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Abstract

3D-grid-based chemistry-transport models, such as the Community Multiscale Air Quality 

(CMAQ) modeling system, have been widely used for predicting concentrations of ambient air 

pollutants. However, typical horizontal resolutions of nationwide CMAQ simulations (12×12 km2) 

cannot capture local scale gradients for accurately assessing human exposures and environmental 

justice disparities. In this study, a Bayesian Ensemble Machine Learning (BEML) framework, that 

integrates thirteen learning algorithms, was developed for downscaling CMAQ estimates of ozone 

daily maximum 8-hr averages to census tract level, across the contiguous US and is demonstrated 

for 2011. Three-stage hyperparameter tuning and targeted validations were designed to ensure the 

ensemble model’s ability to interpolate, extrapolate, and capture concentration peaks. The Shapley 

value metric from coalitional game theory was applied to interpret the drivers of subgrid gradients. 

The flexibility (transferability) of the 2011-trained BEML model was further tested by evaluating 

its ability to estimate fine-scale concentrations for other years (2012–2017) without re-training. To 
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demonstrate the feasibility of using the BEML approach to strictly “data-limited” situations, the 

model was applied to downscale CMAQ outputs for a future year scenario-based simulation that 

considers effects of variations in meteorology associated with climate change.

Graphical Abstract
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1. Introduction

Ground-level ozone is one of the six criteria air pollutants for which the U.S. Environmental 

Protection Agency (USEPA) has established National Ambient Air Quality Standards 

(NAAQS). In 2015, USEPA strengthened the primary (health-based) NAAQS for ozone to 

70 ppb and the corresponding Design Value (DV) is calculated as the 3-year average of the 

annual 4th highest Daily Maximum 8-Hour Average.1 According to the latest review of the 

ozone NAAQS,2 sufficient evidence is available to support the establishment of significant 

associations of respiratory and metabolic effects with ozone exposures. However, causal 

relationships with respect to other health outcomes such as cardiovascular, reproductive, and 

nervous system effects are still inconclusive. In this context, producing accurate fine-scale 

spatiotemporal concentration surfaces at community and neighborhood scales is important 

for assessing those potential health effects of long-term and short-term exposures to ambient 

ozone. Furthermore, there is a critical need to accurately assess environmental justice 

disparities for disadvantaged communities: such disparities are often “averaged out” over 

the grid scales of air quality and climate models.

Complementary monitoring networks such as the State or Local Air Monitoring Stations 

(SLAMS) and the Clean Air Status and Trends Network (CASTNET) have been established 

across the contiguous US (CONUS) to provide “ground truth” information for ozone 

exposures.2 However, there are many areas, particularly rural and suburban locations, where 
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ozone monitors are not available (Figure S1). To obtain a complete spatial and temporal 

coverage across the CONUS, the USEPA has developed tools such as the Community 

Multiscale Air Quality (CMAQ) modeling system, which simulates the complex interactions 

of atmospheric chemistry and physics for multiple air pollutants (including ozone) at 

various scales. The reliability and performance of CMAQ have been evaluated extensively 

through an array of applications;3 nonetheless, there are two problems typically associated 

with CMAQ ozone estimates: (1) Due to structural and parametric uncertainties,4 those 

estimates for some areas deviate substantially from measured values (Figure S2); (2) Due to 

limitations in computational resources, CMAQ usually provides estimates at coarse spatial 

resolutions, ranging from 4×4 km2 to 36×36 km2, typically 12×12 km2.5 This limits the 

ability to characterize variations at finer resolutions, such as census tract scales, which 

are important for population-based exposure studies and essential for environmental justice 

assessments.

Geostatistical models have been developed to address the above issues, including Bayesian 

Melding,6 Bayesian Maximum Entropy,7 Spatiotemporal Data Fusion,8 etc. These models 

incorporate “ground truth” from ozone monitors to improve the performance of chemistry-

transport models. USEPA has implemented a Bayesian Spatio-Temporal Hierarchical 

Downscaler (BSTH-DS) model to downscale CMAQ grid-based estimates to census tracts 

for air pollutants such as ozone and PM2.5 across the CONUS.9,10 BSTH-DS produces 

better out-of-sample predictions compared to previous geostatistical methods.10 However, 

due to the assumption of Gaussian random fields and fusion of only monitor measurements, 

the subgrid gradients simulated by BSTH-DS are not expected to fully represent fine-scale 

concentration gradients across census tracts.4

The ensemble method has recently been receiving increased attention for large-scale 

spatiotemporal estimation of ambient air pollution:11–16 it involves training a “meta learner” 

by combining predictions from different single models, called “base learners”, to achieve 

better and more stable results. The meta learner takes advantage of different algorithms to 

capture complex patterns present in large spatiotemporal data sets. However, there are four 

major concerns regarding existing ensemble ML models. First, models in earlier studies 

were tuned and evaluated to maximize their interpolation ability, while their extrapolation 

ability was not fully considered. Interpolation-oriented tuning and validation cannot ensure 

prediction accuracy for many local areas at substantial distances from monitors. Second, 

previous studies mainly focused on predicting annual/seasonal averages instead of peaks. 

