyethyleneimine (Sigma-Aldrich) at a ratio of 1:2 

DNA:polyethyleneimine (Hanawa et al., 2002). Viral supernatant was collected at 48 and 72 

hr, followed by filtration through a 0.45 μm cellulose acetate filter (Corning). Viral particles 

were then concentrated by layering over a 20% sucrose gradient and ultracentrifuged at 

24,000 rpm for 90 min at 4°C within a Beckman SW 32 Ti rotor. Concentrated viral particles 

were stored at −80°C, and titred to calculate transduction efficiency.

To generated barcoded xenografts, single-cell suspensions of O-PDXs were transduced by 

incubating 5 million cells with lentivirus (1x106 transducing units) in 1 ml DMEM media 

supplemented with 8 μg/mL polybrene (Sigma-Aldrich). To minimize the barcode overlap, 

we transduced dissociated O-PDX cells with a multiplicity of infection (MOI) less than 

0.1. Cells were incubated for 2 hr at room temperature, pelleted at 500xg for 5 min, and 

washed once with sterile DMEM. Washed, transduced cells were injected orthotopically 

into the hindlimbs of female nude mice and allowed to grow to approximately 20% animal 

body weight. Post-transduction xenografts were dissected, dissociated and sorted on a S3e 

cell sorter (Bio-Rad) for blue fluorescent protein (BFP)-positivity and 7-aminoactinomycin 

D (Invitrogen) exclusion to select for viable, barcoded cells. Sorted, barcoded cells were 
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re-injected into female nude mice diluted in 0.1 ml Matrigel at 1,000 cell/μl to generate 

barcode-enriched O-PDXs.

Mathematical Modeling—A complete description of the mathematical model, along with 

derivation of parameter values, is provided in the Supplemental Methods S1. We simulated 

tumor growth in vivo by using a 3-dimensional agent-based model that follows the fate 

of cells in both space and time. It contains three populations: mesoderm, myoblast, and 

myocytes. Basic cell division, differentiation, and death processes are modeled. During 

each time step, mesoderm cells divide on average with a probability Lmes. With a 

probability Pmes, a self-renewal division occurs, generating 2 mesoderm daughter cells. 

With a probability 1-Pmes, a differentiation division occurs, generating two myoblast 

cells. We assumed that self-renewal divisions are more likely than differentiating divisions 

(Pmes>0.5), i.e. the mesoderm population expands over time. Myoblasts followed similar 

dynamics. They were modeled to divide with a probability Lblast. This division results in 

self-renewal with a probability Pblast (creating two myoblast cells), and in differentiation 

with a probability 1-Pblast (creating two myocyte cells). We assumed that myoblasts on 

their own cannot sustain growth (Pblast < 0.5). Myocytes were assumed not to divide, and 

they die with a probability D. When a division event occurs, one of the 27 neighboring 

locations is chosen randomly. The offspring is placed there if this spot is empty, otherwise 

the division event is unsuccessful, due to density dependence. To account for the observation 

that 47% of mesoderm cells were in a dividing state, we assumed that a certain fraction 

of the cells, f are dividing faster, while the remaining cells were assumed to be more 

quiescent and divide only infrequently, such that the average division probability across all 

mesoderm cells is Lmes (f=(1-r2)/(r1-r2), where r1 and r2 are the dimensionless slow and 

fast division rates, respectively). In accordance with data, we further assumed that myoblast 

cells divided with a rate that was 1.3 times faster than the average rate of mesoderm 

divisions. The simulated tumors initially consisted of 1.3% mesoderm cells, 97.4% myoblast 

cells, and 1.3% myocytes, based on the initial experimental conditions. The mesoderm and 

myoblast compartments were seeded probabilistically with 33 bar codes, according to the 

experimentally documented distribution. The fate of the individual barcodes was tracked 

over time.

