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Abstract
Background  Extracellular vesicles (EVs) are regulators of cell–cell interactions and mediators of horizontal transfer of 
bioactive molecules between cells. EV-mediated cell–cell interactions play roles in physiological and pathophysiological 
processes, which maybe modulated by exposure to pathogens and cocaine use. However, the effect of pathogens and cocaine 
use on EV composition and function are not fully understood.
Results  Here, we used systems biology and multi-omics analysis to show that HIV infection (HIV +) and cocaine (COC) 
use (COC +) promote the release of semen-derived EVs (SEV) with dysregulated extracellular proteome (exProtein), miR-
NAome (exmiR), and exmiR networks. Integrating SEV proteome and miRNAome revealed a significant decrease in the 
enrichment of disease-associated, brain-enriched, and HIV-associated miR-128-3p (miR-128) in HIV + COC + SEV with 
a concomitant increase in miR-128 targets—PEAK1 and RND3/RhoE. Using two-dimensional-substrate single cell hapto-
taxis, we observed that in the presence of HIV + COC + SEV, contact guidance provided by the extracellular matrix (ECM, 
collagen type 1) network facilitated far-ranging haptotactic cues that guided monocytes over longer distances. Functional-
izing SEV with a miR-128 mimic revealed that the strategic changes in monocyte haptotaxis are in large part the result of 
SEV-associated miR-128.
Conclusions  We propose that compositionally and functionally distinct HIV + COC + and HIV–COC– SEVs and their exmiR 
networks may provide cells relevant but divergent haptotactic guidance in the absence of chemotactic cues, under both physi-
ological and pathophysiological conditions.
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Background

Extracellular (ex) molecules including exProteins and 
exRNA, such as miRNA and other non-coding RNAs are 
present in circulation and are implicated in various physi-
ological and pathological processes. The levels of ex-mole-
cules may be regulated by licit and illicit substance (such as 
cocaine), as well as pathogens, including bacteria, fungi, and 
viruses, such as the Human Immunodeficiency Virus (HIV). 
Proteomics analysis of human semen and blood showed that 

a good number of exProteins are associated with EVs [1], 
while others are not EV-associated. Moreover, it has been 
shown that different RNA biotypes are present in semen, 
some of which are SEV-associated [2, 3]. SEV have critical 
roles in a variety of biological processes, such as: regulation 
of HIV infection [4–11], inflammation [8, 12], transcrip-
tion factors [6], and male fertility [13, 14]. Interestingly, 
proteomic studies have shown spectra of altered proteome 
between SEV and blood-derived EVs (BEV) [1], as well 
as HIV-induced changes in SEV proteome [1]. These prior 
studies suggest that the condition of the host, such as infec-
tion with HIV and psychostimulant use, may trigger signifi-
cant alterations in EV composition and functions.

Psychostimulant use in HIV-infected individuals, includ-
ing cocaine [15], contributes to rapid disease progression 
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and virus-induced pathology [16–21]. In addition, drugs 
of abuse may affect male fertility [22], although some fer-
tility parameters may not be altered in HIV-infected men 
unless they progressed to AIDS [23–25]. However, studies 
reporting on the pathogenesis of combined HIV-infection 
and cocaine use are limited [25–27]. Efforts to elucidate 
biomolecular signatures of disorders have been undertaken 
by analyzing body fluids, especially blood, with either pro-
teomics or RNA-Seq approaches [28–35]. However, it is 
likely that neither approach is sufficient given the biological 
dynamics and complexity of body fluids and their extracel-
lular molecules. For example, independent profiling of SEV 
proteome [1] and miRNAome [3, 36] show that SEV have 
complex molecular networks. Thus, systems biology and 
multi-omics approaches that integrate proteome and miR-
NAome networks may facilitate elucidation of the molecular 
signature of SEV associated with reproduction, health, and 
disease [37–39], along with their potential functions.

Of particular interest is the finding that SEV from 
healthy, HIV + COC + men alter monocyte actin cytoskel-
eton dynamics, morphology, adhesion, matrix metallopro-
teinases secretion, and chemotactic migration [40]. Biologi-
cally, monocytes play a vital role in host immune responses 
to pathogens, where their locomotion, including migration 
(regulated by the adhesion molecules, chemokines, and path-
ogen-associated pattern-recognition receptors) [41, 42] are 
essential for their functions [43]. While there are different 
types of cell locomotion, directional or ballistic locomotion 
(cell migration in one direction) is expected to move cells 
rapidly between points, while random locomotion enables 
cells to be more exploratory. In random locomotion, cells 
exhibit non-directional migration that may allow them to 
sample the environment in search of information. This form 
of cell locomotion lacks sensory cues. Ballistic locomo-
tion, which has been described for immune cells, aims at 
increased target identification [44] and involves multiple 
factors that may include one or a combination of external 
guidance cues. Such cues are either chemical, an intrinsic 
propensity of cells to continue moving in the same direc-
tion (persistence) in the absence of external guiding fac-
tor, or physical (ECM networks, such as collagen fibers). 
At baseline, cells may adopt random locomotion. However, 
if presented with a stimulus or guidance cue, the nature of 
the cue determines the rate and type of directional locomo-
tion. In the presence of soluble cues, cells undergo chemot-
axis [45–48], while haptotaxis occurs in response to ECM-
anchored guidance cues [49–51].

Indeed, monocyte migration into tissues (important in 
viral pathogenesis and inflammation) requires intricate inter-
play between the cell surface and the ECM, which serves 
as the guidance cue. Depending on the guidance cues in 
the environment, monocytes can transmigrate from periph-
eral blood into inflammatory tissues or reverse-transmigrate 

from tissues to peripheral blood. Although altered levels of 
various exProteins and exRNAs have been observed in SEV, 
how they are regulated by HIV and cocaine use are not fully 
understood. Also not known is the role of SEV or SEV-
associated molecules in regulating haptotaxis.

In the present study, we used SEV to study how HIV 
infection and cocaine use regulate the repertoire and func-
tions of EV-associated proteins, miRNA, and their interac-
tome. After paired proteomics and small RNA-Sequencing 
(sRNA-Seq) analyses, we employed an in vitro two-dimen-
sional-substrate single cell haptotaxis assay for quantitative 
assessment of the effect of different SEV on haptotaxis. 
Finally, we functionalized SEV with exogenous miR-128 
to directly address the role of SEV-associated miR-128 on 
monocyte haptotaxis.

