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Abstract

Objective: Involuntary subject motion is the main source of artifacts in weight-bearing cone-

beam CT of the knee. To achieve image quality for clinical diagnosis, the motion needs to be 

compensated. We propose to use inertial measurement units (IMUs) attached to the leg for motion 

estimation.

Methods: We perform a simulation study using real motion recorded with an optical tracking 

system. Three IMU-based correction approaches are evaluated, namely rigid motion correction, 

non-rigid 2D projection deformation and non-rigid 3D dynamic reconstruction. We present an 

initialization process based on the system geometry. With an IMU noise simulation, we investigate 

the applicability of the proposed methods in real applications.

Results: All proposed IMU-based approaches correct motion at least as good as a state-of-the-

art marker-based approach. The structural similarity index and the root mean squared error 
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between motion-free and motion corrected volumes are improved by 24-35% and 78-85%, 

respectively, compared with the uncorrected case. The noise analysis shows that the noise levels 

of commercially available IMUs need to be improved by a factor of 105 which is currently only 

achieved by specialized hardware not robust enough for the application.

Conclusion: Our simulation study confirms the feasibility of this novel approach and defines 

improvements necessary for a real application.

Significance: The presented work lays the foundation for IMU-based motion compensation in 

cone-beam CT of the knee and creates valuable insights for future developments.
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I. Introduction

In clinical practice, the most commonly used imaging technique for analyzing the knee 

joints of Osteoarthritis patients are standing 2D radiographs. The advantage of 3D 

Computed Tomography (CT) images compared to 2D radiographs is that the anatomical 

structures of the joints can be visualized individually instead of showing a superimposition 

of all components. Furthermore, flexible C-arm cone-beam CT (CBCT) systems and 

dedicated extremity scanners allow imaging under natural loading conditions similar to 

standing radiographs [1], [2]. For example, systems by Curvebeam (PedCAT, Curvebeam 

LLC) or Planmed (Verity, Planmed Oy) are already used in everyday clinical practice to 

image the foot and ankle in a standing position, thus enabling a mechanical analysis of the 

joint [3], [4]. Patient motion is only a minor problem in ankle radiographs because the foot 

is in direct contact with the ground and therefore little motion is expected. In contrast, when 

imaging the knee joints with weight-bearing CBCT as visualized in Fig. 1a, postural sway 

of the subjects while standing poses a greater challenge [5]. The swaying motion leads to 

blurring and streaking artifacts in the 3D reconstructions, sometimes to such an extent that 

the images cannot be used for further analysis [6], [7]. Since it is not useful to prevent 

subject motion when aiming for natural stance, the movement during the scan has to be 

estimated and corrected in order to obtain artifact-free images.

Previous approaches are either image-based or use an external signal or marker in order to 

correct for motion. Performing 2D/3D registration showed very good motion compensation 

capabilities, but required prior bone segmentations and is computationally expensive [8]. 

The same limitation holds for an approach based on a penalized image sharpness criterion 

[9]. By leveraging the epipolar consistency of CT scans, the translation but not the rotation 

of the knees during a CT scan was estimated [10]. Bier et al. [11] proposed to estimate 

motion by tracking anatomical landmarks in the projection images using a neural network. 

Until now, their approach was not applied for motion compensation and was only reliable 

if there were no other objects present. An investigation on the practicality of using range 

cameras for motion compensated reconstruction showed promising results on simulated 

data [12]. An established and effective method for motion compensation in weight-bearing 

imaging of the knee is based on small metallic markers attached to the leg and tracked in 
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the projection images to iteratively estimate 3D motion [13], [14]. However, the process of 

placing the markers is tedious and they produce metal artifacts in areas of interest in the 

resulting images.

In C-arm CBCT, inertial measurement units (IMUs) containing an accelerometer and a 

gyroscope have until now been applied for navigation [15] and calibration [16] purposes. 