Treatment was simulated by including the death of dividing cells. Thus, all myoblast 

cells were assumed to die with a relatively fast rate αblast; dividing mesoderm cells were 

assumed to die with a slower rate αmes, while quiescent mesoderm cells were assumed 

to be resistant against treatment-induced death. Upon treatment cessation, we assumed a 

reactivation of a certain portion of remaining quiescent mesoderm cells, to be consistent 

with the experimentally observed fraction of mesoderm cells in G2/M.

The “entropy index” is a number that measures the diversity of different populations. The 

lower the entropy index, the more uneven the distribution of bar codes among the cells, 

indicating dominance by only a few bar codes. Denoting the fraction of each bar code in the 

population by xi, the entropy is given by E = −
xi

∑xi
ln

xi
∑xi

.
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RMS Organoids—Single-cell suspensions of O-PDX were generated using papain 

digestion, washed with DMEM media (Thermo Fischer Scientific) and pelleted at 500xg 
for 5 min. Cells were resuspended to a concentration of 500,000 cells/ml in SkBM-2 

skeletal muscle cell growth basal medium supplemented with muscle growth SingleQuot 

supplements (Lonza). 100 μl of cell suspension were aliquoted into wells of ultra-low 

attachment round-bottom Lipidure coated 96-well plates (Gel Company cat# LCU96 or 

AMSBio cat#LCP-A-U96-6). Plates were spun at 300xg· for 3 min to aggregate cells and 

allowed to grow incubated at 37° C. SkBM-2 media was exchanged weekly during organoid 

culture.

For organoid viability studies, organoids were grown 10 to 14 days before exposure to 

combinations of SN-38 with or with EGFR inhibitors (150 nM afatinib or 1 μm gefitinib) 

for 72 hrs. Cell viability was measured by adding 100 μL of CellTiter-Glo 3D (Promega 

cat#G9681) to each well, followed by gentle agitation for 30 min. The plate was read on a 

PHERAstar plate reader (BMG Lab Tech).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis were performed using GraphPad Prism v9.0 (for graphical data) or 

within the Seurat R package (for single-cell/nucleus RNA-seq data). Immunohistochemistry 

quantitation was performed by a blinded observer who counted positive nuclei in at least 

two separate fields-of-view. Differential expression analysis of single-cell/nucleus RNA-

sequencing data was performed in Seurat using the command FindMarkers with default 

parameters. Significance of mean differences was performed using unpaired Student’s t-test 

(for two groups) or one-way ANOVA (for more than two groups). Statistical analysis of 

Kaplan-Meier survival data was performed using the log-rank (Mantel-Cox) test. Statistical 

methods used for analysis of the mathematical model along with calculation of the entropy 

score are discussed in the Supplemental Methods S1.

ADDITIONAL RESOURCES

Interactive visualizer of integrated single-cell/nucleus RNA-sequencing data: https://

pecan.stjude.cloud/static/RMS-scrna-atlas-2020/.

RMS13 clinical trial: https://clinicaltrials.gov/ct2/show/NCT01871766.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Pediatric rhabdomyosarcomas (RMS) contain transcriptional states of 

developing muscle.

• Treatment of embryonal RMS selects for cells in a progenitor mesoderm-like 

state.

• Mesoderm-like cells are sensitive to EGFR inhibition.

• Targeting myogenic states using both EGFR blockade and chemotherapy 

improves outcomes.
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Figure 1: Single-cell RNA-sequencing (scRNA-seq) reveal a developmental hierarchy within 
RMS.
A-B, During fetal myogenesis, mesodermal cells of the somite migrate to form skeletal 

muscle throughout the body (A). During that migration, these cells undergo stepwise 

differentiation typified by the transient expression of myogenic regulatory factors (B). 