Results

Study design

The cohort description, demographic information, and 
clinical characteristics of the study participants were 
previously reported [40]. Briefly, existing de-identified 
samples of human semen were obtained from participants 
(aged 18–81 years) in the Multicenter AIDS Cohort Study 
(MACS) [52, 53]. The MACS is a prospective cohort study 
of the natural history of HIV infection in homosexual 
and bisexual men, which was initiated in 1984 in 4 US 
sites (Baltimore-Washington DC, Chicago, Pittsburgh, 
and Los Angeles). Semen samples were obtained from 
study participants semi-annually from 1984 to 1987 and 
stored at − 80 °C until used. The participants included HIV 
uninfected (HIV −) and HIV-infected (HIV +) men who, 
at the time of semen collection, reported either using or 
not using cocaine. Participants were classified as cocaine 
users and included in the study only if they reported using 
cocaine (taken by any route). In other words, if partici-
pants reported using other all psychostimulants without 
cocaine, they were excluded [40]. HIV − participants had 
no history of HIV, hepatitis B virus (HBV), or hepati-
tis C virus (HCV) infections. HIV + donors were ART-
naive, since samples were collected prior to the use of 
ART. SEV were isolated from 48 seminal plasma sam-
ples of HIV–COC– (n = 12), HIV–COC + (n = 12), 
HIV + COC– (n = 12) and HIV + COC + (n = 12) partici-
pants (Fig. 1A, gray shading) by differential centrifugation 
followed by a size exclusion chromatography purification, 
using particle purification liquid chromatography (PPLC) 
[2]. Isolated SEV were subjected to an integrative omics 
approach, consisting of proteomics analysis concurrent 
with an unbiased sRNA-Seq. For the discovery phase, a 
sample-pooling strategy (P1 to P6, Fig. 1A) that consists 
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of pooling two samples into one biological replicate was 
used. Validation studies were conducted with SEV isolated 
from 16 independent donors (n = 4/group, Fig. 1A, blue 
shading). The processes of SEV isolation, omics, and bio-
informatics analyses are summarized in (Fig. 1B, broken 
red line).

The physical properties of SEV from HIV − and 
HIV + participants who use or do not use cocaine

PPLC fractions encompassing the void peak, which con-
tained SEV (Fig. 1C, gray shading) were collected, pooled, 
aliquoted, and stored at − 80 °C. The SEV were analyzed 

Fig. 1   Study workflow and 
EV isolation. A Overall study 
design and sample description. 
B Methodological workflow. C 
Isolation spectra of SEV. Open 
histograms and filled areas 
represent absorbance at 280 nm 
and 600 nm, respectively. The 
longitudinal gray bar denotes 
EV-containing fractions. D 
Particle concentration, size, and 
protein concentration of SEV 
as indicated on the Y axis. E) 
Protein footprint by silver stain-
ing (top) and western blot of 
EV markers (bottom). F Zeta-
potential (ζ-potential) of SEV. 
Error bars represent S.E.M. of 6 
pools (n = 2) per group. Group 
comparison was achieved with 
an ordinary one-way Anova test 
(Tukey correction). *, Adj. p 
value < 0.05; ns, not significant
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for particle concentration, which ranged between 0.74 and 
3.66 trillion particles/mL of seminal plasma, with no sig-
nificant differences among groups (Fig. 1D). A mean par-
ticle size of 114.3 nm, 119.1 nm, 122.5 nm, and 122.2 nm 
were measured for HIV–COC–, HIV–COC + , HIV + COC–, 
and HIV + COC + , respectively (Fig. 1E). Zeta-potential 
measurements ranged between − 19.6 and − 29 mV, indi-
cating an overall negative surface charge of SEVs, with a 
decreasing trend of this negative charge upon HIV infec-
tion (Fig. 1F). This is in line with our previous findings 
[40], but in disagreement with another study [54]. The dis-
crepancy between the studies may be due to the effect of 
ART that appears to oppose the decreased negative charge 
caused by HIV infection [54]. The protein concentration 
was also variable and ranged between 4.14 and 15.9 mg/
mL of seminal plasma, with a non-significant increasing 
trend of the average concentration of 6.86, 7.28, 9.09, and 
10.17 mg/mL, for HIV–COC–, HIV–COC + , HIV + COC–, 
and HIV + COC + , respectively (Fig. 1G). Interestingly, this 
increasing concentration trend remained after normalization 
of protein concentration to particle concentration, despite the 
high variance amongst samples with a protein weight per 
vesicle ranging between 16 and 95 fg/particle (Fig. 1H). This 
analysis was corroborated by a silver stain protein profiling 
which pointed to donor-dependent variations in the protein 
footprint and enrichment (Fig. 1I). All samples were posi-
tive for EV-markers—tetraspanins (CD63, CD9, CD81) and 
HSP70, and negative for calnexin, an endoplasmic reticulum 
marker used as negative control (Fig. 1J). Of note, the SEV 
samples used in this study had been characterized in a prior 
study, where morphological analysis by transmission elec-
tron microscopy (TEM, wide-field and close-up images), 
HIV reverse transcriptase activity, as well as the amount 
of HIV p24 and the levels of cocaine metabolite—benzo-
ylecgonine were reported [40]. Together, these results indi-
cated that the vesicles are EVs, and that the isolation was 
successful.

Characterizing the SEV proteome

Multidimensional protein identification technology—Mud-
PIT [55] was used to analyze HIV–COC–, HIV–COC + , 
HIV + COC–, and HIV + COC + SEV proteomes. After 
mapping the peak lists to an in-house constructed database, 
the analysis yielded a total of 2306 proteins, of which 442 
proteins (19%) were identified with a single unique peptide 
(Table S1). Protein distribution was balanced among the 
samples with no apparent differences between the groups 
(Figs. 2A, C). Intra- and inter-group variations were remark-
ably low as depicted by the JACCARD coefficient heatmap 
(Fig. 2B), a quantitative measure of the degree of similar-
ity between various categories [56], and the Pearson cor-
relation analysis (Fig. 2D). To contextualize our findings, 

this proteomics data set was compared to previously pub-
lished SEV proteomes [57–60]. To this end a systematic 
literature search was conducted (Fig. S1A). The identified 
proteomics studies differed in their cohorts, SEV isolation 
methods, criteria for peptide selection, and/or output protein 
IDs (Table S2). The data sets were thus unified by remov-
ing redundant IDs, converting IDs to gene symbols using 
David gene ID conversion tool, and extracting IDs that are 
mappable to WEB-based GEne SeT AnaLysis Toolkit (See 
Supplemental File). A comparative Venn analysis of the 
remaining IDs revealed that SEV proteome is composed 
of at least 4796 SEV proteins, of which 858 are novel to 
the present study (Fig. S1B). Comparing the SEV proteome 
to Exocarta and Vesiclepedia EV databases, we found that 
23.6% (1132 proteins) were previously not reported in EVs 
(Fig. S1C). Of the 858 novel SEV proteins identified in this 
study, 358 proteins have never been reported in any other 
EV studies and thus, are also novel EV proteins (Fig. S1D). 
Global GO-Term analysis of the total SEV proteome (2306 
proteins) show enrichment in leukocyte mediated immunity 
among the Top-5 terms in biological processes, in addition 
to the exocytosis related terms (Fig. 2E). Cellular compo-
nents were mostly involved in extracellular space terms, as 
expected, whereas molecular function was enriched in terms 
related to catalytic activity, hydrolase activity, carbohydrate 
derivative binding, and binding (Fig. 2E). A deeper analysis 
of the other significantly enriched GO biological processes 
reveal two functional themes of interest: the first relates to 
cell migration, cell motility, cell movement and chemot-
axis, and the second pertains to immune activation, mainly 
involving leukocytes (Table S3). These GO Terms are in line 
with previously described SEV-related GO Terms as well as 
SEV-regulated functions [40].

