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Abstract

Purpose: To improve accuracy and speed of quantitative susceptibility mapping plus quantitative 

blood oxygen level-dependent magnitude (QSM+qBOLD or QQ) -based oxygen extraction 

fraction (OEF) mapping using a deep neural network (QQ-NET).

Methods: The 3D multi-echo gradient echo images were acquired in 34 ischemic stroke patients 

and 4 healthy subjects. Arterial spin labeling and diffusion weighted imaging (DWI) were 

also performed in the patients. NET was developed to solve the QQ model inversion problem 

based on Unet. QQ-based OEF maps were reconstructed with previously introduced temporal 

clustering, tissue composition, and total variation (CCTV) and NET. The results were compared 

in simulation, ischemic stroke patients, and healthy subjects using a two-sample Kolmogorov-

Smirnov test.

Results: In the simulation, QQ-NET provided more accurate and precise OEF maps than 

QQ-CCTV with 150 times faster reconstruction speed. In the subacute stroke patients, OEF 

from QQ-NET had greater contrast-to-noise ratio (CNR) between DWI-defined lesions and their 

unaffected contralateral normal tissue than with QQ-CCTV: 1.9 ± 1.3 vs 6.6 ± 10.7 (p = 0.03). In 

healthy subjects, both QQ-CCTV and QQ-NET provided uniform OEF maps.

Conclusion: QQ-NET improves the accuracy of QQ-based OEF with faster reconstruction.
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1 | INTRODUCTION

Quantitative mapping of oxygen extraction fraction (OEF) and cerebral metabolic rate of 

oxygen (CMRO2) is critical to evaluate brain tissue viability and function in stroke.1–3 In 

MRI, quantitative models to investigate the effects of blood deoxyhemoglobin on the signal 

have fallen into two categories: (1) magnitude signal modeling methods such as T2 based 

methods,4–7 calibrated fMRI,8–11 and quantitative blood oxygen level dependent magnitude 

(qBOLD);12–14 and (2) phase signal modeling methods for whole brain OEF values15–18 and 

voxel-wise quantitative susceptibility mapping (QSM)-based OEF methods.19–21

Recently, an integrated model of QSM and qBOLD (QSM+qBOLD or QQ) has been 

introduced to consider the OEF effect on both magnitude and phase of a widely available 

multi-echo gradient echo (mGRE) data.22 QQ makes OEF mapping possible without 

clinically impractical vascular challenges. However, QQ-based OEF estimation remains 

challenging, because it is difficult to accurately disentangle the effect of venous oxygenation 

(Y) and venous blood volume (v) as its inversion is highly sensitive to noise.13,23

The temporal clustering, tissue composition, and total variation (CCTV) algorithm has been 

proposed to over-come the noise sensitivity of QQ-based OEF by improving the effective 

signal-to-noise ratio (SNR).24–29 Voxels with similar mGRE signal evolutions are grouped 

into the same cluster and assumed to have the same model parameter values. Averaging over 

many voxels in a cluster can substantially increase SNR in a cluster-wise inverse solution. 

Noise propagation on OEF is further suppressed by integrating tissue-type information into 

clustering and applying total variation.25 However, inversion using gradient-based iterative 

solvers still depends on optimization details, e.g., initial guess and parameter scaling, and is 

time-consuming.

This study introduces a deep neural network (QQ-NET) to alleviate the dependency on 

optimization details and to improve the reconstruction speed in solving the QQ model. 

Deep neural networks have been applied as alternatives to the iterative method for solving 

inversion30–37 as they can approximate any continuous function with a sufficient number of 

free parameters.38 An established deep convolutional neural network architecture, Unet,39,40 

was used for the QQ model inversion (QQ-NET) and com- pared with QQ-CCTV in 

simulation, ischemic stroke patients, and healthy subjects.