For air pollutants such as ozone, both averaged and peak concentrations are important 

exposure-relevant metrics, and should be considered in an ensemble model for achieving 

global and peak accuracy. Third, spatial patterns of fine-scale concentration learned by 

ML models are complex and usually difficult to interpret. Currently there is a lack of 

interpretation tools that can identify drivers of local concentration gradients, for improving 

transparency and credibility of ensemble models, and for developing pollution control 

strategies. Finally, previous studies focused on improving model accuracy, typically using 

cross validation results against ground observations, rather than investigating robustness and 

transferability. Transferable models are needed for downscaling CMAQ estimates beyond 

current conditions (e.g., for future years), when ground observations are unavailable: this 
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would allow use of ensemble ML methods in evaluating air pollution controls that take into 

account effects of climate change.17,18

We developed a Bayesian Ensemble Machine Learning (BEML) framework that flexibly 

selects base learners from thirteen algorithms to downscale the CMAQ estimates for daily 

maximum 8-hr average (DM8HA) ozone concentrations to census tract level across the 

CONUS. We employed three-stage hyperparameter tuning and targeted validation to ensure 

the ensemble model’s ability to interpolate, extrapolate, and capture concentration peaks. 

The subgrid gradients learned from the BEML downscaler (BEML-DS) are interpreted and 

quantified using the Shapley value and compared with available state-of-the-art methods 

such as BSTH-DS. After training the model for year 2011, we tested its transferability 

in downscaling CMAQ ozone estimates across the CONUS from 2012 to 2017 without 

“re-training” with local inputs for those years. Finally, based on the positive outcomes of 

the aforementioned testing, we applied BEML-DS to downscale outcomes from a USEPA 

future year simulation17,18 employing CMAQ to explore effects of climate change on 

photochemical air pollution.

2. Materials and Methods

2.1. Study Domain

The geographical area for our analysis covers the 48 CONUS states and the District of 

Columbia (Figure S1). Within this area, we used the nine climate regions defined by the 

National Oceanic and Atmospheric Administration (NOAA),19 for spatial analysis and data 

splitting as described in the following. DM8HA estimates for the 72,283 census tracts 

of the CONUS, consistent with the estimates available from BSTH-DS, were calculated. 

The temporal domain includes each day of seven consecutive years (2011–2017) and one 

future year (2051); data from the earliest year (2011) were used for model construction and 

evaluation, and years 2012–2017 were used for transferability analysis.

2.2. Data

2.2.1. Ozone Monitor Measurements—Observed ozone DM8HA values were 

obtained from the USEPA Air Quality System (AQS),20 for 1,482 unique monitors across 

the CONUS from 2011 to 2017. The 1,313 monitors reporting in 2011 were split into 

two parts: those reporting at least 75% of valid measurements (708 monitors with 249,197 

observations) were used for model training and different internal validations; the remaining 

605 monitors, with 125,218 observations independent of the model training process, were 

used for external validation (Figure S1). The final CONUS-wide model was trained using all 

1,313 monitors in 2011 to estimate the census tract-based concentrations for the eight years.

2.2.2. CMAQ Model Simulations—The CMAQ estimates of ozone DM8HA are the 

primary inputs for the BEML-DS model, since our goal is to downscale CMAQ outputs to 

census tract level, fusing ground observations and available heterogeneous spatiotemporal 

information. CMAQ outputs for 2011–2017 were retrieved from the USEPA Remote 

Sensing Information Gateway Data Inventory21 corresponding to each 12×12 km2 cell 

within a domain consisting of 396×246 grid cells in the ground layer. We also used CMAQ 
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outputs from simulation for 2051, developed by USEPA researchers with meteorology 

obtained by dynamically downscaling the RCP8.5 scenario from the Community Earth 

System Model.17,18 This simulation provided outputs at 36 km resolution and used 

unchanged (2011) anthropogenic emissions to isolate meteorological effects of climate 

change on air quality.17,18

2.2.3. Other Spatiotemporal Covariates—We considered the following 

spatiotemporal factors to enhance the accuracy and spatial resolution of CMAQ estimates: 

(1) Local meteorological factors, including temperature, relative humidity, solar radiation, 

precipitation, wind speed and direction; (2) Local land use and land cover, including 

elevation, population density, and twelve types of land coverage; (3) Local stationary point 

and nonpoint emissions (CO, SO2, PM10, PM2.5, NOx, VOC, and NH3); (4) Local traffic, 

represented by vehicle miles traveled and road density; (5) Trending variables, including 

longitude, latitude, and day of the year. In variable selection, population density at both 

county and census-tract level was used for modeling, while for other factors we calculated 

buffers with radii of 0.5, 1, 5 and 10 km and selected the buffer variable corresponding to 

the highest correlations with the monitor measurements. Details on the relevant variables are 

presented in Table S1 and Ren, et al.22

2.3. Bayesian Ensemble Machine Learning Framework

The Bayesian Ensemble Machine Learning (BEML) model combines predictions from 

various “base learners” within a flexible framework (Figure 1). Base learners were trained 

with thirteen algorithms, including the Multiple Linear Regression Model (LM), Ridge 

Regression (RIDGE), Least Absolute Shrinkage and Selection Operator (LASSO), Elastic 

Net Regularization (ELASTICNET), Principal Component Regression (PCR), Partial Least 

Squares Regression (PLSR), k-Nearest Neighbors (KNN), Support Vector Regression 

(SVR), Back-Propagation Neural Network (BPNN), Deep Neural Network (DNN), 

Regression Tree (RT), Random Forest (RF), and Extreme Gradient Boosting (XGBOOST). 

These algorithms were selected from nine representative categories of statistical and 

machine learning methods, i.e., linear regression, regularization, dimensionality reduction, 

lazy learning, kernel trick, artificial neural networks, deep learning, decision tree, and 

ensemble learning. The rationale and configuration for each algorithm are summarized 

in the Supporting Information (Text S1). In the training process, each base learner was 

fitted to “learn” the underlying complex patterns between point-based monitor observations 

and associated area-based covariates. Based on the captured “area-to-point” relationships, 

concentrations were estimated for census tract centroids.