Altered SEV proteome of HIV + participants who use 
or do not use cocaine

To elucidate the impact of independent or combined 
effects of HIV infection and cocaine use on SEV pro-
teome, we identified key markers for each clinical sub-
group. To this end, we designed a 7-group comparison 
algorithm to facilitate the identification of modifications 
depicted as “Cocaine”, “HIV”, and “Comorbid” effects 
(Fig.  3A). The cocaine effect encompassed differen-
tially present proteins (DPPs) in any of the follow-
ing three comparisons: HIV–COC– vs HIV–COC + , 
HIV + COC– vs HIV + COC + and HIV + COC– vs 
HIV–COC + (regardless of HIV status). The HIV effect 
included DPPs from three comparisons: HIV–COC– vs 
HIV + COC–, HIV–COC +  + vs HIV + COC + , and HIV- 
vs HIV + (regardless of cocaine use status). The comor-
bid effect was depicted by the DPPs resulting from 
HIV–COC– vs HIV + COC + group comparison. Protein 
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enrichment signatures for the three clinical subgroups are 
shown in the Volcano plots (Figs. S2A, S3A, 3B). Princi-
pal Component Analysis (PCA) was employed to further 
unveil variation in SEV proteomes amongst the different 
groups. The score plots of the PCA calculated for Cocaine 
(Fig. S2B) and HIV (Fig. S3B) effects allowed respective 

separation of sample groups. However, the separation was 
most evident in the case of Comorbid effect (Fig. 3C). 
Intergroup relationship was assessed by hierarchical clus-
tering heatmaps. There was acceptable sample clustering 
based on cocaine use (cocaine effect) (Fig. S2C) or HIV 
infection (HIV effect) (Fig. S3C), whereas a complete 

Fig. 2   Global analysis of the 
SEV Proteome from healthy or 
HIV infected participants who 
use or do not use cocaine. A 
Venn diagram showing common 
and unique proteins among the 
clinical groups. B Heatmap of 
the Jaccard coefficient depicting 
similarities and differences 
among clinical groups. C 
Protein counts and distribu-
tion among the clinical groups. 
Error bars represent S.E.M. of 6 
pools (n = 2) per group. Group 
comparison was achieved with 
an ordinary one-way Anova 
test (Tukey correction); ns, not 
significant. D Pearson correla-
tion depicting differences in the 
enrichment level of the SEV 
proteins among the clinical 
groups. E Gene ontology analy-
sis (top-5 Terms) of the total 
SEV proteome (2306 proteins); 
orange, green and blue represent 
biological process, cellular 
component, and molecular func-
tion, respectively
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hierarchical sample clustering between HIV–COC– and 
HIV + COC + clinical subgroups was achieved for the 
Comorbid effect (Fig. 3D). These data suggest signifi-
cant alteration of the SEV proteome by HIV infection and 
cocaine use, either alone or combined.

For insight into the potential function of the comorbid 
signature proteins, we performed a protein–protein inter-
action (PPI) analysis of the identified DDPs in each group 
comparison using GeneMANIA [61]. A three-way Venn 
analysis showed 238, 218, and 97 DPPs for the cocaine, 
HIV, and comorbid effects, respectively (Fig. S2D, S3D). 
PPI analysis demonstrates connectivity between the DPPs 
in the cocaine effect (33.38% physical interactions) and the 
HIV effect (33.69% physical interactions) (Fig. S2E, S3E). 
In the Comorbid group, the connectivity between the DPPs 

was remarkable, with the physical interaction network reach-
ing 52.77% of all types of interactions (Fig. 3E).

Effect of HIV infection and cocaine use on SEV 
miRNAome

SEV miRNAome analysis was conducted using state-of-
the-art low-bias sRNA-Seq technology—RealSeq® [62]. 
Total SEV RNA extracted from SEV isolated from 100 
µL seminal plasma per sample was used. The RNA yields 
ranges between 241 and 1059 ng (Fig. S4A), with an A260/
A280 ratio of 1.42 to 1.92 (Fig. S4B). Qubit technology 
(Fig. S4C) and Tape-Station RNA profiling confirm that 
SEV are enriched in small RNAs, although some samples 
contained detectable levels of larger (18S and 28S) RNAs 

Fig. 3   Altered SEV proteome is 
associated with HIV infection 
comorbid with cocaine use. A 
Group comparison scheme used 
to define the COC–, HIV–, and 
comorbid effects. B Volcano 
plot showing up- (red) and 
down- (blue) regulated proteins 
in the comorbid group as 
compared to the healthy group. 
C PCA plot of the 97 comorbid 
DPPs. Unit variance scaling 
is applied to rows; SVD with 
imputation is used to calculate 
principal components. X and Y 
axis show principal component 
1 and principal component 2 
that explain 33.5% and 10.1% of 
the total variance, respectively. 
Prediction ellipses are such 
that with probability 0.95, a 
new observation from the same 
group will fall inside the ellipse. 
N = 12 data points. D Hierarchi-
cal clustering heatmap of the 
97 comorbid DPPs. Rows are 
centered; unit variance scaling 
is applied to rows. Both rows 
and columns are clustered using 
correlation distance and average 
linkage. 97 rows, 12 columns. 
E Protein–protein interaction 
(PPI) network analysis of the 97 
DPPs using Genemania
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(Fig.s S4D, E). All samples had passing-filter reads ranging 
from 5.5 and 10.5 million following sequencing, except one 
from the Comorbid group that was excluded from the subse-
quent analysis (Table S4). Mapping the reads to YM500v3, 
a human small RNA database [63], yielded 634 miRNAs 
(miRs) with a cutoff of 12 counts (Table S5).

Comparing miRNA distribution among samples with 
four-way Venn diagrams reveals more similarities than dif-
ferences in miRNA signatures (Figs. 4A, B). JACCARD 
coefficient (Fig. 4C) and Pearson correlation (Fig. 4D) anal-
yses of SEV miRNAome show a higher degree of similarity 
in miRNA levels (Pearson) compared to their distribution 
(JACCARD). That said, miRNAome profiles of the four 
groups were more similar than they were different compared 

to the paired proteome (Figs. 2C, D). These analyses suggest 
that HIV infection and/or the use of cocaine may differen-
tially alter the enrichment patterns of proteins and miRNA 
in SEV.

HIV infection and cocaine use endow SEV unique 
miRNAome enrichment pattern and regulatory 
network

To evaluate miRNA enrichment pattern in SEV from dif-
ferent clinical groups, the same strategy employed in the 
proteomics analysis (Fig. 3) was used. Volcano plot analy-
sis identified a total of 15, 36, and 16 differentially present 
miRNAs (DP-miRs) in the “Cocaine, COC”, “HIV”, and 

Fig. 4   Global analysis of SEV 
miRNAome and the effect of 
HIV infection comorbid with 
cocaine use. A Venn diagram 
showing common and unique 
miRNA among the clinical 
groups. B miRNA counts and 
distribution among the clinical 
groups. Error bars represent 
S.E.M. of 6 pools (n = 2) per 
group. Group comparison was 
achieved with an ordinary 
one-way Anova test (Tukey 
correction); ns, not significant. 
C Heatmap of the Jaccard coef-
ficient depicting similarities 
and differences among clinical 
groups. D Pearson correlation 
showing differences in the 
enrichment level of the SEV 
miRNAome among the clinical 
groups. E Volcano plot show-
ing up- (red) and down- (blue) 
regulated miRs in the Comor-
bid group as compared to the 
healthy group. F Heatmap of 
the union of KEGG pathways 
of the 16 Comorbid DP-miRs 
using mirPath v.3 with the 
default parameters
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“Comorbid” groups, respectively (Figs.  4E, S5A, S6A, 
B). DIANA pathway analysis [64] identified mucine type 
O-glycan biosynthesis, ECM–receptor interaction, Estro-
gen signaling pathway, as well as morphine, amphetamine, 
and nicotine addiction, among the top-pathways (Fig. 4F). 
Although several other miRs showed statistically significant 
differences in relative enrichment in SEV, we focused on 
miR-128, because it was the most downregulated miRNA in 
the comorbid group (Figs. 4E) that showed involvement in 5 
(Mucin type O-glycan biosynthesis, ECM–receptor interac-
tion, Amphetamine addiction, Morphine addiction, Nicotine 
addiction) of the seven pathways (Fig. 4F). Moreover, miR-
128 plays a crucial role in normal development and various 
pathologies [65, 66], including mediating TNFα-induced 
inflammation [67], driving cocaine-induced behavioral sen-
sitization [68], regulating bacterial [69] and viral [70–72] 
pathogenesis, dysregulating cytoskeletal dynamics and cell 
migration [73–82].