Our recent work was the first to propose the use of IMUs for motion compensation 

in weight-bearing CBCT of the knee [5]. We evaluated the feasibility of using the 

measurements of one IMU placed on the shin of the subject for rigid motion compensation 

in a simulation study. However, since the actual movement during the scan is non-rigid, not 

all artifacts could be resolved with the rigid correction approach. For this reason, we now 

investigate non-rigid motion compensation based on 2D or 3D deformation using signals 

recorded by two IMUs placed on the shin and the thigh. Furthermore, a method to estimate 

the initial pose and velocity of the sensors is presented. These two parameters are needed 

for motion estimation and were assumed to be known in the aforementioned publication 

[5]. Another drawback of our previous publication is that we only simulated optimal IMU 

signals and neglected possible measurement errors. In order to assess the applicability of our 

proposed methods in a real setting, and as a third contribution, we now analyze how sensor 

noise added to the optimal IMU signals influences the motion compensation capabilities.

In this article, we present a simulation study similar to the one in our previous 

publication, therefore some content of section II-A is closely related to Maier et al. [5]. 

Furthermore, the previously published rigid motion estimation approach is repeated for 

better comprehensibility.

II. Materials and methods

The whole processing pipeline of the presented simulation study is shown in Fig. 2, where 

black font describes each processing step and green font the respective output. All steps 

shaded in gray relate to the simulation and are described in Section II-A, while all steps 

shaded in green refer to the proposed data processing presented in Sections II-B to II-F.

The simulation contains the following steps: The motion of standing subjects is recorded 

with an optical motion capture system and used to animate a biomechanical model to obtain 

the trajectories of hip, knees and ankles (II-A.1). These positions are then used in two ways: 

First, the lower body of a numerical phantom is deformed to mimic the subject motion and 

a motion-corrupted C-arm CBCT scan is simulated (II-A.2). Secondly, the signals of IMUs 

placed on the model’s leg are computed (II-A.3).

In Section II-B, measurement noise is added to the optimal sensor signals. These noisy 

signals are later used to analyze the influence of measurement errors on the motion 

correction with IMUs.

Then, the proposed IMU-based approaches for motion compensated reconstruction of the 

motion-corrupted CT scan are described: From the IMU measurements, the position and 

orientation, i.e. the pose, of the IMUs over time are computed (II-C). For this step, the initial 

sensor pose and velocity need to be known and are estimated from the first two projection 
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images (II-D). The computed poses are then used for three different motion correction 

approaches compared in this article. First, rigid motion matrices are computed from the 

IMU poses and used to adapt the projection matrices for reconstruction (II-E). Second, the 

projection images are non-rigidly deformed before 3D reconstruction (II-F.2). Third, the 

sensor poses are incorporated in the reconstruction algorithm for a 3D non-rigid deformation 

(II-F.3).

A. Simulation

1) Data acquisition and biomechanical model: In order to create realistic 

simulations, real motion of standing persons is acquired. Seven healthy subjects are recorded 

in three settings of 20 seconds duration: holding a squat of 30 degrees and 60 degrees 

knee flexion, and actively performing squats. Seven reflective markers are attached to each 

subject’s sacrum, to the right and left anterior superior iliac spine, to the right and left lateral 

epicondyle of the knee, and to the right and left malleolus lateralis. The marker positions are 

tracked with a 3D optical motion tracking system (Vicon, Oxford, UK) at a sampling rate of 

120 Hz.

Subsequently, in the software OpenSim [17], the marker positions of the active squatting 

scan of each subject are used to scale a biomechanical model of the human lower body [18] 

to the subject’s anthropometry. The model with attached virtual markers shown in pink is 

displayed in Fig. 1b.

The scaled model is then animated two times per subject by computing the inverse 

kinematics using the marker positions of the 30 degrees and 60 degrees squatting scans 

[19]. The inverse kinematics computation results in the generalized coordinates that best 

represent the measured motion. These generalized coordinates describe the complete model 

motion as the global position and orientation of the pelvis and the angles of all leg joints. 

Before further processing, jumps in the data that occur due to noise are removed, and the 

signals are filtered with a second order Butterworth filter with a cutoff frequency of 6 Hz in 

order to remove system noise. Since the model is scaled to the subject’s anthropometry, the 

generalized coordinates can be used to compute the trajectories of hip, knee and ankle joints. 

These joint trajectories are the input to all further steps of the data simulation.

2) XCAT deformation and CT projection generation: We generate a virtual 

motion-corrupted CT scan using the moving 4D extended cardiac-torso (XCAT) phantom 

[20]. The legs of the numerical phantom consist of the bones tibia, fibula, femur and patella 

including bone marrow and surrounded by body soft tissue. All structures contained in the 

phantom have material-specific properties. Their shapes are defined by 3D control points 

spanning non-uniform rational B-splines. By changing the positions of these control points 

the structures of the XCAT phantom can be non-rigidly deformed.

