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A B S T R A C T   

Photoacoustic microscopy (PAM) is used to visualize blood vessels and to monitor their time-dependent changes. 
Photoplethysmography (PPG) measures hemodynamic time-series changes such as heart rate. However, PPG’s 
limited visual access to the dynamic changes of blood vessels has prohibited further understanding of hemo-
dynamics. Here, we propose a novel, fully integrated PAM and photoplethysmography (PAM-PPG) system to 
understand hemodynamic features in detail. Using the PAM-PPG system, we simultaneously acquire vascular 
images (by PAM) and changes in the blood volume (by PPG) from human fingers. Next, we determine the heart 
rate from changes in the PA signals, which match well with the PPG signals. These changes can be measured if 
the blood flow is not blocked. From the results, we believe that PAM-PPG could be a useful clinical tool in various 
clinical fields such as cardiology and endocrinology.   

1. Introduction 

Photoacoustic imaging (PAI) excels in visualizing biomolecules by 
exploiting their high optical absorption without requiring any exoge-
nous contrast agent [1–7]. Thus, the capability of PAI renders it useful 
for imaging blood vessels and monitoring hemodynamics by high-
lighting hemoglobin at visible wavelengths [8]. In addition, PAI enables 
multiscale imaging from microscopy to clinical applications, depending 
on which optical and ultrasonic subsystems are combined [9–15]. Most 
clinical studies have been conducted in the form of photoacoustic to-
mography with a high intensity pulsed laser and medical ultrasound 
machines that are widely used in hospitals and clinics [16–19]. As 
another form of PAI, photoacoustic microscopy (PAM) is effective at 
high-resolution imaging by tightly focusing light [20]. Despite the 
high-resolution imaging capability of PAM, its relatively slow imaging 
speed has been pointed out to be a limiting factor for its widespread 
applications in clinical settings. With recent advances in high-speed 
scanning, PAM systems with B-scan rates as high as a few hundred 

hertz have been actively explored [21–24]. PAM’s ability to perform 
high-speed and high-resolution imaging (within a few seconds per cubic 
millimeters and a resolution of a few micrometers) has enabled hemo-
dynamic monitoring studies such as those on external stimulation, drug 
responses, vascular diseases, and regenerative medicine [25–28]. 

On the other hand, photoplethysmography (PPG) has been widely 
used for measuring hemodynamic features in the time domain, such as 
heart rate (HR), HR variability, and blood pressure, owing to its high 
signal-to-noise ratio (SNR) with high sampling rates. Subtle changes in 
pulse wave morphology in the time domain can be measured and 
analyzed to reveal hidden hemodynamic features using PPG. The vari-
ation in blood volume has generally been accepted as the origin of PPG 
signals by consensus, rather than direct experimental evidence [29]. 
Limited visual access to dynamic changes in blood vessels has prohibited 
a comprehensive understanding of the origin of PPG signals. Although 
the volumetric model can explain a majority of experimental PPG ob-
servations, other complementary mechanisms that can occur simulta-
neously have not been clarified. 
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In this study, we propose a fully integrated PAM-PPG system that 
acquires PA images and PPG signals in parallel. The proposed system has 
the potential to provide new opto-physiological evidence and further 
insights on various hemodynamic phenomena including a more thor-
ough understanding of PPG signals. This is achieved by combining 
PAM’s high-quality imaging capability and PPG’s high SNR signals with 
a high temporal resolution over a sampling volume. 