Altered miR128 network in SEV of HIV infected men 
comorbid with cocaine use

As identification of miR targets provides insights into their 
potential biological function, we determined the target 
genes (TGs) of the DP-miRs in the three group comparisons 
using miRWalk [83]. We defined a TG to be likely true if it 
appears in two of three databases: TargetScan, miRDB, and 
miRTarBase. 140, 836, and 304 TGs were identified in the 
COC, HIV, and Comorbid groups, respectively (Table S6). 
Chord diagram analysis of down-regulated miRs TGs and 
up-regulated DPPs in the Comorbid group identified Pseu-
dopodium Enriched Atypical Kinase 1 (PEAK1) and Rho-
related GTP-binding protein RhoE (RND3) as differential 
functional candidates (Fig. 5A). While PEAK1 has not been 
experimentally validated as miR-128 target gene, RND3 is 
directly targeted by miR-128 [84]. However, the 3’ UTR 
of the human PEAK1 and RND3 mRNA contain predicted 
miR-128 binding site (TargetScan 7.2) [85, 86], as shown 
in Fig. 5B. Comparing the human PEAK1 and RND3 3’ 
UTR for interspecies homology, we found that the miR-
128 target sites are highly conserved among diverse spe-
cies (Fig. S7). Protein–protein interaction network analysis 
(STRING) demonstrates an indirect connection between 
PEAK1 and RND3 through Rho GTPase Activating Pro-
tein 35 (ARHGAP35) and Growth Factor Receptor Bound 
Protein 2 (GRB2) (Fig. 5C). KEGG pathway enrichment 
analysis identified cell signaling pathways including platelet 
activation, focal adhesion, microRNAs in cancer, chemokine 
signaling pathway, proteoglycans in cancer, regulation of 
actin cytoskeleton, and leukocyte transendothelial migration 
(Figs. 5D). Western blot confirmed enrichment of PEAK1 
and RND3 proteins in HIV + COC + SEV compared to 
HIV–COC– SEV, despite intra-group donor variability and 

similar levels of EV markers (Figs. 5E). Because of the very 
limited amount of SEV from all clinical groups, we were 
unable to address whether miR-128 is significantly varied in 
SEV by RT-qPCR, since a good amount of SEV is needed 
to isolate RNA. Nevertheless, the differential miR-128 lev-
els as determined by the sRNA-Seq are quite pronounced 
(Fig. 5F).

To evaluate whether SEV regulate the levels of endog-
enous miR-128 expression and that of miR-128 predicted 
targets in monocytes, we analyzed the levels of miR-128, 
PEAK1, and RND3 after 24-h treatment of U937 cells with 
SEV. HIV–COC– but not HIV + COC + SEV increased the 
level of monocyte miR-128 (Fig. 5G) with a corresponding 
decrease in PEAK1 mRNA (Fig. 5H) and protein (Fig. 5J) 
but an increase in RND3 mRNA (Fig. 5I) and decrease in 
RND3 protein (Fig. 5J). Given these observations, it is likely 
that SEV may regulate miR-128, PEAK1, and RND3 differ-
ently and that HIV infection in the presence of cocaine may 
modify miRNA targets, their pathways, and functions.

Magnitude and direction of monocyte haptotaxis 
is dependent on the clinical source of SEV

Data shown in Figs. 5E, F indicate that SEV have different 
enrichment patterns of the migration regulating miR-128 
and its target genes, while Fig. 5D suggests KEGG path-
way terms related to migration. Hence, we explored how 
HIV and cocaine use may affect SEV-mediated migration. 
To this end, we tracked single cells to study their migratory 
behavior in the presence of contact guidance provided by 
ECM networks, a process known as haptotaxis. U937 cells 
cultured under steady state (vehicle, PBS) or in the presence 
of HIV–COC–, HIV + COC + SEV for 24 h were seeded 
atop collagen-coated wells (Fig. 6A). Individual monocyte 
tracks for every 4 min period were calculated and sequen-
tially plotted (Figs. 6B). Tracks were analyzed to extract 
values for directedness (Fig. 6C), velocity (Fig. 6D), migra-
tion kinetics (Fig. 6E) and cumulative distance (Fig. 6F). 
The data revealed that compared to steady-state haptotaxis, 
monocytes exhibit a rapid and more directional haptotac-
tic migration pattern in the presence of HIV + COC + SEV 
that is distinct from decreased haptotaxis in the presence of 
HIV–COC– SEV (Figs. 6C–F).

To confirm the reported observation, peripheral blood 
mononuclear cells (PBMCs) were treated with the four 
SEV groups under the same conditions as for monocytes 
(Fig. 6A). Individual tracks (Figs. 6G) show that SEV had 
varied effects on PBMC directedness (Fig. 6H) and hap-
totaxis speed (Figs. 6I). However, there was a consistent 
increase in the migration and cumulative distance that 
PBMCs traveled when in the presence of HIV + COC + SEV 
(Figs. 6J, K) compared to HIV–COC– or vehicle.



HIV‑infection and cocaine use regulate semen extracellular vesicles proteome and miRNAome…

1 3

Page 9 of 20  5

The fact that SEV-mediated regulation of haptotaxis 
also occurred with HIV–COC + and HIV + COC– SEV 
in monocytes (Figs. 6B–F) and PBMCs (Figs. 6G–K), 
although to a lesser extent, suggest that both HIV and 
cocaine are contributory to the combined comorbid effect. 
The functional effects of the different SEV on haptotaxis 
are not due to cell death, since cell viability were similar 
across treatments (Fig. S8). These data indicate that donor 
HIV and cocaine use status alter the ability of SEV to 
regulate haptotaxis speed and directionality in monocytes 
and PBMCs.