C-D, Photomicrographs of an embryonal RMS tumor, SJRHB030680_R1 (C) and an 

alveolar RMS tumor, SHRHB031320_D1. Left, H&E staining. Right, Myogenin (MYOG) 

immunohistochemistry (IHC) with 20X magnification, inset, 80X magnification. E-F, 
UMAP visualization of 3,973 malignant cells from SJRHB030680_R1 (E) and 2,414 

malignant cells from SJRHB031320_D1 (F). Cells are colored based on expression of 

MEOX2 (left), MYF5 (center), and MYOG (right). G-H, RNA velocity analysis of 

SJRHB030680_R1 (G) and SJRHB031320_D1 (H). Abbreviations: ERMS, embryonal 

rhabdomyosarcoma; UMAP, uniform manifold approximation and projection. Scale bars: 

C,D, 100 μm.
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Figure 2: Identification of major cell clusters within patient RMS tumors using single-nucleus 
RNA-sequencing.
A, Large Vis visualization of snRNA-seq of 111,474 nuclei from 18 integrated patient 

RMS tumors, colored based on sample. B, Heatmap showing expression of myogenic 

regulatory factor expression across seven Leiden clusters. Expression is colored based 

on relative value (z-score). C, Boxplot showing the percentage of malignant nuclei 

within each muscle developmental state for each tumor. D-E, Large Vis visualization of 

Leiden clustering of snRNA-seq grouped based on expression of mesoderm, myoblast, 

or myocyte myogenic regulatory factors (D) or colored by predicted cell cycle phase 
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(E). F, Plot of the proportion of proliferating cells (S/G2/M phase) in each group, 

estimated using gene signatures associated with G1, S, and G2/M phases. Circles are 

ERMS and squares are ARMS. G, Immunohistochemistry image of an ERMS tumor, 

SJRHB013758_D2 stained with antibodies against MEOX2 (left), MYF5 (center) and 

MYOG (right). H, Quantitation of the percentage of cells positive for MEOX2 (blue), MYF5 

(green), or MYOG (red) immunohistochemical staining (x axis) compared to percentage 

of cells within each developmental state as determined by snRNA-seq (y axis). I-J, 
Dual staining of MEOX2 (purple) and MYOG (brown) within SJRHB013758 (I) with 

magnified view (J). Abbreviations: ERMS, embryonal rhabdomyosarcoma; ARMS, alveolar 

rhabdomyosarcoma. Scale bars: G, 10 μm.
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Figure 3: Developmental indexing of patient RMS tumors and orthotopic patient-derived 
xenografts.
A, UMAP plot of 1.5 million nuclei from the Mouse Organogenesis Cell Atlas, 

downsampled to 100,000 nuclei. Clusters are colored based on trajectory. B, UMAP plot 

of 576,560 nuclei from the mesenchymal trajectory with identification of the skeletal 

myogenesis sub-trajectory. Nuclei are colored based on Leiden cluster. C, UMAP plot 

of 58,573 nuclei of the skeletal muscle sub-trajectory with computational clustering 

that identifies nuclei from early mesodermal progenitors, paraxial mesoderm, myoblasts, 

myocytes and myotubes. D, Heatmap of aggregated transcription from each cluster 

demonstrating expression of myogenic regulatory factors and additional mesodermal 

markers. E, Violin plot of projected developmental indices of embryonic skeletal muscle 

data separated by mouse embryonic stage. F, UMAP plot of developmental indices within 

the embryonic skeletal muscle sub-trajectory. G-H, Application of developmental indices 

to an ERMS tumor, SJRHB030680_R1 (G) and an ARMS tumor, SJRHB031320_D1 (H). 