2. Materials and methods 

2.1. Fully integrated photoacoustic microscopy and 
photoplethysmography 

The PAM-PPG system is shown schematically in Fig. 1. This PAM is 
an optical-resolution (OR) mode for high resolution to resolve blood 
vessels, and such PAM is commonly referred to as OR-PAM. Light for 
PAM is delivered from a 532 nm pulsed laser (AWAVE 532-1W-10K, 
Advanced Optowave, Ronkonkoma, NY, USA) to a scanning head 
through a single-mode fiber (P1-460B-FC, Thorlabs, Newton, NJ, USA) 
and is then collimated by a fiber coupler/collimator (TC12FC-543, 
Thorlabs, Newton, NJ, USA). The collimated beam is reflected by a right- 
angle prism mirror (MRA10-P01, Thorlabs, Newton, NJ, USA) and then 
passes through an optical window with a diameter of 5 mm (43–365, 
Edmund Optics, Barrington, NJ, USA) attached to the exit side of the 
central hole of a customized 15 MHz flat ring-shaped US transducer (5.1 
mm inner diameter and 12 mm outer diameter). The laser beam is re-
flected by an off-axis parabolic mirror (MPD019-P01, Newton, Thorlabs, 
NJ, USA) to focus on the imaging area. The US transducer and the 
parabolic mirror are submerged in a water tank. The optical beam ir-
radiates the sample beneath the water tank, where it is closely pressed 
against a thin plastic membrane. The PA waves generated from the 
sample return to the US transducer through the same path used by the 

optical transmission and are detected by the US transducer. The PA 
signals are amplified by a 50 dB amplifier (PE15A1013, Pasternack, 
Irvine, CA, USA) and converted to digital signals by a waveform digitizer 
card (ATS9350, Alazar technologies, Pointe-Claire, QC, Canada) with a 
500 MS/s sampling rate. To achieve high-speed imaging, the parabolic 
mirror is fixed on a galvanometer scanner (GVS011, Thorlabs, Newton, 
NJ, USA). The above parts for PA imaging are installed on two linear 
motorized stage (PLS-85, Physik Instrumente, Germany) to structurally 
align with the PPG components described below. 

A PPG printed circuit board (PCB) composed of a light emitting diode 
(LED, VLMTG1400, Vishay Semiconductors, Malvern, PA, USA) with 
532 nm and a silicon-based photodiode (PD, SFH2716, Osram Opto 
Semiconductors, Regensburg, Germany). Herein, the green light was 
selected by considering two prior knowledge: (1) the light sources with 
visible wavelengths show more dynamic changes between systole and 
diastole than those with near-infrared wavelengths [30]; (2) the sensi-
tivity of the PD is over 80% on 500–700 nm range. The PCB was located 
under the water tank membrane to obtain PA and PPG signals simulta-
neously. The pulsed light and PA waves pass through a slit in the PCB 
between the LED and the PD. To select an appropriate slit distance, a 
Monte Carlo simulation was performed on a seven-layered skin model 
[30]. Fig. 2a represents the traces of photons starting at the source and 
reaching to the detector. When the distance between the source and the 
detector is 2 mm, a large amount of LED light can be delivered to 
approximately 0.67 mm from the surface, at the PAM focus (Fig. 2a–b). 
Thus, the PAM imaging and PPG sensing depths are co-axially aligned. 
Fig. 2c is a photograph of the part of the PPG PCB, which shows the 
2 mm slit distance between the LED and the PD. The PD signals are 
amplified by cascaded amplifiers (OPA2380, Texas Instruments, Dallas, 
TX, USA & ADA4522, Analog devices, Wilmington, MA, USA) and are 
acquired by an I/O device (PCIe-6321, National Instruments, Austin, TX, 
USA). 

To match the sampling intervals of PAM and PPG, a fully synchro-
nized sequence is programmed in the I/O device (Fig. 3). First, a counter 
with the frequency of the PAM imaging speed is created to use as a 
reference for triggering. Subsequently, three operations are 

Fig. 1. (a) Graphical representation of the combined PAM-PPG system. (b–c) 
Photographs of (b) the flat ring-shaped ultrasound (US) transducer, parabolic 
mirror, and PPG PCB wrapped in plastic wrap for waterproofing and attached 
on water tank. M, mirror; FC, fiber coupler/collimator; SMF, single-mode op-
tical fiber; P, prism; GS, galvanometer scanner; WT, water tank; LS, linear stage; 
RUT, ring-shaped US transducer; OW, optical window; PBM, parabolic mirror; 
and PCB, printed circuit board. 