SEV‑loaded with miR‑128 mimic potentiate 
decreased monocyte haptotaxis

Data presented thus far showed differential (i) enrichment of 
miR-128 and its TGs in HIV–COC– and HIV + COC + SEV 
(Fig. 5E, F), (ii) alteration of endogenous levels of miR-
128 and its TGs in monocytes by SEV (Fig. 5G–J), as 
well as (iii) regulation of distinct haptotactic migration by 
HIV–COC– and HIV + COC + SEV (Fig. 6B–K). Based 
on these data, we specifically investigated the relationship 
between SEV-associated miR-128 and haptotaxis. To this 

Fig. 5   Integrative proteome 
and miRNAome analysis 
reveals dysregulated miR128/
PEAK1/RND3 network in 
comorbid SEV as compared 
to healthy. A Chord diagram 
showing intersection of target 
genes of downregulated miRs 
with upregulated DPPs in the 
Comorbid group compared to 
healthy. B MiRNA–mRNA 
duplex showing miR-128-3p 
binding site (seed nucleotide 
region) on human PEAK1 
(Top) and RND3 (Bottom). C 
String PPI analysis showing 
indirect interaction of PEAK1 
and RND3 through GRB2 and 
ARHGAP35. D Gene ontology 
analysis of the 7 genes identified 
in (C); orange, green and blue 
represent biological processes, 
molecular function, and KEGG 
pathways, respectively. E West-
ern blot validation of miR-128 
targets—PEAK1 and RND3 
protein associated with SEV, 
along with EV markers. F miR-
128 counts in comorbid SEV as 
compared to healthy. G–J Effect 
of SEV from the comorbid and 
healthy groups on endogenous 
monocyte G miR-128 H miR-
128 target PEAK1 gene, I miR-
128 target RND3 gene, as well 
as J PEAK1 and RND3 proteins 
levels. Error bars represent 
S.E.M. of 3 technical replicates. 
Experiments for panels G to I 
were repeated three times with 
similar results. Group compari-
son was achieved with an ordi-
nary one-way Anova test (Tukey 
correction); ns not significant
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end, we loaded healthy donor SEV with miR-128 mimic 
(SEV-miR-128). Briefly, 100 µg of SEV from healthy donors 
was transfected with 150 pmol of miR-128-3p and purified 
via filtration through a 10-kDa filter. The loaded SEV was 
used to treat monocytes. Cells were also treated with vari-
ous controls, including SEV alone, miR128 alone (Fig. 7A), 

or vehicle PBS and All-Star Negative Control, an siRNA 
with no homology to any known gene (miR-CTL), Figure 
S9). None of the treatments had any noticeable effect on 
monocyte viability (Fig. 7B, S9B). However, SEV-miR-128 
decreased the levels of PEAK1 and RND3 as expected 
(Fig. 7C, D). Following single cell tracking, haptotactic 

Fig. 6   SEV from HIV + COC + increase the magnitude and direction 
of leukocyte haptotaxis. A Schematic of workflow for SEV haptotaxis 
assay. Briefly, U937s (0.5 M cells) were treated with either Vehicle, 
or different donor group SEVs (100  µg) for 24  h. Equivalent num-
bers of viable cells were plated on collagen type I coated plates for 
haptotaxis assay. B Representative plots of single monocyte tracks 
following treatment with Vehicle or SEV from the different clini-
cal groups. C–F Plots for monocyte directedness, average velocity, 
kinetic distance migrated, and total distance migrated, respectively. G 
Representative plots of single PBMC tracks treated with Vehicle or 

SEV from the different clinical groups. H–K Plots for PBMC direct-
edness, average velocity, kinetic distance migrated, and total distance 
migrated, respectively. The plots C–F and H–K were calculated for 
1 h at 9 equidistant fields of view per well, in triplicates. Experiment 
was repeated 3 times for monocytes and 2 times for PBMCs, each 
from two independent donors. Ordinary one-way ANOVA test (Dun-
nett’s correction) was used to determine the differences between the 
treated groups as compared to vehicle treatment. Two-tailed Welch’s 
t test was used to compare the differences between SEV treatments. 
****p < .001, ***p < .005, **p < .01, * p < .05, ns not significant
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measures including cell directedness, velocity, migration 
kinetics, and cumulative traveled distance were calculated. 
As expected, miR-CTL did not affect haptotactic measures 
compared to vehicle PBS, except for directness (Fig. S9E–I). 
However, miR-128 alone or encased within SEV halted 
monocyte migration (Fig. 7E) as indicated by a decreased 
directedness (Fig. 7F), velocity (Fig. 7G) and total migrated 
distance (Fig. 7H–I), compared to SEV alone. The trajecto-
ries of the cells treated with SEV-miR-128 show an almost 
complete halt, which appears similar to miR-128 alone com-
pared to SEV alone (Fig. 7H). These findings, which sug-
gest that perturbed haptotactic velocity and distance might 
be regulated by exmiR-128, further validate the results of 
SEV regulated haptotaxis in Fig. 6, where monocytes and 
PBMCs migration velocity and distance were increased by 

miR-128 depleted HIV + COC + SEV but decreased by miR-
128 enriched HIV–COC– SEV.

Discussion

In this study, we employed an integrative multi-omics sys-
tems biology (proteomics and sRNA-Seq), along with ECM-
guided single cell migration assay, to explore the role of 
extracellular vesicles in monocyte haptotaxis. To this end, 
we used omics studies to characterize the cargo composition 
of SEV from diverse clinical groups and then set up in vitro 
haptotaxis experiments to investigate how HIV/cocaine-
induced changes in SEV proteome and miRNAome affect 
haptotaxis. In the proteomics analysis, we included proteins 

Fig. 7   SEV-loaded miR-128 
mimic potentiates decreased 
monocyte haptotaxis. A Sche-
matic of workflow for SEV-
miR-128 mimic studies. Briefly, 
monocytes were either trans-
fected with miR-128 mimic or 
treated with HIV–COC– SEVs 
loaded with miR-128 mimic. 
Following 24 h incubation, 
cell viability was assessed, and 
cells were plated onto collagen 
I coated plates for haptotaxis 
assay. B Viability of monocytes 
treated with miR-128, SEV, 
or SEV-miR-128. C–D Gene 
expression for miR-128 target 
genes. E Representative plots 
of single monocyte tracks fol-
lowing treatment with miR-128, 
SEV, or SEVmiR-128. F–I Plots 
for monocyte directness, aver-
age velocity, kinetic distance 
migrated, and total distance 
migrated, respectively. The 
plots were calculated for 1 h at 
9 equidistant fields of view per 
well, in triplicates. Ordinary 
one-way ANOVA test (Dun-
nett’s correction) was used 
to determine the differences 
between the treated groups as 
compared to vehicle treatment. 
Two-tailed Welch’s t test was 
used to compare the differ-
ences between SEV treatments. 
****p < .001, ***p < .005, 
**p < .01, *p < .05, ns not 
significant
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with one unique peptide, allowing identification of numer-
ous low-expressing cell surface proteins, such as CD151, 
CD180, CD200 and CD99L2. This strategy is not uncom-
mon in proteomics studies [87, 88] and it was estimated 
that 30–50% of the proteome are identified with one unique 
peptide [89]. Of note, CD99L2 is an adhesion molecule that 
plays a key role during inflammation-mediated leukocyte 
extravasation [90, 91]. Our integrative omics studies revealed 
that miR-128 was relatively high in HIV–COC– SEV, low 
in HIV + COC– (Anova, p value = 0.0246), and lowest in 
HIV + COC + (Anova, p value = 0.0065), suggesting that 
HIV infection and cocaine use resulted in the release of SEV 
with decreased miR-128. By analyzing hundreds of mono-
cytes and PBMC haptotactic trajectories, we determined that 
the directionality of the cells, their corresponding velocity, 
and migration distance are increased in the presence of 
HIV + COC + SEV but decreased when HIV–COC– SEV are 
present, suggesting that cell migration is rapid and mostly 
directional in the presence of HIV + COC + SEV.