2 | METHODS

2.1 | Data acquisition

This study was approved by the local Institutional Review Board. MRI was performed in 

34 patients with ischemic stroke in a unilateral cerebral artery territory (6 hours to 42 days 

between stroke onset and MRI) on a clinical 3T scanner (GE MR Discovery 750) using a 

32-channel brain receiver coil. The imaging protocol consisted of 3D ASL (24 cm field of 

view [FOV], 1.9 × 1.9 × 2.0 mm3 voxel size, 1500 ms labeling period, 1525 ms post-label 

delay, 976.6 Hz/pixel bandwidth, 68 axial slices, echo time [TE] = 14.6 ms, repetition time 

[TR] = 4787 ms, and three signal averages), 3D mGRE (0.47 × 0.47 × 2.0 mm3 voxel size, 

identical FOV to the 3D fast spin echo [FSE] arterial spin labeling [ASL] sequence, eight 
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equally spaced echoes: TE1/ΔTE/TE8 = 4.5/5/39.5 ms, TR = 42.8 ms, band-width = 244.1 

Hz/pixel, flip angle 20°, and scan time = 5 minutes 15 seconds), DWI (24 cm FOV, 0.94 × 

0.94 × 3.2 mm3 voxel size, 1953.1 Hz/pixel bandwidth, 0, 1000 s/ mm2 b-values, TE = 71 

ms, TR = 3000 ms, and four signal averages), and a T1 weighted fluid attenuated inversion 

recovery sequence (24 cm FOV, 0.5 × 0.5 × 5 mm3 voxel size, TE = 23.4 ms, TR = 1750 

ms).

Four healthy subjects (age 31 ± 6 y) were also scanned for QQ-NET performance testing on 

a 3T GE scanner using 3D mGRE with the same imaging parameters as the stroke patients 

(voxel size, TEs, bandwidth, flip angle, and scan time), but different resolution (0.86 × 0.86 

× 1.2 mm3 voxel size, bandwidth 651.0 Hz/pixel, scan time = 5 min- utes 24 seconds) with 

all other parameters the same as in the stroke patients. The second scan was acquired after 

the first scan without delay.

2.2 | Data processing: QSM and CBF

QSM reconstruction was performed by estimating the total field via a non-linear fit of the 

mGRE,41 obtaining the local field by the Projection onto Dipole Fields (PDF) method,42 

and computing susceptibility with the Morphology Enabled Dipole Inversion with automatic 

uniform cerebrospinal fluid zero reference (MEDI+0) algorithm.43–46 Cerebral blood flow 

(CBF) maps (mL/100g/min) were generated from the ASL data using FuncTool (GE 

Healthcare, Waukesha, WI, USA). All images were co-registered and interpolated to the 

resolution of the QSM maps using the FSL FLIRT algorithm.47,48

2.3 | QQ model

The QQ model combines QSM-based OEF method and qBOLD to estimate OEF, 1 − Y ∕Ya 

with venous oxygenation (Y) and arterial oxygenation (Ya = 0.98).22 The QSM-based model 

utilizes the mGRE phase and separates the estimated voxel-wise susceptibility (χ) into the 

contribution of deoxy-hemoglobin in venous blood, i.e., OEF effect, and non-blood neural 

tissue susceptibility(χn).

χ Y , v, χn = χba
α + ψHb ⋅ ΔχHb ⋅ −Y + 1 − (1 − α) ⋅ Y a

α
⋅ v + 1 − v

α ⋅ χn
(1)

where χba = − 108.3 ppb the fully oxygenated blood susceptibility assuming tissue 

hematocrit Hct = 0.357,21 α = 0.77 the ratio between the venous blood volume (v) 

and total blood volume,49 ψHb = 0.0909 the hemoglobin volume fraction with setting 

Hct = 0.357,20, 50 − 52 ΔχHb = 12522ppb the susceptibility difference between deoxy-and 

oxyhemoglobin.19,53

The qBOLD models the OEF effect on the mGRE magnitude at TE, t22:

SqBOLD S0, R2, Y , v, χn, t = S0 ⋅ e−R2 ⋅ t ⋅ FBOLD Y , v, χn, t ⋅ G(t) (2)
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where S0 is signal intensity at t = 0, R2 is the transverse relaxation rate,