2.3.1. Three-Stage Hyperparameter Tuning—Three-stage hyperparameter tuning 

was introduced to balance the model’s ability to interpolate, extrapolate and capture peak 

concentrations (Text S2). For Stage 1, intrinsic hyperparameters of each base learner were 

tuned using coarse/fine grid search with expert knowledge (Text S1.0). An extrapolation-

oriented 5-fold leave-cluster-out sample set, rather than the commonly used interpolation-

oriented random sample hold-out set, was used to assess tuning performance; optimum 

hyperparameters minimizing the 5-fold validated Root Mean Squared Error (RMSE) were 

selected. To balance global accuracy and peak accuracy, Stage 2 implements sample weight 
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tuning, assigning larger weights to peak values and nudging base learners to focus on 

learning peak patterns.22 Stage 3 further optimizes the ensemble model via tuning the 

hyperparameter q (see eq. 6 below) of the BEML meta-learner, with emphasis on trade-offs 

between interpolation, extrapolation, and peak accuracy, instead of simply minimizing the 

cross-validated RMSE of the ensemble outcomes that may increase the risk of overfitting.

2.3.2. Statistical Indices—Three statistical indices were constructed to provide metrics 

of model accuracy, robustness and diversity, and to inform the calculation of ensemble 

weights for each base learner.

The predicted RMSE assesses model accuracy:

RMSE = 1
N ∑

n = 1

N
Obsn − Predn

2
(1)

where Obsn and Predn are the nth observed and predicted responses, and N is the number of 

samples for prediction. For base learner i, the RMSE can be variable for different sample 

sets; therefore, a Robustness Index (RI) was defined to measure robustness/stability of 

prediction performance:

RIi = a

Median(RMSEi)
________________________ + b

IQR(RMSEi)
___________________ (2)

where Median(RMSEi)
________________________

 and IQR(RMSEi)
___________________

 denote the normalized 

median and interquartile range of the RMSE. Herein, we simply set a = 0.7, b = 0.3 to 

account for central tendency and spread of predictions.

To simulate the uncertainty of the RMSE mentioned above, a climate region-based 

resampling method reflecting spatial extrapolation was implemented: Among the 708 

monitors, each time we selected monitors from five out of the nine climate regions to 

train a submodel. Then we used the submodel to calculate the predicted RMSE for the 

remaining samples using eq. 1. This climate region-based resampling generates 126 different 

subsample sets and correspondingly 126 RMSEs. The median and interquartile range of the 

RMSEs were simulated, and finally, the RI was calculated for each base learner with eq. 2 

(Figure S3).

Model diversity is important for ensemble learning. Combining accurate base learners 

with distinct weak learners has been shown to be better than combining similarly strong 

learners.23 Accordingly, we defined a Correlation Index (CI) to measure the similarity of 

base learners (Figure S4):

CIij = 1
126 ⋅ ∑

l = 1

126
RMSEi

(l) ⋅ RMSEj
(l)

(3)
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where CIij denotes the CI between base learner i and base learner j and RMSEi
(l) denotes 

the RMSE of the lth climate region-based subsample set for the ith base learner. The paired 

RMSEs for any two base learners are derived from the same subsample set. Smaller CI tends 

to have smaller RMSE (strong learner) with weaker correlation (distinct learner), indicating 

a good combination for the ensemble model.

2.3.3. BEML Meta Learner—The BEML “meta learner” is designed as a linear 

combination of thirteen base learners:

PredBEML = ∑
k = 1

13
wk

l ⋅ Predk (4)

where Predk and PredBEML are predictions from base learner k and the BEML meta learner, 

respectively, and wk
l  is the ensemble weight for base learner k in location l. Earlier studies 

have used regression methods to optimize wk
l  (“stacking”). Herein, we treated wk

l  as the 

posterior probability Prob(Learner k |Target, l) that base learner k can perfectly emulate the 

underlying air pollutant system (called target function) in location l:

wk
l = Prob (Learner k Target, l)

∝ Likelihood (Learner k Target, l) ⋅ Prior(Learner k) (5)

where Prior (Learner k) is the prior probability, and Likelihood (Learner k | Target, l) is the 

likelihood function. The prior probability is determined via the RI and expert knowledge. In 

Figure S3, base learners with smaller RI than LM were excluded. RT was also excluded due 

to its highly variable predictions. For linear models from the same category, the one having 

the largest RI was selected. Therefore, seven base learners (BPNN, PLSR, ELASTICNET, 

SVR, DNN, RF, and XGBOOST) were assigned a uniform prior 1 7, while the remaining 

were all set to 0. The likelihood is related to the CI:

Likelihood(Learner k Target, l) =
∑i = 1

13 CIki
−q

∑i = 1
13 ∑j = 1

13 CIij
−q (6)

The exponent q in eq. 6 is the hyperparameter in Stage 3, which is tuned by states (l) to 

account for the potential spatial heterogeneity of the ensemble weights. According to eq. 6, a 

strong learner with lower correlation with other base learners tends to have a large likelihood 

and can potentially improve the ensemble performance.