Measurements of monocytes and PBMC trajectories, 
velocities, and distance revealed substantial differences in 
haptotactic response to SEV. While monocytes haptotactic 
directedness is significantly different in the presence of the 
different SEV (Fig. 6F), PBMC directionality was donor-
dependent (Fig. 6K). However, the cumulative distance 
migrated increased in both monocytes (Fig. 6I) and PBMCs 
(Fig. 6N) in the presence of HIV + COC + SEV, irrespective 
of donor variability (PBMCs). The exact mechanism under-
lying haptotactic migration differences between these cells 
in response to SEV is unknown. Whereas monocytes are 
homogenous, PBMCs consist of a mixture of different cell 
types, including B, T, NK, dendritic cells, and monocytes, 
the percentages of these cell types within PBMCs may differ 
between donors. All of these differences may have differ-
ent haptotactic responses to the SEV and SEV-associated 
miR-128. It is possible that, in addition to the above cell 
type-specific differences, cells may differently interact with 
possible topographic features to influence the organization 
of the actin cytoskeleton and focal adhesions to alter hapto-
tactic responses.

Functionalizing HIV–COC– SEV with miR-128 mimic 
potentiates decrease in the velocity and cumulative migra-
tion distance of cells (Fig. 7). MiR-128 is an intronic miRNA 
encoded by two distinct genes, miR-128–1 and miR-128–2. 
The host gene of miR-128 is the regulator of calmodulin 
signaling (Rcs), also known as Arpp21, and Rac is essential 
for mediating dopamine transmission [92]. The brain, frontal 
cortex, differentiating DA neurons [93], and the male repro-
ductive tract (MRT) [94, 95] all express miR-128. Given its 
tissue-specific expression, miR-128 plays a broad and crucial 
role in various pathologies. In the central nervous system 
(CNS), miR-128 plays a role in development [65]. Further-
more, miR-128 expression is elevated in Alzheimer’s disease 

brain [66], where it regulates motor activity and neuronal 
excitability through the suppression of various ion channels 
and ERK1/2 signaling network [66]. In viral pathogenesis, 
miR-128 is an interferon-inducible miRNA that enhances 
HIV-1 Replication by repressing nuclear import factor 
(TNPO1) mRNA expression [96]. In addition, miR-128 is 
a Tat-responsive miR upregulated in Tat-treated primary 
rat cortical neurons to control neuronal activity [70]. Fur-
thermore, in the MRT of stallions, miR-128 is decreased 
by equine arteritis virus [71]. Downregulated miR-128 was 
associated with increased CXCL16 and long term persis-
tence of equine arteritis virus [71], while the synthesis of 
human rhinovirus (HRV-1B) RNA was increased upon sup-
pression of miR-128 [72], an indication of antiviral function. 
Furthermore, Salmonella enterica serovar enteritidis pro-
teins upregulate miR-128 expression, resulting in decreased 
M-CSF secretion and impaired macrophage recruitment 
[69]. Interestingly, miR-128 responds to cocaine use, since 
it contributes to methamphetamine-induced behavioral sen-
sitization by controlling neuroplasticity [68].

The identification of miR-128 in SEV and its reduced 
enrichment in HIV + COC + SEV is remarkable and may 
suggest potential brain-gonadal crosstalk. Indeed, gonadal 
dysfunction may be linked to physiological, developmen-
tal, pathological (viral infections) problems of the gonad 
and intrinsic processes in the CNS, including chemosignals 
that affect reproduction [97]. Hormonal and neurochemi-
cal regulation involved in reproduction may be regulated 
by brain-enriched miRNAs. It has been shown that tes-
tosterone treatment increased the expression of miR-128, 
which in turn decreased catalytic function of CYP2D6 in 
a cell type-specific manner [98]. On the other hand, orchi-
ectomy (surgical removal of the testicles), which decreases 
testosterone levels, also decreased the levels of miR-128 in 
the hippocampus of males [98]. These studies indicate that 
hormones, such as androgens regulate miRNAs and may 
regulate the levels of miR-128.

The findings of this study are consistent with the obser-
vations that EVs constitute an important but complex fac-
tor in disease pathogenesis and co-morbidities of cocaine 
use. Indeed, studies have shown that miRNAs are encap-
sulated in EVs, and cocaine use regulate EV-associated 
miRNAome [99–101]. Upon cellular internalization of 
EV-containing miRNAs, the miRNAs act as endoge-
nous miRNA to alter the levels of target gene expression 
[99]. In our study, we observed that HIV–COC– SEV are 
enriched in miR-128 (Figs. 4E) with an attendant decrease 
in protein levels of the miR-128 target genes PEAK1 and 
RND3 (Figs. 5E). This inverse relationship between miR-
128 and PEAK1/RND3 was validated in cells treated with 
HIV–COC– SEV (Figs. 5G–J). The multifaceted function 
of SEV is further confirmed by the observation that SEV 
from different clinical backgrounds differentially regulate 
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miR-128 and its targets. The finding that HIV–COC– but 
not HIV + COC + SEV increased miR-128, reduced PEAK1 
and RND3 mRNA and protein is interesting. However, this 
is not surprising, because SEV contain other cargos and 
miR-128 have been shown to modulate protein levels with-
out affecting mRNA target [102]. Hence, it is possible that 
the observed effect may be mediated by other SEV cargoes. 
Noteworthy, exogenous miR-128 mimic decreased PEAK1 
and RND3 mRNA (Figs. 7C, D), further indicating that 
PEAK1 and RND3 are a part of miR-128 network involved 
in regulating monocyte haptotaxis.

Our results provide a molecular view of SEV-mediated 
higher order interactions in cellular behavior and how HIV 
infection and cocaine use may regulate SEV cargo composi-
tion and function. What we did not assess in this study is the 
effector of miR-128 function, the extent to which such effec-
tors influenced monocyte haptotaxis in the context of HIV 
infection/cocaine use, and downstream signaling cascades 
involved. Though beyond the scope of the current studies, 
these experiments are necessary for complete understanding 
of miR-128 and its role in EV-mediated cellular behavior. 
While the inclusion criterion for cocaine use was the use 
of cocaine, it is noteworthy that study participants reported 
using other drugs. Hence, it is plausible that “COC effect” 
observation may be mediated by multiple illicit drugs. Stud-
ies focused on cocaine alone are needed to clarify the contri-
bution of cocaine. Animal models of HIV/AIDs, including 
the non-human primates, are ideal for such studies.

The distinct haptotactic responses by cells treated with 
different SEV (HIV + COC + and HIV–COC–) is indica-
tive that EVs and their exmiR networks may provide cells 
divergent haptotactic guidance in the absence of chemotac-
tic cues, both under physiological and pathophysiological 
conditions. HIV + participants used in this study were ART-
naïve. Thus, the findings are more relevant to new infec-
tions prior to initiation of ART or to people living with HIV 
(PLWH) who are unable to access ART or to stay on therapy. 
In these groups of people, monocytes and macrophages are 
important drivers of pathogenesis and progression to AIDS. 
The finding that SEV (via the cargos) from different clinical 
groups are capable of reprograming the function of mono-
cytes should awaken the reappraisal of monocytes and their 
circulation dynamics in and out of different tissues. For 
example, altered levels of miR-128 in HIV + COC + SEV 
may have implications for the pathogenesis of viruses 
inhibited by SEV, including HIV [4, 5] and ZIKV [103]. 
A reduction in miR-128 may promote trafficking of virus 
infected monocytes from the initial site of infection to 
various anatomic sites, such as the brain, lung, and lymph 
nodes. In addition, modification of SEV cargo in general 
and SEV-associated miR-128 may epigenetic modifications 
in paternally inherited characteristics in offspring [104] in 
both placental and brain tissues during development [105].