FBOLD Y , v, χn, t = exp −v ⋅ fs(δω ⋅ t)  13 where fs is the signal decay by the 

presence of the blood vessel network fS(δω ⋅ t) ≈ 3
10 (δω ⋅ t)2 for t ≪ 1/δω and 

fS(δω ⋅ t) ≈ δω ⋅ t for t ≫ 1/δω14 and δw is the characteristic frequency due to 

the susceptibility difference between deoxygenated blood and the surrounding 

tissue22δω Y , χn = 1
3 ⋅ γ ⋅ B0 ⋅ ψHb ⋅ ΔχHb ⋅ (1 − Y ) + χba − χn  with γ = 267.51 rad s−1 T−1 

the gyromagnetic ratio, and B0 the main magnetic field strength. G(t) is the macroscopic 

field inhomogeneity contribution to mGRE signal decay estimated by the voxel spread 

function.22

2.4 | Deep neural network for QQ inversion (QQ-NET)

The fully convolutional neural network (QQ-NET) processing four-dimentional inputs (3D 

volumes with multiple channels) was based on an established architecture, U-net,39,40 with 

three modifications: (1) Using zero-padding so that the output from each convolution layer 

has the same size as the input; (2) Setting the number of input channels and output channels 

for the network to nine (eight-echo mGRE magnitude signals and one QSM) and five (model 

parameters(S0, R2, Y , v, χn)), respectively; (3) Applying tanh function to the network output 

for setting the minimum (min) and maximum (max) values for the model parameters: [min, 

max] = [0.8, 2.5] for S0, [2, 190] Hz for R2, [0, 0.98] for Y, [0, 8]% for v, and [−1, 1.6] 

ppm forχn. Values were based on physiological expectations for Y (the Y range corresponds 

to 0~100% OEF) and v (PET and MRI literature v range 0.5~5.5%54), and CCTV results 

for the other parameters. The network architecture of QQ-NET consisted of an encoding and 

decoding path (Supporting Information Figure S1, which is available on-line). The encoding 

path included four repeated groups. Each group consisted of two sets of convolution layers 

with a 3 × 3 × 3 kernel and ReLU activation and was connected by a max pooling layer 

(2 × 2 × 2). The decoding path was constructed similarly to the encoding path with four 

repeated groups. Each group additionally contained a feature map concatenation from the 

corresponding encoding path and was connected by a deconvolution layer (2 × 2 × 2). The 

last layer applied a convolution layer with a 1 × 1 × 1 kernel to obtain five channels (five 

model parameters) and an element-wise scaled tanh activation to set the min and max for 

each parameter.

For training data generation, (1) QQ-CCTV was performed in real 34 stroke patient cases to 

obtain model parameters(S0, R2, Y , v, χn). The parameter average (μ), SD (σ), min, and max 

were S0(1.09, 0.04, 1.04, 2.38), R2 (20.1, 7.2, 7.3, 189.3 Hz), Y (0.68, 0.10, 0.31, 0.98), 

v(1.8, 1.1, 0.3, 7.2 %), andχn( − 10.0, 37.1, − 910.0, 160.7ppb). S0 was set such that the first 

echo magnitude signal was unity for input data normalization as used in a previous artificial 

neural network for QQ inversion.55 (2) The resultant model parameter maps including OEF 

from QQ-CCTV were set as ground truth, and the QSM values and mGRE signals were 

simulated for each brain voxel using Equations 1 and 2, respectively. (3) Gaussian noise 

was added to the QSM and the mGRE signals to obtain SNR 100 at the first echo with a 

different noise instance for each training. In this way, the pairs of ground truth (QQ-CCTV 

results) and simulated measurements (QSM and mGRE signals) were acquired. For training, 
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only the simulated datasets were used, not the real measurements. Among the 34 simulated 

datasets, 26/2/6 were used for training/validation/test, respectively.