2.3.4. Validation for Base/Meta Learners—Base/meta learners were evaluated with 

respect to seven validation criteria using the same sample sets, and seven statistics (Text 

S4), i.e., RMSE, coefficient of determination, mean bias, peak RMSE, Pearson correlation, 

variance of errors, and variance of model predictions, were calculated for assessing model 

performance. (Descriptions of the validation strategies are provided in Text S3 of the 

Supplement)
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2.3.5. Interpretation of Subgrid Gradients—Unlike global interpretation tools, 

such as permutation variable importance that measures variable contribution across all 

predictions,22 local interpretation tools aim to quantify variable contribution to individual 

predictions, helping to understand why a model makes a certain prediction. Local 

Interpretable Model-diagnostic Explanations (LIME) simulate local variable importance via 

fitting a number of “easily-interpretable” local surrogate models (e.g., linear models) around 

given predictions;24 however this tool does not control the quality of the local fit to the 

data and becomes biased and unreliable for small sample sizes in local approximation.25 To 

alleviate this limitation, a unified framework, called SHapley Additive exPlanations (SHAP), 

is available.26 SHAP simulates variable contribution to individual predictions by calculating 

the Shapley value27 for each variable per sample. Extensively used in coalitional game 

theory, Shapley value currently provides a unique solution to satisfying properties (local 

accuracy, consistency, missingness) desired for explanatory machine learning analysis.26,28

The Shapley value was incorporated in our BEML framework to explain local scale 

gradients. This approach considers the learning/regression process as a game played by 

covariates, where each can generate “payout”, i.e., contribution to the prediction. For a 

specific sample, the Shapley value of the jth covariate φ(j) is the average of marginal 

contributions across all possible coalitions of covariates; φ(j) measures the magnitude of 

the jth covariate contribution to the prediction compared to the reference level. Herein, the 

Shapley value for BEML-DS was approximated as the weighted average of Shapley values 

from the base learners:

φBEML
(j) = ∑

k = 1

13
wk

l ⋅ φk
(j)

(7)

where φk
(j) denotes the Shapley value of the jth covariate from base learner k. It should be 

noted that a feature’s Shapley value is a relative value which changes with the reference 

level selected; the reference level is set as the average of predictions for monitoring sites at 

specific spatial and temporal domains.

3. Results

3.1. Spatiotemporal Evaluation and Analysis of Subgrid Predictions

The performance of each base/meta learner is presented in Table S4. As expected, 10-fold 

leave-sample-out validation (interpolation) provided more optimistic results than 10-fold 

leave-cluster-out validation (extrapolation). Peak accuracy significantly improved after 

sample weight tuning; for instance, the peak-validated RMSE for XGBOOST decreased 

from 11.61ppb to 8.80ppb (−24%), though it caused 2%−3% increase in RMSE for other 

validations. External validation exhibited better results than leave-cluster-out validation, 

since leave-cluster-out validation examined prediction accuracy for locations farther than 

external validation (Figure S6b). BEML achieved significantly better performance than the 

ensemble method (AVERAGING) that simply averages the predictions from the selected 

base learners (Figure S3). Among the thirteen base learners, RF achieved the highest global 
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accuracy and XGBOOST achieved the highest peak accuracy - BEML achieved global 

accuracy closer to RF and peak accuracy closer to XGBOOST.

The performances of CMAQ and of BEML-DS before and after sample weight tuning 

are presented in Figure 2. In estimating DM8HA for the 708 monitors, CMAQ exhibited 

reasonable prediction performance (RMSE=9.80 ppb, R2=0.52) with points scattered around 

the 1:1 line. The performance for the annual 4th highest DM8HA was lower (RMSE=7.86 

ppb, R2=0.42). For the ensemble method, global accuracy was improved for BEML-DS 

without sample weight tuning (RMSE=5.78 ppb, R2=0.83). However, this model cannot 

ensure peak accuracy, and the annual 4th highest DM8HA was underestimated for almost 

all locations. The performance for ozone peak estimation (RMSE=7.37 ppb, R2=0.49) was 

only slightly better than CMAQ. In contrast, BEML-DS with sample weight tuning achieved 

significant improvements in global accuracy for DM8HA (RMSE=5.88 ppb, R2=0.83) and 

peak accuracy for the annual 4th highest DM8HA (RMSE=4.64 ppb, R2=0.80). Here, 

BEML-DS, unless otherwise specified, denotes the model trained based on complete three-

stage hyperparameter tuning. For external validation, BEML-DS performed better than 

CMAQ across different climate regions; for instance, the RMSE in each climate region 

decreased by ~20% (Figure S7).

Spatial distributions of the predicted annual 4th highest DM8HA ozone concentrations 

from four methods (BEML-DS, BSTH-DS, CMAQ, MON-INT) are depicted in Figure 

3 (see Figure S8 for analogous results from the thirteen base learners). MON-INT, a 

simple interpolation method often used in epidemiological studies, assigns closest monitor 

measurements to neighboring counties. MON-INT generated a spatial surface with similar 

or identical values in many neighboring areas, leading to unreliable estimates, especially 

for those counties and census tracts without monitors (Figure S1). CMAQ modeling 

considers the chemistry and transport of atmospheric pollutants, predicting concentrations 

independently of monitor observations. While CMAQ captured spatial patterns consistent 

with MON-INT, it exhibits bias (Figure S2) and cannot provide subgrid scale information 

important for exposure and environmental justice assessments. BSTH-DS fuses CMAQ with 

monitor measurements to ensure perfect fit with available “ground truth” and provides 

estimates for each census tract. However, since spatial patterns are adjusted solely using 

monitor observations and extrapolated via “non-informative” Gaussian random fields, the 

reliability of predicted subgrid gradients cannot be guaranteed.10 BEML-DS fuses CMAQ 

outputs with monitor measurements and a wide spectrum of heterogeneous spatiotemporal 

information, combining different algorithms to capture underlying patterns.