Fig. 2. (a) Monte Carlo simulation of photon transfer from a light emitting 
diode (LED) light source to a photodiode (PD) detector at a distance of 2 mm. 
(b) Depth profile of red dotted line (i) in (a). (c) 2 mm slit between the LED and 
the PD in a printed circuit board for photoplethysmography. 
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synchronized on the positive edge of the reference counter: (1) the si-
nusoidal waveform for a galvanometer scanner with no delays, (2) the 
triggers for the PD signal acquisition with no delays, and (3) the triggers 
for the pulsed light irradiation and the PA signal acquisition, with a 
delay of one-fourth the period of the reference counter. From the syn-
chronized sequence, the PA and PD signals are acquired during forward 
and reverse scanning, respectively. The acquired PA and PD signals are 
transferred to our customized program made using LabVIEW (National 
Instruments, Austin, TX, USA) and are saved on a data storage unit. 
Signal processing, image visualization, and data analysis are performed 
using MATLAB (MathWorks, Natick, MA, USA). 

Based on the above development, the lateral and axial resolutions for 
PA imaging are 2.5 µm and 68.4 µm, respectively (Supplementary 
Fig. 1). Thanks to the short focal length of the parabolic mirror, the 
lateral resolution is better than 5 µm from the configuration with the 
objective lens and opto-ultrasound beam combiner in the previous 
works. On the other hands, the scannable range is about 1 mm, which is 
narrower compared the previous works due to the trade-off relationship 
between lateral resolution and scanning range. The maximum scanning 
speed of PA imaging is limited on 100 Hz, due to the weight of the 
parabolic mirror although the galvanometer scanner itself can operate 
over 200 Hz. The PPG signals on the area of fingers and cuticles were up 
to 5 V, which is large enough to saturate the supplying voltage of the PD. 
On the in vivo experiments described below, the A and B scan rates of PA 
imaging were 20 kHz and 50 Hz, respectively, and the sampling fre-
quency of PPG signals was 50 Hz. The 50 PA images and 50 PPG signals 
per second were acquired by turns during forward and reverse scanning, 
respectively, which are significantly frequent compared to healthy 
human’s heart rate of about 1 Hz. Thus, it was considered that the PA 
and PPG signals were obtained from same targets. 

2.2. In vivo PA imaging and PPG sensing in a human 

For human experiments, all experimental procedures were approved 
by the Institutional Review Board (IRB) of Pohang University of Science 
and Technology. We recruited three healthy volunteers, explained the 
procedures thoroughly, and received their informed consents. The sub-
jects and the experimenter wore laser safety glasses and clothes to 
protect their eyes and body. Before the imaging experiments, we 
wrapped the PPG-PCB system in a thin plastic film for waterproofing and 
attached the PCB under the water tank. Next, we filled the gap between 
the water tank and the PCB with US gel. With the subjects’ finger placed 
on a customized finger holder, we lifted the holder to bring the finger 
into close contact with the LED and the PD. The subjects were then 
instructed to maintain this positioning. After all experimental prepara-
tion, PA imaging and PPG sensing was performed. To get reliable data 
from the unavoidable motion of the subjects, each experiment was 
performed for about 1 min, which is quite longer than 10 s of data 
required for analysis. Then, the analysis was conducted using the PA 
images with few motion artifacts. When the blood flow was blocked 
temporarily, the upper arm was compressed at 150 mmHg using an 
aneroid sphygmomanometer (HS-2000, Green Cross Medical Science, 

Republic of Korea). The measured laser fluence was 12 mJ/cm2, below 
the 20 mJ/cm2 maximum permissible exposure for skin safety specified 
by the American National Standards Institute. As expected, no laser- 
induced burns were observed on the fingers. 