For QQ-NET training, parameters were normalized to improve convergence behavior 

during network update with using z-score transformation. For R2, χn, and S0, 

zR2 =
ν − μR2

σR2
, zχn =

ν − μXn
σχn

, andzS0 =
ν − μS0

σS0
. For YzY =

Y − YSs
σY

where Yss is the venous 

oxygenation estimated from the susceptibility average of the straight sinus in each subject24 

to consider different global OEF averages in different subjects. For zv =
v − μv
σv/2  to consider 

two peaks in vdistribution at 1.2% (white matter) and 3.5% (gray matter). Parameter 

normalization is a common practice in numerical optimization as it provides an improved 

convergence behavior with rescaling parameter space.21,56–58 Parameter normalization using 

z-scores in this study is expected to result in that the different parameters in different scales 

and units, e.g., R2 in Hz and v in %, have similar scales (zero mean and unit SD), and their 

changes are weighed similarly in the loss function, analogous to z-score transformation for 

multiple parameters used in a previous QQ-NET for water/fat separation.59 Due to memory 

constraints on the Graphic Processing Units (GPU), 4D patch (9 × 200 × 200 × 48) was used 

as the input, which includes an approximately entire brain. Batch size was chosen as 1 with 

patch center randomly located within a selected brain and repeated for all the training brains 

(1 epoch). Validation was then performed in the same way as training. Before each epoch, 

the order of the training brains was randomly shuffled.

The loss function was the weighted sum of three losses: (1) L1 difference 

between the normalized truth and the output of QQ-NET, EL1 = Zt − Zo 1, 

where Zt = [ZS0, tZR2, t, ZY , t, ZV , t, Zχn, t] and Zo = ZS0, ozR2, o, ZY , o, zv, o, Zχn, o

where the subscript “t” and “o” indicate truth and output of 

network; (2) model loss to consider biophysics model consistency

EModel = SqBOLD S0, t, R2, t, Y t, vt, χn, t − SqBOLD S0, o, R2, t to,
Y o, vo, χn, o 1 + χQSM Y t, vt, χn, t − χQSM Y o, vo, χn, o 1

; and (3) L1 difference of 

Y spatial gradient to prevent blurry OEF by preserving edge, EGrad = ∇zY , T − ∇zY , o 1
The total loss (E) was set asE = EL1 + w1 ⋅ EModel + w2 ⋅ EGrand. where the weights were 

empirically determined: w1 = 0.1 and w2 = 1.

QQ-NET was implemented using Pytorch 1.4.060 and NVIDIA RTX 2080Ti GPU. 

Minimization was performed by ADAM61 with a learning rate of 10−4. Training was 

stopped at 420 epochs (~ 100 hours) as the validation loss became stable.

The trained QQ-NET was tested with three different datasets (Test Data 1, 2, and 3). 

Test Data 1: two additionally simulated stroke brains constructed in the same way as the 

training datasets (SNR 100): Case 1. Without OEF abnormality and Case 2. With low lesion 

OEF (Figure 1). The average of the CCTV and NET results from real stroke patients (18 

hours and 7 days post onset for Cases 1 and 2) was used as the ground truth to minimize 

algorithm-dependent bias. For accuracy and precision measurements, the reconstruction was 

repeated five times with different instances of Gaussian noise. Additionally, to investigate 
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the consequence of the noise level discrepancy between the training (SNR 100) and test 

datasets, Case 2 was repeated with SNR 50 and 20 (Supporting Information Figure S2). 

Test Data 2: 30 ischemic stroke patients, a subset of the 34 patients without hemorrhage 

transformation and reperfusion, were classified into two groups based on the time interval 

between stroke onset and MRI scan62: acute (6–24 hours, N = 5) and subacute (1–14 days, 

N = 25) phase (Figures 2–4). To ensure that there was no overlap between training and test 

subjects, cross-validation was performed in which six real patient brains were chosen as test 

data, leaving the other 28 patients’ simulated dataset as training (N = 26) and validation (N 

= 2) data, resulting in five trained networks (6 test patients × 5 trials = 30 test patients). The 

network trained with the first 28 patients’ simulated dataset was applied to Test Data 1 and 

3. Test Data 3: four healthy subjects acquired with the same imaging parameters including 

TE as used in training (Figure 5) to check if the network trained with simulated stroke brains 

can provide uniform OEF maps in healthy brains without severe false positives, e.g., low 

OEF values as in stroke lesions. Additionally, to check the robustness of the trained network 

against differences in resolution, a dataset with the same healthy subjects but with different 

resolution (0.86 × 0.86 × 1.2 mm3 voxel size) was also tested (Supporting Information 

Figure S3). In network testing, to make sure that the whole brain was fully covered, we used 

patch sliding with 30% overlap, generated multiple overlapped patches, and combined them 

into one whole brain after network inference.