Both BEML-DS and BSTH-DS were found to produce consistent predictions of ozone 

DM8HA across all 72,283 CONUS census tracts for 2011 (Figure S9a). However, 

significant differences are observed in particular ranges, and these differences exhibit a 

strong relationship with census tract distance from the nearest monitor (Figure S9b). Both 

approaches had similar predictions for census tracts close to monitors, e.g., discrepancy 

R2=0.95 for distances <5 km, but diverged for greater distances, with R2 0.85–0.90 for 

distances between 5 and 270 km, and R2 0.65–0.70 for distances exceeding 270 km.
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The extrapolation performance of the three approaches (CMAQ, BSTH-DS, BEML-DS) 

is summarized in Figure S10. Compared with BSTH-DS in predicting DM8HA (Table 

S5), BEML-DS had higher global accuracy (RMSE=8.55 ppb, R2=0.66), larger association 

(r=0.82), and smaller bias (MB = 1.23 ppb). BSTH-DS and BEML-DS had peak accuracy 

lower than CMAQ and the peak RMSE of BSTH-DS was slightly smaller than that 

of BEML-DS. In predicting ozone warm-season mean, BEML-DS captured the highest 

variations of observed data (varZ=27.44 ppb2) and retained the smallest error variations 

(varE=10.76 ppb2): it achieved much better performance than BSTH-DS, with 41.54% 

reduction in RMSE and 54.04% reduction in MB.

Figure 4 depicts the time series of estimated DM8HA at three locations that have been 

historically of interest: New York, NY (urban area), Los Angeles, CA (urban area), and 

Houston, TX (urban and suburban areas). Concentration series for multiple census tracts 

were plotted to show subgrid variations predicted by BEML-DS. The highlighted area in 

New York (Figure 5a) consists of 145 census tracts and correspondingly 145 independent 

concentration series. This area is part of Manhattan and located within the 12×12 km2 

grid cell with the monitor site ID 360610135. BEML-DS reduced bias by calibrating 

CMAQ estimates to ground truth, and simulated subgrid gradients by considering effects of 

heterogeneous spatiotemporal information: these gradients can be interpreted using Shapley 

values (Figure 5, Figure S12–S17); please refer to Text S5 for further discussion.

3.2. Model Transferability to Data Limited Situations

Table 1 lists the transferred RMSE and R2 values for different models by year (see Tables 

S6–S7 for five other evaluation metrics). With the exception of 2014, the 2011-trained 

BEML model can predict well for the next six “future” years, with R2 ranging from 0.66 to 

0.75. It should be pointed that here we report a “pseudo-R2”, as explained in the Note of 

Table 1, instead of the ordinary least squares R2 (OLS-R2) that is typically used for linear 

regression. The pseudo-R2 is more sensitive to bias, and thus is less “optimistic” than OLS-

R2 for (nonlinear) model evaluation. The CMAQ simulation for 2014 had significantly larger 

bias, lower accuracy, and smaller correlation; this resulted in worse BEML performance for 

that year. The 2011-trained BEML model achieved 49% decrease of MB, 33% decrease of 

RMSE, and 22% increase of r compared to CMAQ in 2014, indicating BEML’s robustness. 

Among the fourteen ML models, BEML had the best global accuracy for 2012 and 2015–

2017, and accuracy close to the best base learner (RF) for 2013–2014. In addition, BEML 

achieved performance close to the best base learners for bias (RF) and peak accuracy 

(XGBOOST).

Figure S18 shows the spatial distributions of predicted mean of ozone DM8HA during warm 

season (May to September) for six years. The 2011-trained BEML model captures spatial 

patterns consistent with ground observations (MON-INT) and the monitor-based calibration 

model (BSTH-DS) in each year except 2014. The 2014 CMAQ simulation overestimated 

substantially over large areas such as the Southwest region, causing insufficient calibration 

for the 2011-trained BEML model compared to MON-INT and BSTH-DS that use year-

specific corresponding observations. Higher uncertainties in CMAQ inputs for 2014 resulted 
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in outcomes that exhibited larger positive bias than other years; however CMAQ still 

captured important spatiotemporal patterns (r = 0.67, OLS-R2=0.45).

To assess potential effects of local spatiotemporal covariates on prediction performance, 

we compared predictions at monitoring sites during 2012–2017 using the 2011-trained 

model with different inputs: (1) same year CMAQ estimates and same year fine-scale 

covariates; (2) same year CMAQ estimates and 2011 fine-scale covariates. Performances 

of the RF models (evaluated with seven metrics) in 2012–2017 for the two types of inputs 

are summarized in Table S8. Compared to predictions using reference year covariates with 

which the model was trained, use of actual year fine-scale covariates achieved significant 

reduction of RMSE, peak error, error variance, and significant increase of coefficient of 

determination, correlation. This shows that the 2011-trained ML model is not simply 

debiasing CMAQ outcomes, but that the corresponding local spatiotemporal factors play 

significant roles in improving model accuracy and transferability for “future” years.

Figure 6 shows the simulated spatial distributions of the warm-season (May to September) 

mean ozone DM8HA across the CONUS for a simulation corresponding to a hypothetical 

future year (2051) scenario adopted in earlier studies.17,18 BEML-DS captures complex 

nonlinear patterns that differ by climate region (Figures S19–S24); please refer to Text S6 

for further discussion.