In the default XCAT phantom the legs are extended. To simulate a standing C-arm CT scan, 

the phantom needs to take on the squatting pose of the recorded subjects that is varying over 

time. For this purpose, the positions of the XCAT spline control points are changed based on 

the hip, knee, and ankle positions of the biomechanical model. The deformation process is 

described in detail by Choi et al. [13].
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Then, a horizontal circular CT scan of the knees is simulated. As in a real setting, 248 

projections are generated with an angular increment of 0.8 degrees between projections, 

corresponding to a sampling rate of 31 Hz. The virtual C-arm rotates on a trajectory with 

1198 mm source detector distance and 780 mm source isocenter distance. The detector has 

a size of 620 × 480 pixels with an isotropic pixel resolution of 0.616 mm. In a natural 

standing position, the knees are too far apart to both fit on the detector, therefore the rotation 

center is placed in the center of the left leg of the deformed XCAT phantom. Then, forward 

projections are created as described in Maier et al. [21]. Since the subject of this study is to 

analyze the motion compensation capability of IMUs, CBCT artifacts other than motion are 

not included in the simulation.

3) Simulation of IMU measurements: The trajectories of hip, knees and ankles 

computed using the biomechanical model are used to simulate the measurements of IMUs 

placed on the leg of the model. IMUs are commonly used for motion analysis in sports and 

movement disorders [22]. They are low cost, small and lightweight devices that measure 

their acceleration and angular velocity on three perpendicular axes. Besides the motion 

signal, the accelerometer measures the earth’s gravitational field distributed on its three axes 

depending on its orientation. We virtually place two such sensors on the shin, 14 cm below 

the left knee joint and on the thigh, 25 cm below the hip joint aligned with the respective 

body segment (Fig. 1b). In a future real application, sensors in these positions are visible in 

the projections as needed for initialization (II-D). At the same time, they are situated at a 

sufficient distance from the knee joint in the direction of the CBCT rotation axis such that 

their metal components do not cause artifacts in the region of interest.

The simulated acceleration a(t) and angular velocity ω(t) at time point t are computed as 

described by Bogert et al. and Desapio et al. [23], [24]:

a(t) = R(t)⊺(r̈Seg(t) + R̈(t)pSen(t) − g), (1)

[ω(t)]× = R(t)⊺R
.
(t) =

0 −ωz(t) ωy(t)
ωz(t) 0 −ωx(t)

−ωy(t) ωx(t) 0
, (2)

ω(t) = (ωx(t), ωy(t), ωz(t))⊺ . (3)

All parameters required in these equations are obtained by performing forward kinematics 

of the biomechanical model. The 3×3 rotation matrix R(t) describes the orientation of the 

sensor at time point t in the global coordinate system, R
.
(t) and R̈(t) are its first and second 

order derivatives with respect to time. The position of the segment the sensor is mounted on 

in the global coordinate system at time point t is described by rSeg(t), with r̈Seg(t) being its 

second order derivative. pSen(t) is the position of the sensor in the local coordinate system 

of the segment the sensor was mounted on. Parameter g = (0, −9.80665, 0)⊤ is the global 

gravity vector.
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B. IMU noise simulation

The IMU signal computation assumes a perfect IMU that can measure without the influence 

of errors. However, in a real application errors can have a significant influence preventing an 

effective motion compensation. For example, Kok et al. [25] showed that the integration of a 

stationary IMU over ten seconds leads to errors in the orientation and position estimates of 

multiple degrees and meters, respectively.

The most prominent error sources in IMUs leading to these high deviations are random 

measurement noise and an almost constant bias [26]. In this study, we focus on the analysis 

of the unpredictable sensor noise. Commercially available consumer IMU devices have 

noise densities that are acceptable for larger motion analysis. An example of a commercially 

available sensor BMI160, Bosch Sensortec GmbH, Reutlingen, Germany, has an output 

noise density of 180 μg/s2 and 0.007 °/s and a root mean square (RMS) noise of 1.8 mg/s2 

and 0.07 °/s at 200 Hz [27]. However, our data shows that the signals produced by a standing 

swaying motion have amplitudes in the range of 0.3 mg/s2 resp. 0.02 °/s. This means that 

when measuring with an off-the-shelf sensor, the signal would be completely masked by 

noise. For this reason, we investigate the noise level improvement necessary to use IMUs for 

the task of motion compensation in weight-bearing CT imaging.