For comparison, QQ-CCTV was also performed on the test datasets with the same 

reconstruction as in Refs. [25,29] using Intel Xeon Gold 6130 CPU. First, temporal 

clustering was performed on voxel-wiseSqBOLD / G. Second, each cluster was further 

separated into gray matter/white matter/cerebrospinal fluid sub-clusters using segmentation 

obtained by FSL FAST algorithm63 on T1-weighted images for stroke patients and echo-

combined T2*-weighted images for healthy subjects. Last, cluster-based and voxel-wise 

optimization were performed sequentially with total variation regularization( ∇Y 1).64

2.5 | Statistical analysis

In the simulation (Test Data 1), accuracy and precision were 

calculated by mean absolute error (MAE) (MAE ≡ 1
Nv

∑i = 1
Nv OEFtrutℎ − OEFavg )

and mean SD (MSD ≡ 1
Nv

∑i = 1
Nv OEFstd) whereOEFavg ≡ 1

Nt
∑j = 1

Nt OEFi, j, 

OEFstd ≡ 1
Nt

∑j = 1
Nt OEFi, j − 1

N ∑j = 1
Nt OEFi, j

2
, i: the voxel index, j: the trial index, Nv: 

the number of voxels Nt: the number of trials.

In the stroke patients (Test Data 2), lesion ROIs were drawn based on DWI by an 

experienced neuroradiologist (S.J., 7 y of experience) and corresponding contralateral 

normal tissue masks were constructed by reflecting the lesion region of interest (ROI) to the 

other hemisphere and subsequently trimming by the same neuroradiologist. The detectability 

of lesion OEF abnormality was calculated by the contrast to noise ratio between the lesion 

and its contralateral normal tissue (CNR ≡
OEFlesion − OEFnormal tissue

σ OEFnormal tissue
) assuming that OEF 

variation within the contralateral normal tissue results from noise. CNR was compared 
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between CCTV and NET using a two-sample Kolmogorov-Smirnov test. A p value less than 

.05 was considered significant.

In the healthy subjects (Test Data 3), OEF maps from CCTV and NET were compared with 

structural similarity index (SSIM).65

3 | RESULTS

Figure 1 shows the OEF comparison between CCTV and NET in the two simulated brains 

(Test Data 1). In both Cases 1 (Without OEF abnormality) and 2 (With low lesion OEF), 

NET provided higher accuracy (smaller MAE: 4.8 vs. 1.2 % in Case 1 and 3.1 vs. 1.4 % 

in Case 2) and higher precision (smaller MSD: 1.7 vs. 0.2 % in Case 1 and 1.2 vs. 0.3% 

in Case 2) than CCTV. The reconstruction speed of NET was 150 times faster than that of 

CCTV (1.4 ± 0.3 minutes vs. 212.8 ± 62.7 minutes).

Figure 2 shows representative OEF maps from QQ-CCTV and QQ-NET in the ischemic 

stroke patients (Test Data 2). Compared to QQ-CCTV, QQ-NET showed less noisy OEF 

maps with improved spatial overlap between low OEF regions and DWI-defined lesions in 

the subacute phase.

Figure 3 shows box plots of OEF-CNR between the lesion and its contralateral normal tissue 

(Figure 3A), OEF average in the lesion and the normal tissue (Figure 3B), and OEF SD in 

the normal tissue in the ischemic stroke patients (Figure 3C) (Test Data 2). Compared to 

CCTV, NET provided significantly higher CNR in the subacute phase, 1.9 ± 1.3 vs. 6.6 ± 

10.7 (p = 0.03), but similar CNR in the acute phase, 0.3 ± 0.2 vs. 0.8 ± 0.9 (p = 0.2). In 

the subacute phase, both CCTV and NET provided significantly lower lesion OEF average 

compared to the contralateral normal tissue, 32.3 ± 7.3 vs. 23.9 ± 6.8% (p = 0.01) for CCTV 

and 31.0 ± 6.2 vs. 23.0 ± 7.2% (p = 0.0004) for NET, whereas both showed similar lesion 

OEF average as compared to the contralateral normal tissue OEF in the acute phase, 32.3 ± 

6.9 vs. 33.1 ± 7.9% (p = 0.7) for CCTV and 33.7 ± 5.3 vs. 32.5 ± 6.3% (p = 0.7) for NET. 