4. Discussion

We developed a robust and flexible/transferable Bayesian Ensemble Machine Learning 

framework for downscaling CMAQ estimates of ozone DM8HA to census tracts across the 

CONUS and considered both past (2011–2017) and future (2051) years. The transferability 

of the model was demonstrated by training it with CMAQ outputs and local data for 2011 

and then applying it to predict concentrations for the other years. New concepts and tools 

were applied to support the design, evaluation, and interpretation of Machine Learning for 

fine-scale air quality modeling.

4.1. Multi-objective Ensemble Method

Previous ensemble models13–15,29–31 typically involved a small number of Machine 

Learning algorithms and estimated ensemble weights via single objective optimization to 

improve performance for a particular validation, not necessarily outperforming learners 

for different validation criteria. The performance of an ensemble model is related to 

both the accuracy and diversity of base learners; furthermore, a robust ensemble model 

must be balanced and evaluated using multiple criteria and objectives.23,32 The present 

study considered a rich set of algorithms and constructed statistical indices to measure 

robustness, accuracy, and diversity of base learners, and fused this knowledge via Bayesian 

inference to update ensemble weights by location. Three-stage hyperparameter tuning and 

targeted validations (Figure 1) were introduced to improve the model’s ability to interpolate, 

extrapolate, and capture peak concentrations.
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4.2. Interpolation vs Extrapolation

Previous ML/ensemble models33–36 have achieved cross-validated (either leave-sample-

out or leave-monitor-out) R2 ranging from 0.64 to 0.78. A recent paper,31 considering 

169 covariates, reported cross-validated R2=0.9 in the predicting of 1×1 km2 ozone 

concentrations across the CONUS. Some state-of-the-art geostatistical models,4,7,8 that 

downscale CMAQ estimates solely with ground observations, have achieved similar 

results with cross-validated R2=0.7–0.9. However, most reported validation results are 

“interpolation-oriented”, thus not reflecting the model’s extrapolation ability.

Leave-monitor-out validation has advantages over leave-sample-out, as it can provide less 

optimistic results;35 however, it reflects prediction accuracy for locations within short 

distances from monitoring sites (up to 36 km). We observed that ~17% of census tracts, or 

equivalently, ~40% of 1×1 km2 grid cells (a resolution used in previous ML studies) in the 

CONUS exceeded the extrapolation distance range for leave-monitor-out validation (Figure 

S6). A traditional geostatistical downscaler model (BSTH-DS) can achieve prediction 

performance similar to the ensemble model (BEML-DS) for census tracts close to monitors 

(interpolation), but significant differences occur for census tracts far from monitors (Figure 

S9). We used targeted leave-cluster-out validation to assess prediction accuracy for areas 

far away from monitors (36–330 km), showing that BEML-DS can improve spatial 

extrapolation accuracy compared to BSTH-DS (Figure S10, Table S5).

Unfortunately, comprehensive spatial extrapolation evaluations for ML/ensemble models 

have been rare (e.g., Huang, et al.37). Compared to representative ensemble and 

geostatistical models, the present study obtained excellent interpolation performance (10-

fold leave-sample-out R2=0.85), and prominent extrapolation performance (10-fold leave-

cluster-out R2=0.69).

4.3. Peak Accuracy

In order to refine earlier ML/ensemble approaches33–36 that focused on annual and seasonal 

averages of ozone concentrations, the present study introduced sample weight tuning to 

balance global and peak accuracy, thus developing the first Machine Learning model 

that can be comparable to state-of-the-art geostatistical methods (BSTH-DS) in predicting 

simultaneously annual peaks and seasonal means of ozone levels (Figure 3, Figure S11).

4.4. Interpretability

Typical Machine Learning modeling is considered a “black-box” approach;38 however, 

interpretable ML provides a framework that can help explain the reasoning of the “learning 

system” to improve prediction credibility.22,39–41 Previous studies have produced predictions 

with very fine resolutions, ranging from 1 km to 100 m for certain areas, but the 

quality of those fine-scale predictions is unknown. In the estimation and evaluation of 

subgrid gradients, the following five issues matter: (1) availability of local spatiotemporal 

information (e.g., microscale measures42) to support the finer scale considered; (2) targeted 

validations to reflect not only interpolation but also extrapolation capability for substantial 

distances; (3) specialized interpretation tools to measure the contributions of local variations; 

(4) locally dense monitoring networks (that benefit from advanced measurement and sensing 
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techniques43,44) for direct evaluation; (5) applicability to exposure and health studies and 

environmental justice assessments.45–48

The present study used the Shapley value, for the first time in this type of application, to link 

the “logic” of subgrid gradients to available local spatiotemporal covariates. The Shapley 

value measures the contribution of inputs (including CMAQ estimates and multiple fine-

scale covariates) to each concentration prediction. CMAQ estimates, as expected, had the 

highest contribution to predictions; however, contributions of certain fine-scale covariates 

are also significant (Figure 6d, Figure S15). The contribution differences for each of those 

covariates across neighboring census tracts are in essence the “forces” acting to generate 

local concentration gradients (Figure S16).

Fusing the spatiotemporal information with explainable effects, the local concentrations 

predicted by BEML-DS exhibited higher credibility (especially for areas far from 

monitors, Figures S9–S10) than the estimates derived through BSTH-DS, which conducts 

“extrapolation” using the assumption of Gaussian random fields without spatiotemporal 

covariates. The data sets generated from the different approaches employed in the present 

article are available at: https://ccl-eohsi.shinyapps.io/beml_ozone_dashboard/, for further 

comparisons and for use in health and environmental justice studies.