I-J, Developmental indices of 18 patient RMS tumors (I) or 18 O-PDXs (J). Blue and 

red ribbons represent the range of median values for all ERMS (blue) or ARMS (red) 

tumors or O-PDXs. Abbreviations: ERMS, embryonal rhabdomyosarcoma; ARMS, alveolar 

rhabdomyosarcoma; UMAP, uniform manifold approximation and projection.
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Figure 4: Developmental status in ERMS is plastic and associated with chromatin accessibility at 
core regulatory superenhancer regions.
A-B, Two competing models of tumor heterogeneity within RMS. In the first model, RMS 

cells transition across developmental states (A); in the alternate model, genetically distinct 

clones are restricted to muscle developmental states (B). C, Schematic of the lentiviral 

barcode plasmid. An 18-mer of random nucleotides is incorporated into the 3’-untranslated 

region of a blue fluorescent protein (BFP) tag, enabling barcode recovery from scRNA-

seq libraries. D, Plot of frequency of individual barcodes for subsequent passages of 

an individual ERMS O-PDX, SJRHB00026_X1. E-F. UMAP plot of an ERMS O-PDX 
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SJRHB013758_X2, colored based on developmental stage (E), or with 3 specific barcodes 

highlighted (F). G, Quantitation of the developmental state diversity of all tumor cells 

within SJRHB013758_X2, and from the 5 most prevalent barcoded clones. H, ChIP-seq 

and chromHMM of MYOD1 in an ERMS O-PDX, SJRHB10927_X1. Scales are indicated 

on the left, and a previously identified CRC-SE is highlighted in blue. I, Comparison 

of H3K27 trimethylation in various pediatric O-PDXs. OS, osteosarcoma; EWS, Ewing 

sarcoma; LPS, liposarcoma; HGS, high-grade sarcoma; NB, neuroblastoma. J, Single-cell 

ATAC-seq of SJRHB010927_X1 at the MYOD1 locus; cell identities were defined via gene 

activity estimation, and dataset integration with scRNA-seq data. Abbreviations: ERMS, 

embryonal rhabdomyosarcoma; ARMS, alveolar rhabdomyosarcoma; UMAP, uniform 

manifold approximation and projection; RMS, rhabdomyosarcoma; OS, osteosarcoma; 

EWS, Ewing sarcoma; LPS, liposarcoma; HGS, high grade sarcoma; NB, neuroblastoma.
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Figure 5. Chemotherapy treatment of ERMS selects for mesoderm developmental stages.
A-B, Bar plots showing percentage of cells predicted to be dividing within each 

developmental stage for patient tumors (a) and O-PDXs (b). C, Plots showing 

immunopositivity for MEOX2 (left) and MYOG (right) in patient samples from RMS13 

obtained before treatment (“diagnosis”) and during therapy (“mid-treatment”). D, Treatment 

schema for VI therapy of mice bearing RMS O-PDXs. Needle biopsies were performed at 

days 0, 3, 7, 14, and 21 or when tumors were large enough to sample. E, Photograph of 

needle biopsy of an orthotopically-injected xenograft. F-H, Photograph of tissue obtained 

by a biopsied O-PDX (F), which was fixed and stained using H&E (G) or MYOG (H). I, 
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Plot showing longitudinal expression of MEOX2 by qRT-PCR during treatment. There is an 

increase in MEOX2 during chemotherapy (days 7,14,21) but the proportion resets to basal 

levels after 28 days. This was verified by IHC (lower panel). J, Boxplot of all biopsies for 

ERMS tumor bearing mice for the untreated and treated samples. The plot is an integration 

of expression of 6 genes (MEOX2, PAX3, EGFR, CD44, DCN, POSTN) expressed as 

normalized relative fold. K, Relative proportion of nuclei in each developmental state 

for longitudinal biopsies of a single O-PDX, determined using snRNA-seq of biopsied 

tissue. L, Diagram of the mathematical model of ERMS developmental heterogeneity. M-N, 
Simulated average population size for an untreated ERMS tumor (M) or a treated ERMS 

tumor (N) briefly exposed to an antiproliferative agent (gray bar). Average population size 

over 524 simulations are shown, standard error bars are too small to see. O-P, Simulated 

time course of barcode dynamics for an ERMS tumor that was either untreated (O) or 