NET pro-vided lower but not statistically significant OEF SD in the contralateral normal 

tissue than CCTV, 5.9 ± 4.2 vs. 3.2 ± 2.3% (p = 0.2) for the acute phase and 5.2 ± 2.4 vs. 3.5 

± 2.3% (p = 0.1) for the subacute phase.

Figure 4 shows a comparison of QQ between CCTV and NET in a 7 days post-onset stroke 

patient. Compared to CCTV, NET showed a less noisy OEF map. In the v map, NET showed 

low v values in the DWI-defined lesion, whereas the lesion v from CCTV appeared higher 

than the v on the contralateral normal tissue (pink arrow).

Figure 5 shows the OEF maps with QQ-CCTV and QQ- NET in the four healthy subjects 

(Test Data 3). QQ-NET provided less noisy but similar OEF maps to QQ-CCTV (SSIM ≥ 

0.96).

4 | DISCUSSION

This study demonstrates the feasibility of a deep neural network, QQ-NET, for solving 

QSM+qBOLD (QQ) model inversion. Compared to a current inversion method, QQ-CCTV, 
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QQ-NET provides improved accuracy and precision in simulations and better depicts OEF 

abnormalities in stroke patients. Therefore, the QQ-NET enables robust QQ-based OEF 

mapping from a conventional mGRE sequence with fast reconstruction.

The QQ model relies on the separation of deoxyheme in cylindrical geometries from 

other susceptibility sources diffusely distributed in tissue, based on their approximate 10% 

difference in TE-series signal.14,66 Due to the poorly conditioned non-convex nature of 

QQ with this small difference, gradient-based iterative solver approaches are sensitive to 

noise and optimization details, e.g., initial guess and parameter scaling, and have slow 

reconstruction speeds, e.g., 0.5~3 hours.22,24 Deep learning formulation can mitigate the 

dependency on optimization details and slow reconstruction speeds.32,34

In the simulation (Figure 1), OEF maps obtained using the proposed QQ-NET show 

improved accuracy and precision when compared to QQ-CCTV. These findings are 

consistent with the less noisy OEF maps from QQ-NET (Figure 2) and smaller normal tissue 

OEF SD (Figure 3C) in the ischemic stroke patients. The suppressed noise propagation into 

OEF using NET is consistent with effective image denoising using convolutional neural 

network.67

The network may learn noise specific features as well as the QQ model, e.g., additive 

Gaussian white noise used in the training,68 as its training was supervised using noisy 

inputs and noise-free outputs. In this study, the network trained with SNR 100 datasets 

provided comparable OEF maps even when tested with more noisy data than the training, 

SNR 50 and 20 (Supporting Information Figure S2). This suggests that the network may 

learn Gaussian noise features that adapt to different noise levels, but the exact cause remains 

to be elucidated. Also, in Case 1, QQ-CCTV provided higher global OEF than the ground 

truth, which was accompanied with lower global v (Supporting Information Figure S4). 

To obtain the same QSM and qBOLD measurements, the higher OEF may result from 

the lower v (Equations 1 and 2). This suggests that CCTV could not decouple OEF and 

v perfectly. The decoupling between OEF and v has been an issue in qBOLD-based OEF 

methods including QQ in realistic SNR.13 Although CCTV alleviates the decoupling issue 

by temporal clustering, tissue composition, and total variation,29 it is not still perfect. On 

the other hand, QQ-NET did not show severe global OEF bias, which suggests that the 

decoupling may be improved using NET. CNR estimation may not be sensitive to global 

OEF bias as global OEF bias may affect the difference in OEF average between a lesion 

and its contralateral normal tissue OEFlesion − OEFnormal tissue  and the OEF SD in the 

normal tissue χn (OEFnormal tissue in a similar manner. For instance, in Case 1, where the 