3. Results 

3.1. In vivo simultaneous PA imaging and PPG sensing 

To demonstrate the feasibility of the PAM-PPG system, we acquired 
PA images and PPG signals from the fingers of the three volunteers. The 
cross-sectional PA B-mode image in Fig. 4a clearly shows the skin and 
the blood vessels, and the vessel movements can be observed in the 
consecutive PA images (Supplementary Video 1). To quantify the 
vascular movements from the consecutive PA images, we tracked a 
single vessel [10]. For the first image, we selected a region of interest 
(ROI) that included a single blood vessel in one image and found a pixel 
with the maximum PA signal in the ROI. Subsequently, we repeatedly 
applied the aforementioned algorithm to the consecutive PA images to 
determine the pixel’s axial position. By applying the above processing to 
the 5 blood vessels indicated by the yellow arrows in Fig. 4a, it was 
confirmed that the blood vessels moved with the same pattern (Sup-
plementary Fig. 2a), and finally the averaged vascular movement of the 
blood vessels was obtained (red line in Fig. 4b). A comparison of the 
vascular movement with the PPG signals (blue line in Fig. 4b) reveals 
that both are periodic and completely in phase, which can be verified by 
through black dotted lines in Fig. 4b. Further, we analyzed the vascular 
movements and the PPG signals in the frequency domain and obtained 
their dominant frequencies of 1.35 Hz, which corresponds to 81 beats 
per minute (BPM) in HR (Fig. 4c–d and Supplementary Fig. 2b). The two 
dominant frequencies indicate that the HRs coincide seamlessly, 
demonstrating that the HR obtained from the vascular movement by 
PAM agrees well with that obtained from the blood volume by PPG. 
Moreover, the HRs from the vascular movements in the three healthy 
volunteers agree well with those derived from the blood volume changes 
(Fig. 4e). Although the HR of each volunteer differs from experiment to 
experiment, the HRs measured by PAM and PPG for a specific trial are 
always identical. 

3.2. In vivo simultaneous PA imaging and PPG sensing with arterial 
occlusion 

To investigate the relationship between the vascular movement and 
the PPG signals further, we conducted experiments of PA imaging and 
PPG sensing under two different conditions. For a normal condition, the 
same experiment as described in Section 3.1 was performed. For an 
abnormal condition with a temporarily blocked blood flow, the upper 
arm was compressed at 150 mmHg using an aneroid sphygmomanom-
eter. Under the normal condition, the blood vessel moved up and down 
about 50 µm. In contrast, it did not move under the arterial-occluded 
condition (Fig. 5a). Even in frequency representations, a dominant fre-
quency of 1.4 Hz could be extracted under the normal condition, but no 
notable frequency components were present under the arterial-occluded 
condition (Fig. 5b). Similarly, there was a clear difference between the 
PPG signals under the two conditions. A distinct periodic pattern could 
be found in the PPG signals under the normal condition, but it was too 
weak to find the pattern under the arterial-occluded condition. (Fig. 5c). 
The difference in the magnitude of the frequency component of 1.4 Hz 
corresponding to the HR in the two different conditions is more evident 
in the frequency domain (Fig. 5d). The dominant frequency of the PPG 
signals obtained under the normal condition was, as expected, 1.4 Hz, 
being the same as the frequency of vascular movement. 

4. Discussion and conclusion 

The PPG signal is proportional to the change in the optical 

Fig. 3. Timing diagram for simultaneous photoacoustic (PA) imaging and 
photoplethysmographic (PPG) sensing. PA imaging and PPG sensing are per-
formed during forward and reverse scans, respectively, which are fully syn-
chronized by a counter. 
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reflectance as a result of cardiac activity. Increased lumen size of arteries 
by systole pushes out surrounding tissues and other blood vessels. 
Consequently, the blood vessels move, and this movement can be 
observed by continuous PA imaging. It can be inferred that these 
vascular movements represent pulsation because they are caused by 
sequential changes started from heartbeat. In contrast, when the blood 
flow delivered to the finger’s arteries is blocked with brachial 
compression, neither PPG signals nor vascular movements are observed. 
In a previous study, human HRs were measured with PAM using a 
commercial US machine to validate the PA results [31], but that vali-
dation was indirect. In our study, the HR deduced from vascular 
movement in PAM was directly and simultaneously validated with the 
PPG signal in the combined PAM-PPG system. 