With this study, a new framework exists to contextualize 
and evaluate the significance of monocytes in pathogenesis 
of infectious agents comorbid with the epidemic of drug use. 
It is plausible that EV-mediated distinct migratory behaviors 
in response to diverse guidance cues may be physiologically 
or pathophysiologically relevant in shaping fertilization, 
development, host response to infection, or in the recruit-
ment of immune cells to the site of inflammation.

Materials and methods

Ethics and semen samples

This study was conducted according to University regu-
lations approved by Stony Brook University Institutional 
Review Boards (IRB # 201,608,703) using de-identified 
human specimens obtained through the Multicenter AIDS 
Cohort Study (MACS) [52]. 64 specimens obtained from 4 
clinical groups (16 per group), HIV–COC–, HIV–COC + , 
HIV + COC–, and HIV + COC + were used. The selec-
tion criteria and the clinical characteristics were recently 
described [40] and further discussed in the Results section 
under study design. The semen samples were received on 
dry ice and stored at − 80 °C until analysis.

Cells and reagents

Human U937 monocyte-like cells were obtained from 
American Type Culture Collection (ATCC) and maintained 
in complete RPMI media. The complete media was supple-
mented with 10% EV-depleted FBS, 1% penicillin–strepto-
mycin, 1 µg/mL amphotericin B, 2 mM sodium pyruvate, 
1% glutamate, and 10 mM 4-(2-hydroxyethyl)-1-pipera-
zineethanesulfonic acid (HEPES) buffer at pH 8.

EV isolation

The EVs were isolated from the semen specimens by differ-
ential centrifugation and PPLC-based size exclusion chro-
matography (SEC) as previously described [40]. Briefly, 
samples were liquefied at room temperature for 30 min, 
centrifuged at 2000×g for 10 min and 10000×g for 30 min 
to remove cellular debris and large vesicles. Clarified sam-
ples were pooled into six separate pools (n = 2 samples, 100 
µL/sample) for each group. EVs were purified using a grav-
ity-packed sephadex G-50 resin into 22 cm × 1 cm Econo-
column. Elution was achieved by gravity using Phosphate 
Buffered Saline (PBS, Corning, NY, USA). Fractions of 
200 µL were collected, and elution profiles were determined 
by absorbance measurements at 280 nm and 600 nm. The 
void peak which contained the SEVs was collected, pooled, 
and stored in aliquots at – 80 °C. The protein content was 
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measured by the Bradford Assay (Bio-Rad, Hercules, CA, 
USA).

Nanoparticle tracking analysis (NTA)

SEV size, concentration, and zeta potential were measured 
using ZetaView PMX 110 (Particle Metrix, Mebane, NC, 
USA) and the corresponding software ZetaView v8.04.02, 
as previously described [54].

Silver stain and Western blotting

10 µg of SEV proteins or 30 µg of SEV-treated cell lysates 
were loaded on pre-cast 4–20% polyacrylamide Criterion 
gels (BioRad). Gels were either stained using Silver Stain 
Plus Kit (BioRad) following the manufacturer’s protocol or 
blotted onto a PVDF membrane. The blots were blocked 
with 5% BSA in 1X TBST buffer and incubated with the 
primary antibody at 4 °C overnight. The blot was rinsed 
with 1X TBST 3–5 times and incubated with the appropriate 
secondary antibody for 1 h at room temperature, then imaged 
(Odyssey infrared imaging system, LI-COR). Protein band 
intensities were quantified (ImageJ, NIH, Bethsada, MD).

Protein digestion for proteomics

Prior to LC–MS/MS analysis, protein samples were dena-
tured in 8 M urea and 50 mM Tris–HCl, pH 8.0, reduced 
with 10 mM TCEP for 60 min at RT, alkylated with 2 mM 
iodoacetamide for 60 min at RT, and then diluted to 2 M 
urea with 50 mM Tris–HCl, pH 8.0. Trypsin Gold (Promega) 
was added to the mixture (1:25 w/w enzyme to protein ratio) 
before overnight digestion (18 h, 37 °C). The tryptic pep-
tides were desalted using Pierce C18 spin columns (Thermo 
Fischer Scientific) at RT. Peptides were eluted with 80% 
acetonitrile and 0.1% formic acid (FA) and then dried com-
pletely on a SpeedVac Concentrator.

LC–MS/MS analysis

40 µg of trypsinized peptides were resuspended in 5 μL of 
0.5% FA and loaded onto a three-phase MudPIT column 
(150 μm × 2 cm C18 resin, 150 μm × 4 cm SCX resin, fil-
ter union, and 100 μm × 12 cm C18 resin) as described 
previously [1]. A ten-step MudPIT protocol was used for 
the LC–MS/MS analysis on an Eksigent™ AS-1 autosam-
pler and Eksigent™ nano-LC Ultra 2D pump inline with 
a Thermo Fischer Orbitrap LTQ XL linear ion trap mass 
spectrometer with a nanospray source. Each step consisted 
of 0 mm, 25 mM, 50 mM, 100 mM, 150 mM, 200 mM, 
300 mM, 500 mM, 750 mM, and 1000 mM ammonium 
acetate with each salt pulse followed by a 120-min ace-
tonitrile gradient 5–50% B [Buffer A: 0.1% FA; Buffer B: 

0.1% FA in acetonitrile]) MS data acquisition was done in a 
data-dependent “Top-5” method (a survey FTMS scan [res. 
30,000] followed by five data-dependent IT scans for the five 
consequent most abundant ions). The general mass spectro-
metric settings were as follows: spray voltage, 2.4 kV; no 
sheath and no auxiliary gas flow; ion transfer tube tempera-
ture, 200 °C; CID fragmentation (for MS/MS), 35% normal-
ized collision energy; activation q = 0.25; activation time, 
30 ms. The minimal threshold for the dependent scans was 
set to 1000 counts, and a dynamic exclusion list was used 
with the following settings: repeat count of 1, repeat dura-
tion of 30 s, exclusion list size of 500, exclusion duration 
of 90 s. We adjusted the area under the curve (AUC) values 
for each protein (as calculated by the PEAKS software) to 
the corresponding spectral count (SpC) by nullifying AUC 
values for proteins with no detectable SpC [1], and then 
log10-normalized these values. An in-house sequence data-
base was constructed using the Swiss-Prot UniProt Human 
non-redundant, manually annotated database (up000005640, 
version release 2018_04) as the reference database (https://​
www.​unipr​ot.​org/​unipr​ot), to which 381 HIV protein 
sequences (from all clinical isolates available in Uniprot) 
were concatenated.

Total RNA isolation

Total RNA from SEV was isolated from 1 mL of SEV (cor-
responding to ~ 100 µL seminal plasma) using miRNeasy 
plasma kit (Qiagen), with the optional on-column DNase-I 
digestion step. Total RNA was eluted in 25 µL RNase-free 
water once and once with the eluate. RNA quality control 
was assessed by Nanodrop and Agilent Bioanalyzer prior to 
sequencing.

Library preparation and sRNA sequencing

Libraries were amplified by 20 cycles of PCR. Libraries 
were sequenced in one NextSeq 550 run with the NextSeq 
500/550 High Output Kit v2.5 (75 cycles), sequencing was 
done with Single End 75 nt reads and dual 6 nt indexes. 
Libraries were loaded at 1.5 pM and sequenced with a 
RealSeq Biosciences (Santa Cruz, CA) custom sequencing 
primer for read one; 5% PhiX control was used.