OEF from CCTV was overestimated compared to the ground truth, CCTV also provided 

higher OEFlesion − OEFnormal tissue  (0.1% vs. 0.08%) and higher σ OEFnormal tissue  (7.1% 

vs 6.1%) than the ground truth. This led to CNR in CCTV that was similar to that of the 

ground truth (0.013 vs. 0.014) even with the OEF overestimation. In addition to the de- 

coupling issue between OEF and v, errors in other parameters that are affected by mGRE 

differences, e.g., R2, may also contribute to OEF bias, which can be exacerbated by low 

SNR in the lesion, as QQ simultaneously estimates OEF, v, S0, R2, andχn.
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In the subacute stroke patients (Figure 2), the low OEF regions from QQ-NET coincided 

substantially with the DWI-defined lesions, whereas QQ-CCTV did not depict the lesions 

clearly and/or showed noise and artifacts in the OEF maps. This agrees well with the 

significantly greater OEF CNR from NET than CCTV in the subacute phase, 1.9 ± 1.3 

vs. 6.6 ± 10.7 (p = 0.03) (Figure 3A), which suggests improved detection of lesion OEF 

abnormality. A high OEF CNR in the subacute phase is expected based on the PET 

literature, e.g., a clear OEF contrast between lesion and its contralateral normal tissue was 

observed with relatively uniform OEF in normal tissue.69 OEF CNR shows how much lesion 

OEF abnormality is highlighted compared to normal tissue, so it is expected to depend on 

the severity of tissue damage in the lesion, not directly on lesion location and/or size. Low 

OEF values in the subacute phase may indicate ischemic lesions with irreversible damage.70 

In the acute phase, lesion OEF values are heterogenous, which may suggest rapid lesion 

evolution within first few hours of stroke onset.71 In the 24 hours post-onset case, NET 

provides similar OEF to the contra- lateral normal tissue at the lesion center but low OEF 

at the boundary. That lesion OEF values are similar to the contralateral normal tissue may 

suggest salvageable lesion tissue.

Both QQ-CCTV and QQ-NET show uniform OEF maps in the healthy subjects (Figure 

5); these findings are consistent with previous PET studies suggesting the presence of 

equilibrium between metabolic needs and blood flow in healthy tissue.72,73

The low v within DWI-defined lesions from QQ-NET (Figure 4) agrees with a decrease 

in blood volume in ischemic stroke lesions,74 and may be driven by a reliable Y and v 
decoupling. The high lesion v from QQ-CCTV may be caused by that lesion was mistakenly 

classified as gray matter. CCTV incorporates tissue type information into clustering by 

dividing temporal mGRE signal based clusters into gray matter/white matter/cerebrospinal 

fluid sub-clusters. For the stroke patients in this study, tissue segmentation was performed 

on T1-weighted images using a neuroimaging tool, FSL FAST.63 As stroke lesions are 

sometimes dark on T1-weighted images, they may be mistakenly clustered as gray matter. 

This may lead to a poor v initialization for the lesion and subsequent problematic lesion v in 

CCTV (Supporting Information Figure S5), which may provide OEF bias in the lesion.

Despite of its advantage of more robust and faster reconstruction (1.4 vs. 212.8 minutes), 

the proposed neural network has limitations. First, it is less flexible. For instance, the 

network has to be re-trained for different TE sets (different qBOLD measurements), 

which is a critical limitation of the current network training scheme. Also, the network 

may need to be re-trained for different imaging resolutions or different SNRs. However, 

in this study, QQ-NET provided comparable OEF maps when tested with a different 

imaging parameter dataset (healthy subjects with lower resolution and higher band-

width) (Supporting Information Figure S3) and with substantially lower SNR 50 and 

20 (Supporting Information Figure S2). These results suggest that QQ-NET may not be 

sensitive to resolution or SNR. Second, for clinical implementation, the proposed QQ-NET 

should be tested extensively in various clinical scenarios, e.g., multiple sclerosis and brain 

tumor, to confirm its validity. Third, though the training of QQ-NET covered a wide 

physiological range for the model parameters, such as the entire possible range of OEF 