briefly treated (P; duration of treatment in grey bar). Each curve represents a different 

barcoded lineage. One realization of the stochastic dynamics is shown. Insets under each 

graph show spatial distributions of bar codes (color coded) in myoblast cells at an early and 

late stage of tumor growth (O) and pre- and post-therapy (P). Q, Temporal development 

of the average entropy index (measure of barcode diversity) during barcoded ERMS tumor 

growth, either untreated or briefly treated (grey bar). Average entropy values over 524 

simulations ± standard errors (dashed lines) are shown. Inset, bar plot comparing the initial 

entropy index to the final entropy index of untreated or treated SJRHB000026_X1 O-PDXs. 

Model parameters were: average value of Lmes =0.0035 (r1=1.5, r2=0.0001), Lblast =0.0045, 

Pmes =0.55, Pblast =0.49, D=0.035, αmes =0.0014, αblast =0.0035. The parameter units 

are per minute. Abbreviations: ERMS, embryonal rhabdomyosarcoma; ARMS, alveolar 

rhabdomyosarcoma; VCR, vincristine; IRN irinotecan.
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Figure 6. Mesoderm-like ERMS cells are uniquely vulnerable to EGFR blockade.
A, Schematic workflow of NetBID algorithm to identify cell type-specific drivers from 

snRNA-seq data. B, Volcano plot of differential activity analysis of signaling drivers 

in ERMSmesoderm vs. other cell types. C-D, EGFR NetBID activity in different 

developmental states from snRNA-seq data (C) and inferred from bulk RNA-seq of patient 

tumors (D). E-F, Dual IHC staining of ERMS patient tumor, SJRHB030680_R1, combining 

EGFR (brown) with either MEOX2 (E) or MYOG (F) in purple. G, Schedules of drugs 

used for preclinical study. Mice were randomized into one of eight arms): placebo, gefitinib 

daily for 3 weeks, afatinib daily for 3 weeks, VCR+IRN, VCR+IRN+‘up-front’ afatinib 
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(afatinibU), VCR+IRN+‘up-front’ gefitinib (gefitinibU), VCR+IRN+‘maintenance’ afatinib 

(afatinibM), or VCR+IRN+‘maintenance’ gefitinib (gefitinibM). In up-front arms (‘U’), mice 

received VCR+IRN while also receiving daily EGFRi. In maintenance arms (‘M’), mice 

received 3 weeks of VCR+IRN followed by 3 additional weeks of daily EGFRi. H, Survival 

curves for each treatment group for a ERMS tumor O-PDX (SJRHB013758_X1). I, Tumor 

response of SJRHB013758_X1 during preclinical testing. Outcomes were defined based on 

Xenogen signal at the end of therapy: progressive disease (PD, signal > 108); stable disease 

(SD, 107 < signal < 108); partial response (PR, 105 signal < 107); complete response (CR, 

signal < 105). J, Percent response for the six O-PDX models treated with VCR+IRN (left), 

VCR+IRN+afatinib (center) or VCR+IRN+gefitinib (right). Asterisks denote models that 

significant difference in tumor progression compared to VCR+IRN. Scale bars: E,F, 10 μm. 

Abbreviations: VCR, vincristine; IRN, irinotecan; ERMS, embryonal rhabdomyosarcoma; 

ARMS, alveolar rhabdomyosarcoma.
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KEY RESOURCES TABLE

REAGENT or 
RESOURCE

SOURCE IDENTIFIER

Antibodies

anti-EGFR mouse 
monoclonal (3C6)

Roche Cat#790-2988; RRID:AB_2335974

anti-MEOX2 
rabbit polyclonal

Sigma Aldrich Cat#HPA053793; RRID:AB_2682264

anti-MYF5 mouse 
monoclonal 
(OTI2G5)

Invitrogen Cat#MA5-26654; RRID:AB_2724766

anti-MYOG 
mouse 
monoclonal (F5D)