Bioinformatics and RNA identification pipeline

For adapter trimming, raw sequencing files for each sam-
ple were merged using the ‘cat’ via the command line 
to generate a single fastq file per sample. The adapter 
sequence was trimmed, and reads with inserts smaller 
than 15 nt were removed. Trimmed reads were aligned 
to two references hg19 and YM500v3, the miRBase data 
set for human miRs using bowtie. Samtools 1.7, using 

https://www.uniprot.org/uniprot
https://www.uniprot.org/uniprot
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htslib 1.7–2, was used to convert and sort the SAM files 
into sorted BAM files. T ‘BuildBamIndex’ picard-tool via 
the PicardCommandLine was used to generate an index 
and convert BAMs to reads files. These files contained 
the name of the object aligned to, and the number of raw 
reads that were aligned. A count matrix was made using a 
proprietary Python program.

For miRs differential presence analysis, we used as a 
cutoff the sum of reads, which was defined as equal or 
larger than the number of samples being compared per 
group times two. Thus, for a miR to be included in the 
analysis the sum of reads should be ≥ 12. The row sum fil-
tration is important, because it accounts for low expressing 
miRs that may be consistently counted in one sample but 
not, or just a few times, in others. In this case, it is impor-
tant to keep zero value counts, because they may have 
biological relevance. Subsequently, the read counts were 
log-10 normalized and two-way ANOVA comparisons 
between different groups performed in Prism software. 
The false discovery rate (FDR) was controlled using the 
method of Benjamini and Hochberg and was set to < 0.05. 
Under these parameters, only a few hits withstood the 
analysis, prompting us to set a lesser stringent cutoff as 
follows: -log(P value) < 0.05 and fold change (FC) of > 2.

Prediction of the DPPs–miRNA interactions

DP-miRs target genes were predicted using miRWalk 3.0 
(http://​mirwa​lk.​umm.​uni-​heide​lberg.​de/) [83], integrating 
the prediction results from at least two of the three avail-
able databases TargetScan [106], miRDB [107], and miR-
TarBase [108]. The default score ≥ 0.95 was considered as 
the cutoff criterion for the prediction analysis in miRWalk. 
Predicted target genes of the upregulated DP-miRs were 
intersected with the downregulated DPPs from the corre-
sponding group comparison and vice versa. The overlap of 
these intersections were further analyzed for protein–pro-
tein interaction using STRING (https://​string-​db.​org/) and 
GENEMANIA (http://​genem​ania.​org), and for gene ontol-
ogy and signaling pathways using WEBGESTALT (http://​
www.​webge​stalt.​org/).

Data visualization, PPI analysis, and pathway 
identification

Venny, InteractivVenn, heatmapper, ClustalVis, Cytoscape 
software (version 3.40) GENEMANIA, STRING, and 
WEBGASTALT were used to calculate and visualize the 
regulatory networks. R Studio (version 4.0.1) was used to 
generate the Chord diagrams using the GOPlot package 
[109].

Transfection of miR‑128‑3p mimic

150 pmol of synthetic LNA-based Syn-hsa-miR-128-3p 
miScript miRNA Mimic (miR-128, Qiagen Cat No./ID: 
MSY0000424|S2) or All-Star-Negative Control (miR-CTL, 
Qiagen Cat No./ID: 1,027,281) were diluted in 100 µL 
Opti-MEM medium to which 3 µL of Hiperfect transfec-
tion reagent (Qiagen) diluted in equal volume of Opti-MEM 
were added, and the mixture was vortexed. After 10 min 
incubation at room temperature to allow for the formation 
of transfection complexes, the mixture was added dropwise 
onto 0.5 million of U937 cells, cultured in a 12-well plate in 
1 mL of cRPMI. 24 h later, cells were assessed for viability 
and harvested for subsequent gene expression (mRNA and 
protein) analysis and single cell migration.

Loading of SEV with miR‑128‑3p mimic

miR-128-3p mimic (150 pmol) was diluted in 100 µL of 
Opti-MEM medium. 3 µL of Hiperfect transfection reagent 
was added to the mixture and vortexed. Samples were incu-
bated for 10 min at room temperature to allow for the forma-
tion of transfection complexes. 100 µg of SEV from healthy 
donors (HIV–COC–) were diluted in 100 µL 1X PBS, added 
to the complexes, and mixed by inversion 3 times. The mix-
ture was incubated at room temperature for 1 h. Follow-
ing incubation, SEV were purified using 3 times filtration 
through a 10-kDa filter with washing by 1X PBS.

Treating cells with SEV or SEV loaded with miR‑128 
mimic

0.5 million cells that were at exponential growth phase were 
plated per well in a 12-well plate in 1 mL of EV-free cRPMI. 
100 µg of SEV were added dropwise onto cells and incu-
bated for 24 h.

Single cell tracking

Following incubation with respective treatments, cells were 
seeded (2,000/well) in a 96-well plate coated with 50 µg/mL 
type I collagen (Bovine, Corning). Cells were then allowed 
to adhere for 3 h at 37 °C. Kinetic images were acquired 
using the Lionheart FX automated microscope. 10× magni-
fication brightfield images were captured at 4 min intervals 
for 1 h at 9 equidistant fields of view per well. Image pro-
cessing was performed using Gen5 ImagePrime software. 
Kinetic frame alignment was applied to improve image qual-
ity and remove X–Y movement between frames that occurs 
naturally during image capture. All cells present in the field 
of view for the entirety of the kinetic read were tracked using 
the Manual Tracking plugin for ImageJ. Cumulative distance 
migrated ( di, accum =

∑n

i=1
di ) and average velocity 

http://mirwalk.umm.uni-heidelberg.de/
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( v = 1

n

∑n

i=1
vi ), where i = index of the single cell, were cal-

culated using the plugin. Directionality (Di) was calculated 
b y  c o m p a r i n g  t h e  e u c l i d i a n  d i s t a n c e 
( di, euclid =

√

(x2 − x1)
2
+ (y2 − y1)

2 ) and the accumulated 
distance (di,accum) between the starting point and the end-
point of a migrating cell ( Di =

di,euclid

di,accum
).

Gene expression

Equivalent amount of RNA from either cells or SEV were 
used for cDNA synthesis using the High-Capacity cDNA 
Reverse Transcription Kit (Applied Biosystems, Ther-
mofisher, Grand Island, NY, USA). The cDNA was then 
used for RT-qPCR assay. The thermal cycler program was 
setup in a 7500 FAST real-time PCR system (Applied Bio-
systems, Thermofisher, Grand Island, NY, USA). The fold 
change in gene expression was calculated using the standard 
∆∆CT method. The primers used are presented in Table S6.

Statistical analysis

GraphPad Prism (Version 9.2.0) was used to plot all graphs 
and perform all statistical analyses. As highlighted in 
Fig. 1A, the SEV characterization, proteomics and sRNA-
Seq analyses (Figs. 1C–J, 2B–D, 3B–D, 4B–E) were con-
ducted using 6 biological pools (n = 2) per group, and an 
ordinary one-way Anova test (Tukey correction) was used 
for group comparisons. For validation experiments, samples 
from individual donors (n = 4 per group) were used either 
individually (Fig. 5E) or pooled (Fig. 5G–J, 6B–K). PBMC 
treatments used two healthy donors. All single cell track-
ing experiments were conducted using randomly selected 
equidistant field of view per well from 3 wells and the 
experiments were repeated two (PBMCs) or three times for 
monocytes.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00018-​021-​04068-2.
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