(0~100%) and v value range of 0~8% (which includes PET and MRI literature ranges of 
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0.5~5.5%54), combinations of the parameter values in the training data may be limited 

using 26 simulated stroke datasets. Also, in this feasibility study, the four healthy subject 

datasets were only used to check if the network trained with simulated stroke datasets can 

produce reasonable uniform OEF maps without severe artifacts. QQ-NET performance can 

be further improved by training with more various parameter combinations of ground truth 

including various physiological brain datasets such as healthy subjects and patients with 

multiple sclerosis. Fourth, QSM values may depend on the dipole inversion algorithms used 

in reconstruction,75,76 which may worsen QQ-based OEF precision. Using the phase signal 

of individual TEs instead of a QSM map may help the network provide a more reliable 

output without a dependency on the intermediate processing steps, e.g., QSM inversion. 

On the other hand, it may add complexity to the training. For instance, the training may 

involve learning both QSM (dipole inversion) and QQ processing, compared to the current 

learning for QQ inversion. Also, a more complex network architecture, e.g., a combined 

structure of two Unets (one for magnitude and the other for phase inputs), may be needed. 

The additional complexities may lead to challenges training the network. A comparison 

between the two different inputs (QSM vs. individual echo phases) should be conducted in 

a future study. Lastly, a validation study with the reference standard O15 PET remains to be 

performed.

In conclusion, with enhanced accuracy and fast reconstruction by using a deep neural 

network, the proposed QQ-NET may be useful to investigate tissue functions in brain 

pathologies, such as Alzheimer disease,77,78 multiple sclerosis,79 tumor,80 and ischemic 

stroke.81
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FIGURE 1. 
Comparison between the OEFs obtained by CCTV and NET in two simulated brains (Test 

Data 1): Case 1. Without OEF abnormality and Case 2. With low lesion OEF. The numbers 

indicates MAE (yellow) and MSD (pink). NET provides greater accuracy (MAE: 4.8 vs. 1.2 

% in Case 1 and 3.1 vs. 1.4 % in Case 2) and precision (MSD: 1.7 vs. 0.2 % in Case 1 

and 1.2 vs. 0.3 % in Case 2). OEFavg and OEFstd indicate the average and SD OEF maps, 

respectively, among five trials. OEFavg and OEFstd are shown in the unit of [%]
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FIGURE 2. 
Comparison between the OEFs obtained by QQ-CCTV and QQ-NET in six real ischemic 

stroke patients (Test Data 2). OEF maps from QQ-NET appear less noisy and have low OEF 

areas which agree better with DWI-lesions in the subacute phase
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FIGURE 3. 
Box plots of OEF CNR between the lesion and its contralateral normal tissue (A), OEF 

average in the lesion and the normal tissue (B), and OEF SD in the normal tissue (C) in 

acute (6–24 hours post onset, N = 5) and subacute (1–14 days post onset, N = 25) ischemic 

stroke patients (Test Data 2). Red line, blue box, black whisker, and red cross indicate 

median, interquartile range, the range extending to 1.5 of the interquartile range, and outliers 

beyond the whisker range, respectively. Note that two outliers from NET in the subacute 

phase are not shown (34.8 and 45.1) in CNR. Asterisk (*) indicates a significant difference 

(p < 0.05, two-sample Kolmogorov-Smirnov test). Compared to CCTV, NET provided 

significantly greater CNR in the subacute phase, whereas the CNR was not significantly 

different in the acute phase
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FIGURE 4. 
Comparison of OEF, CMRO2, v, R2, and xn maps between CCTV and NET in a stroke 

patient imaged 7 days post stroke onset (Test Data 2). NET provides less noisy OEF and low 

v values in DWI-defined lesions
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FIGURE 5. 
Comparison between the OEFs obtained by QQ-CCTV and QQ-NET in four healthy 

subjects (Test Data 3). Numbers in white indicate SSIM. QQ-NET provides less noisy 

but similar OEF maps to QQ-CCTV with high SSIM values (≥ 0.96). T2*w indicates the 

echo-combined mGRE magnitude image
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