Agilent Cat#M3559; RRID:AB_2250893

PE/Cy7-
conjugated anti-
EGFR human 
monoclonal 
(AY13)

BioLegend Cat#352910; RRID: AB_2562159

 

Bacterial and Virus Strains

ElectroMAX 
Stbl4 E. coli cells

Thermo Fischer 
Scientific

Cat#11635018

 

Biological Samples

Frozen patient 
tumors

St. Jude Children’s 
Research Hospital 
Biorepository

In this study

Orthotopic 
patient-derived 
xenografts (O-
PDXs)

St. Jude Children’s 
Research Hospital 
Childhood Solid 
Tumor Network 
(CSTN)

https://cstn.stjude.cloud/

Fixed matched 
pairs of tumor 
samples (before 
and mid-
treatment)

RMS13 clinical trial 
(NCT01871766)

In this study

 

Chemicals, Peptides, and Recombinant Proteins

TaqMan Fast 
Advanced Master 
Mix

Invitrogen Cat#4444965

DMEM media Thermo Fischer 
Scientific

Cat#11960044

SkBM-2 skeletal 
muscle media 
BulletKit

Lonza Cat#CC-3245

CellTiter-Glo 3D Promega Cat#G9681

Vincristine, 
2mg/2ml

Hospira NDC #61703-309-16; CAS 57-22-7

Irinotecan, 
40mg/2ml

Pfizer NDC #0009-7529-04; CAS 100286-90-6
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REAGENT or 
RESOURCE

SOURCE IDENTIFIER

SN-38 TCI Chemicals Cat#E0748; CAS 86639-52-3

Gefitinib MedChemExpress Cat#HY50895; CAS 184475-35-2

Afatinib MedChemExpress Cat#HY10261; CAS 850140-72-6

 

Critical Commercial Assays

Chromium Single 
Cell 3’ Gene 
Expression 
ReagentKit (v2 or 
v3)

10x Genomics Cat#PN-120237 (v2) or #PN-1000075 (v3)

Chromium Single 
Cell A Chip Kit 
(for v2 gene 
expression)

10x Genomics Cat#PN-120236

Chromium Single 
Cell A Chip Kit 
(for v3 gene 
expression)

10x Genomics Cat#PN-1000153

Chromium i7 
Multiplex Primers

10x Genomics Cat#PN-120262

Chromium Single 
Cell ATAC 
Library & Gel 
Bead Kit

10x Genomics Cat#PN-1000110

Chromium Chip E 
Single Cell ATAC 
Kit

10x Genomics Cat#PN-1000155

Chromium i7 
Multiplex Kit N, 
Set A (for 
scATAC-seq)

10x Genomics Cat#PN-1000084

3’ CellPlex Kit 
Set A (for 
multiplexed 
scRNA-seq)

10x Genomics Cat#PN-1000261

Papain 
Dissociation 
System

Worthington 
Biochemicals

Cat#LK003150

PCR Purification 
Kit

Qiagen Cat#28104

High Capacity 
RNA-to-DNA kit

Invitrogen Cat#4387406

 

Deposited Data

Mouse 
Organogenesis 
Cell Atlas

(Cao et al., 2019) https://oncoscape.v3.sttrcancer.org/mouse

Single-cell/
nucleus RNA-seq 
data

This study GEO GSE174376

 

Experimental Models: Cell Lines

HEK293T ATCC RRID: CVCL_0063
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REAGENT or 
RESOURCE

SOURCE IDENTIFIER

 

Experimental Models: Organisms/Strains

Mouse: Nude: 
NCI Athymic 
NCr-nu/nu

Charles River 
Laboratories

strain 553

Mouse: NSG: 
NOD.Cg-Prkdcscid 

Il2rgtm1Wjl/SzJ

Jackson Laboratories strain 005557

 

Oligonucleotides

Barcode dialout 
PCR-F

Integrated DNA 
Technologies

5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTACACGACGCTCTTCCGAT-3’

Barcode dialout 
PCR-R

Integrated DNA 
Technologies

5’-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTAGCAAACTGGGGCACAAGC-3’

 

Recombinant DNA

pBA439 barcode 
library

Addgene Cat#85968; RRID:Addgene_85968

 

Software and Algorithms

UMI-tools (Smith et al., 2017) https://github.com/CGATOxford/UMI-tools

R CRAN https://cran.r-project.org/

RStudio RStudio https://www.rstudio.com/

CellRanger v3.0.2 10x Genomics https://support.10xgenomics.com/single-cell-gene-expression/software/overview/welcome

Seurat v3.1.2 (Butler et al., 2018; 
Stuart et al., 2019)

https://satijalab.org/seurat/

Sctransform 
v0.2.1

(Hafemeister and 
Satija, 2019)

https://github.com/ChristophH/sctransform

velocyto v0.17.17 (Manno et al., 2018) http://velocyto.org/

Scanpy v1.4.5 (Wolf et al., 2018) https://github.com/theislab/scanpy

scVelo v0.1.24be (Bergen et al., 2020) https://github.com/theislab/scvelo

SingleR v1.0.1 (Aran et al., 2019) https://github.com/dviraran/SingleR

inferCNV v1.1.3 Trinity CTAT project https://github.com/broadinstitute/infercnv

Conos v1.2.1 (Barkas et al., 2019) https://github.com/kharchenkolab/conos

dynverse (Saelens et al., 2019) https://dynverse.org/

Slingshot (Street et al., 2018) https://github.com/kstreet13/slingshot

CellRanger ATAC 
v1.2.0

10x Genomics https://support.10xgenomics.com/single-cell-atac/software/overview/welcome

Signac v1.1.0 (Stuart et al., 2021) https://satijalab.org/signac/

Latent cellular 
analysis

(Cheng et al., 2019) https://bitbucket.org/scLCA/single_cell_lca/src

NetBID (Du et al., 2018) https://github.com/jyyulab/NetBID

SJARACHNe (Khatamian et al., 
2018)

https://github.com/jyyulab/SJARACNe
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REAGENT or 
RESOURCE

SOURCE IDENTIFIER

Prism software 
v9.0

GraphPad https://www.graphpad.com/

FCS Express v7 De Novo Software https://denovosoftware.com/

Dev Cell. Author manuscript; available in PMC 2023 May 23.

https://www.graphpad.com/
https://denovosoftware.com/

	Summary
	Graphical Abstract
	Introduction
	Results
	RMS tumors have developmental heterogeneity
	Developmental indexing of RMS using embryonic snRNA-seq data
	O-PDXs and organoids recapitulate clonal heterogeneity in RMS
	RMS cells transition through developmental states
	Tumor cell heterogeneity reflects differential enhancer activity
	The mesoderm-like RMS cells are drug resistant
	EGFR is a therapeutic vulnerability in paraxial mesoderm RMS cells

	Discussion
	Limitations of the study

	STAR Methods
	RESOURCE AVAILABILITY
	Lead Contact
	Materials availability
	Data and code availability

	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Orthotopic patient-derived xenografts (O-PDXs)
	Human subjects

	METHOD DETAILS
	Tumor Dissociation
	Single cell/nucleus RNA-sequencing
	Single cell ATAC-sequencing
	Data Analysis
	Developmental Indexing
	NetBID Analysis and driver identification from bulk RNA-seq data and from snRNA-seq
	Real-time PCR via Taqman Array Cards
	Immunohistochemistry
	Flow sorting of O-PDXs for EGFR-positive and -negative cells
	Lentiviral Barcoding
	Mathematical Modeling
	RMS Organoids

	QUANTIFICATION AND STATISTICAL ANALYSIS
	ADDITIONAL RESOURCES

	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5.
	Figure 6.
	Table T1