4.5. Transferability and CMAQ Downscaling for Future Years

Previous studies15,34,49,50 evaluated prediction performance with back-extrapolation 

validation, estimating historical concentrations, for periods before current monitoring 

networks were operational. The present study focused on “forward-extrapolation” 

performance for years after the training period: we obtained robust results (with consistent 

improvements that were verified by seven evaluation statistics) for predicting six consecutive 

years 2012–2017 using the “historically” trained (2011) BEML-DS model.

In essence, Machine Learning aims to find a “mapping” that can capture complex patterns22 

between monitor observations, CMAQ estimates and multiple fine-scale spatiotemporal 

covariates. A carefully tuned ML model with targeted validations can ensure that these 

patterns are applicable for predictions across the modeling domain, where data scales for 

prediction are consistent with those for training. On one hand, grid-based CMAQ estimates 

were “calibrated” to “adjust” towards “ground truth”; on the other hand, these calibrated 

concentrations (reflecting coarse scale variation) were further “adjusted” locally based on 

fine-scale spatiotemporal covariates that are considered in the training model (local scale 

variation). According to counterfactual analysis performed (Table S8), ML predictions 

for 2012–2017 using 2011 local spatiotemporal covariates had accuracy close to CMAQ 

estimates, while predictions using same year local spatiotemporal covariates can achieve 

further improvements. This finding indicates that local spatiotemporal covariates (main 

sources of subgrid concentration gradients) are important for improving local accuracy and 

transferability for future years.

The BEML model was also applied to downscale CMAQ outcomes for a simulation using 

meteorology for a future year (2051), while employing a hypothetical scenario of “fixed” 

anthropogenic emissions, aiming to isolate the effect of climate on air quality.51 It should be 
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clarified that the objective of this analysis is not to produce accurate predictions of ozone 

concentrations for the future year considered, as this is precluded by the uncertainties in 

the “trajectories” of actual future emissions. Instead, it aims to show that Machine Learning 

can capture complex nonlinear patterns among different variables for specific alternative 

scenarios; those patterns are robust and can be utilized to downscale scenario-based CMAQ 

simulations in data-limited situations. The Shapley value provides a metric that helps to 

quantitatively explain why the “historically” trained ML model makes a certain estimation 

for a local area in specific future scenarios (Figures S19–S24). This “proof of concept” 

demonstration provides a pathway for developing modeling tools required for pursuing 

studies related to environmental and climate justice, thus responding to a critical need for 

already disadvantaged communities.

4.6. Limitations

Naturally, the tools presented in this study must be considered and understood in the context 

of their intended applications. Specifically, the framework and methods introduced here have 

been designed to be robust, flexible and transferable to “data-limited” situations, where re-

training of the ML model with high resolution data may not be an option. This differs from 

the approach and objectives of other related efforts: for example, a recent study31 obtained 

excellent cross-validation results (reflecting interpolation and extrapolation with short 

distances) for ozone concentrations across the CONUS using a broad set of spatiotemporal 

covariates (169 variables including remote sensing data) to improve prediction accuracy. 

In the present study we focused (a) on improving robustness by balancing interpolation, 

extrapolation, and peak accuracy of the downscaling model, combined with basic available 

spatiotemporal information, and (b) on evaluating transferability of the BEML-DS approach 

to data-limited situations, by applying our framework without retraining, to multiple past 

years and evaluating it with available monitor observations. We have further assessed model 

transferability by demonstrating the feasibility of employing BEML-DS in downscaling 

scenario-based CMAQ simulations for a future year, a step that addresses a need in climate 

change and environmental justice studies. Of course, application of the “pre-trained” BEML-

DS framework in a data-limited setting, would only be reasonable for conditions that do 

not alter drastically the dynamics of the air pollution system studied. For situations where 

conditions (emission patterns and levels, meteorology, etc.) may have changed from their 

historically “normal ranges” to an extent that would cause the air pollution dynamics 

simulated by CMAQ to exhibit a drastically different behavior (e.g. to move from a NOx-

limited to a VOC-limited regime of ozone formation in a particular area) one cannot expect 

applicability of the pre-trained BEML-DS. Nevertheless, the good transfer validation results 

(Table 1) appear to support the robustness of our model with respect to reasonable levels of 

structural and parametric model and data uncertainties and fluctuations.

Due to lack of locally dense monitoring networks (a problem for most studies), the 

generated fine-scale concentrations/variations in this national study cannot be directly 

compared and tested. However, relevant demonstrations and analyses have been performed, 

with efforts in the following four aspects: (a) the excellent validation results obtained 

in this study indicate stable and effective mappings between monitor measurements 

and fine-scale variables learned via different algorithms; (b) the Shapley value provides 
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reasonable quantification and explanation regarding driving forces (i.e., potential fine-scale 

attributes) of local variations; (c) inclusion of fine-scale variables can improve extrapolation 

accuracy, compared to BSTH-DS; (d) contributions of fine-scale variables are important to 

predictions, and as expected, inclusion of same year information improves model accuracy 

and transferability. Shapley values provide promising metrics for quantitative interpretation 

of captured local variations and future patterns, but require a substantial computational 

effort, especially for large samples: It takes ~2 min (Intel Xeon 6130) to calculate the 

Shapley values for all 37 features for each estimate; the calculation for ~200,000 estimates 

(Figure 6) for the national study requires high performance computing with tens or hundreds 

of CPUs. However, the computational load is not an issue for smaller regional/community 

studies or for national/global studies using subsets of samples (Text S5.1). Finally, it 

should be noted that the current BEML-DS model employs a deterministic approach 

(i.e., an ensemble of discriminative algorithms) and therefore does not provide confidence 

intervals for each estimate. Expanding the current framework with probabilistic generative 