Simultaneous PA imaging and PPG sensing are meaningful in that 
they observe the cardiac activity using different technical 

methodologies. The PPG signals can be obtained by measuring the 
changes in the amount of light returning from the irradiated light. In 
general, because light for PPG is delivered without optical focus, various 
opto-physiological responses may occur. The main mechanism for 
generating PPG signals is known as changes in the blood volume, but its 
principle has not been clearly investigated because light cannot be tar-
geted at a specific biological tissue. By contrast, PAM tightly focuses 
light and selectively acquires PA signals on blood vessels owing to high 
optical absorption in hemoglobin, as compared to other biological tis-
sues. From high-resolution PA imaging, we found vascular movements 
from consecutive blood vessel images, and these movements may 
change the light path and, consequently, the number of photons 
reaching the PD. From these perspectives, the vascular movements 
measured in this study can be considered as one of the mechanisms to 
perturbate the PPG signals. 

The PAM subsystem suggested the new approach to co-align the light 
and acoustic waves using the flat ring-shaped US transducer and para-
bolic mirror, replacing the traditional setup with the objective lens and 
opto-ultrasound beam combiner. The parabolic mirror was the key 
component by playing multiple roles: (1) focusing the light to targets; 
(2) collimating the generated PA waves on the targets and direct the 
waves to the US transducer; (3) steering both light and acoustic waves 
with the help of the galvanometer scanner. From these features, it made 
optical and acoustic focal lengths equal, removing the alignment process 
along the propagating direction of the light and acoustic waves. In 
addition, by placing the parabolic mirror at the end, it can use a shorter 
focal length than the traditional setups, which can achieve higher NA 
and better resolution. 

The proposed PAM-PPG system can be improved by implementing 
multimodal imaging with the US imaging capability to investigate other 
physical phenomena [32]. A previous US imaging study using a single 
US transducer and a high-speed scanner captured the dilation and 
constriction of arteries and tissue deformation by pulsation [33]. Our 
PAM-PPG system already includes a US transducer and a scanner; thus, 
the US imaging functionality can be easily implemented [34–36]. 
Simultaneous US/PA imaging allows visual observation of arterial pul-
sation and movement of non-arterial blood vessels, providing us clear 
evidence. With the recently developed transparent US transducers, such 
multimodal sensing and imaging may be easily implemented [37,38]. In 
addition, the PAM-PPG system has the potentials to provide blood 

Fig. 4. (a) Cross-sectional PA B-mode image of 
a human finger. The 5 blood vessels indicated 
by yellow arrows were tracked to quantify their 
averaged movement. Quantifications of (a) 
vascular movement by PAM and change in PPG 
signals over time. (c, d) Frequency responses of 
(b) and their dominant frequencies of 1.35 Hz. 
(e) Comparison of the heart rates obtained from 
vascular movement and the change of blood 
volume in three healthy volunteers from three 
repeated experiments. See Supplementary 
Video 1.   

Fig. 5. (a) Vascular movements from photoacoustic microscopy (PAM) and (b) 
photoplethysmographic (PPG) signals under normal and brachial cuffed con-
ditions. (c–d) Frequency responses of (a) and (b). 
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oxygen saturation in different sites through multispectral analysis, and 
each modality has been separately proved for this purpose [39–44]. 
Likewise, the integrated PAM-PPG system can furnish with both capil-
lary and arterial oxygen saturations by employing multi-wavelength 
light sources. Concurrent monitoring of oxygen saturation in 
oxygen-supplying and consuming blood vessels could be used to new 
research such as perfusion studies including both macrocirculation and 
microcirculations. One caveat is that measuring the HR by monitoring 
vascular movement is vulnerable to motion by the subject. These mo-
tions are clearly represented as low-frequency components in Fig. 4b–c. 
The human HR is typically between 60 and 120 BPM (1–2 Hz), whereas 
the motion artifacts that were observed below 1 Hz in Fig. 4c can be 
minimized by suppressing frequency components lower than 1 Hz. 

In this study, we develop an integrated PAM-PPG system that 
simultaneously acquires PA images and PPG signals. To validate the 
system, we continuously obtained vascular images and PPG signals from 
human fingers in vivo. Next, we extracted the HR from the vascular 
movement (captured by PAM) and directly compared this HR value with 
that indicated by blood volume changes (captured by PPG). These re-
sults were consistent. Further, it was confirmed that the above- 
mentioned hemodynamic changes could not be observed during the 
arterial occlusion with the temporarily blocked blood flow. From these 
results, we believe that the PAM-PPG system could be useful in various 
clinical applications. 
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