ML models such as deep probabilistic graphical models,52 Bayesian networks,53 or vine 

copulas54 is currently being evaluated for future enhancements of the information derived 

from outputs produced by spatiotemporal ambient air pollution models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Synopsis:

We developed a transferable Bayesian Ensemble Machine Learning framework for fine-

scale spatiotemporal ozone prediction, applicable to “data-limited” situations that include 

environmental and climate justice issues.
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Figure 1. 
Flow diagram of the Bayesian Ensemble Machine Learning Downscaler (BEML-DS) 

framework.
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Figure 2. 
Simulation/Validation results of Community Multiscale Air Quality (CMAQ) and Bayesian 

Ensemble Machine Learning Downscaler (BEML-DS). The top row shows Daily Maximum 

8-Hour Averages (DM8HA) and the bottom row the annual 4th highest DM8HA. Columns 

represent CMAQ, BEML-DS without, and BEML-DS with sample weight tuning.
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Figure 3. 
Spatial distributions of the predicted annual 4th highest DM8HA ozone concentrations from 

four approaches: Monitor Measurement Interpolation (MON-INT), Community Multiscale 

Air Quality (CMAQ), Bayesian Spatio-Temporal Hierarchical Downscaler (BSTH-DS), and 

Bayesian Ensemble Machine Learning Downscaler (BEML-DS).
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Figure 4. 
Concentration series of ozone monitor measurements, 12×12 km2 grid-based CMAQ model 

estimates, and the neighboring census tract-based BEML-DS estimates in New York, NY 

(top), Los Angeles, CA (middle), and Houston, TX (bottom).
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Figure 5. 
Subgrid gradients in New York, NY as predicted from four approaches.
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Figure 6. 
Ozone estimation and interpretation of variations between future and historical (reference) 

years: Spatial distributions of DM8HA ozone concentrations during warm season (May 

to September) 2051, simulated by (a) CMAQ and (b) BEML-DS; (c) Differences of the 

BEML-downscaled ozone warm-season mean DM8HA between 2051 and 2011; (d) SHAP 

(Shapley Additive exPlanation) summary plot for 2051 ozone predictions (199,512 samples) 

at census tracts with monitor stations across the CONUS, compared to the corresponding 

2011 average predictions at each monitor station during warm season.
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Table 1.

Model transfer performance for different ozone spatiotemporal models by year.

2012 2013 2014 2015 2016 2017

N=381,020 N=381,635 N=381,867 N=380,026 N=383,635 N=391,889

Model RMSE
(ppb) R2 RMSE

(ppb) R2 RMSE
(ppb) R2 RMSE

(ppb) R2 RMSE
(ppb) R2 RMSE

(ppb) R2

CMAQ 9.10 0.60 9.70 0.42 12.19 0.03* 8.81 0.51 8.14 0.56 9.16 0.45

LM 8.41 0.66 8.38 0.56 9.54 0.41 7.75 0.62 7.49 0.63 8.29 0.55

RIDGE 8.37 0.66 8.36 0.57 9.56 0.40 7.69 0.63 7.42 0.63 8.19 0.56

LASSO 8.34 0.66 8.43 0.56 9.92 0.36 7.66 0.63 7.32 0.64 8.14 0.57

ELASTICNET 8.34 0.66 8.43 0.56 9.92 0.36 7.66 0.63 7.32 0.64 8.14 0.57

PCR 8.34 0.66 7.88 0.62 8.68 0.51 7.37 0.66 7.28 0.65 8.09 0.57

PLSR 8.34 0.66 7.86 0.62 8.66 0.51 7.36 0.66 7.26 0.65 8.06 0.57

KNN 7.85 0.70 7.62 0.64 8.00 0.58 7.45 0.65 7.23 0.65 7.58 0.62

SVR 8.39 0.66 7.80 0.62 8.78 0.50 7.27 0.67 7.17 0.66 8.00 0.58

BPNN 8.03 0.69 8.22 0.58 9.22 0.45 7.64 0.64 7.33 0.64 8.05 0.57

DNN 7.83 0.70 7.66 0.64 8.46 0.53 7.36 0.66 7.03 0.67 7.55 0.63

RT 8.46 0.65 8.47 0.56 9.72 0.38 7.96 0.60 7.62 0.61 8.38 0.54

RF 7.19 0.75 7.34 0.67 7.96 0.59 6.86 0.71 6.66 0.70 7.25 0.66

XGBOOST 7.33 0.74 7.74 0.63 8.52 0.53 7.03 0.69 6.82 0.69 7.33 0.65

BEML 7.14 0.75 7.37 0.67 8.14 0.57 6.79 0.71 6.62 0.71 7.23 0.66

*
Note: Here we use a “pseudo-R2” (that can be either negative or positive), where the term “Pred” (defined in Text S4.2) denotes model outcomes: 

this is different from the ordinary least squares R2 (OLS-R2, shares the same formula with pseudo-R2), where the term “Pred” corresponds to 
fitted values from a simple linear regression over model outcomes against monitor observations. Due to higher uncertainties of emissions and other 
input sources for 2014, the CMAQ outcomes for that year exhibit significantly larger positive bias (Figure S18) than other years, thus resulting 

in very low pseudo-R2 (0.03). However, the 2014 CMAQ simulation did capture important spatiotemporal patterns for ozone, with Pearson 

correlation 0.67 (Table S7) and OLS-R2 0.45. The OLS-R2 can be easily calculated as the square of the Pearson correlation r in Table S7.
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