We simulate white Gaussian noise signals of different RMS levels and add them onto the 

simulated acceleration a(t) and angular velocity ω(t). Starting with the RMS values of the 

aforementioned Bosch sensor, the noise level is divided by factors of ten down to a factor 

of 105. The accelerometer and gyroscope noise levels are decreased independently. In the 

following, we will use the notation fa and fg for the exponent, i.e. the factor the RMS value 

is divided by is 10fa resp. 10fg. The noisy IMU signals are then used to compute rigid motion 

matrices for motion compensation as explained in Sections II-C and II-E.

Note that the noise influence is evaluated independently of the IMU-based motion 

compensation methods. All motion compensation methods presented in the following 

sections are first evaluated on the noise-free signals. Afterwards, we perform rigid 

motion compensation with noisy IMU signals to investigate the influence of noise on the 

applicability of IMUs for motion compensation.

C. Transformation algorithm

The following descriptions are based on Maier et al. [5] and are required for all IMU-based 

motion compensation approaches presented in this article.

The IMU measures motion in its local coordinate system, however, motion in the global 

coordinate system of the CBCT scan is required for motion compensation. The orientation 

and position of the IMU S(t) in the global coordinate system at each frame t is described by 

the affine matrix

S(t) =
R t r t
0⊺ 1

, (4)
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where R(t) is a 3×3 rotation matrix, r(t) is a 3×1 translation vector, and 0 is the 3×1 

zero-vector. The IMU pose can be updated for each subsequent frame using the affine global 

pose change matrix Δg(t):

S(t + 1) = Δg(t)S(t) . (5)

This global change Δg(t) can be computed by transforming the local change in the IMU 

coordinate system Δl(t) to the global coordinate system using the current IMU pose:

Δg(t) = S(t)Δl(t)S(t)−1 . (6)

Thus, if the initial pose S(t = 0) is known, the problem is reduced to estimating the 

local pose change Δl(t) in the IMU coordinate system, which is described in the following 

paragraphs.

The gyroscope measures the orientation change over time ω(t) on the three axes of the 

IMU’s local coordinate system which can be directly used to rotate the IMU from frame to 

frame. The measured acceleration a(t), however, needs to be processed to obtain the position 

change over time. First, the gravity measured on the IMU’s three axes is removed based on 

its global orientation. For this purpose, the angular velocity ω(t) is rewritten to 3×3 rotation 

matrices G(t) and used to update the global orientation of the sensor R(t). This orientation 

can then be used to obtain the gravity vector g(t) in the local coordinate system for each 

frame t:

R(t + 1) = R(t)G(t) , (7)

g(t) = R(t)⊺g . (8)

The sensor’s local velocity v(t), i.e. its position change over time, is then computed as the 

integral of the gravity-free acceleration considering the sensor’s orientation changes:

v(t + 1) = G(t)⊺(a(t) + g(t) + v(t)) . (9)

With these computations, the desired local pose change of the IMU Δl(t) for each frame t is 

expressed as an affine matrix containing the local rotation change and position change:

Δl(t) =
G t v t
0⊺ 1

. (10)

Note that the initial pose S(t = 0) and velocity v(t = 0) need to be known or estimated in 

order to apply this transformation process.
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D. IMU pose and velocity initialization

In our previously published work, the initial pose and velocity of the IMU necessary for 

pose estimation in (5) and (9) were assumed to be known, which is not the case in a real 

setting [5]. Thies et al. [28] proposed to estimate the initial pose as an average sensor 

pose computed from the complete set of projection images. However, using the average 

position over the multi-second scan including subject motion leads to inaccurate motion 

compensation results. For this reason, we present an initial pose estimation based only on the 

first projection image. By incorporating also the second projection image, the initial velocity 

can be estimated.

1) Initial IMU pose: The pose of the IMU S(t) at frame t contains the 3D position of 

the origin r(t) and the three perpendicular axes of measurement ux(t), uy(t) and uz(t) in the 

rotation matrix R(t). This coordinate system can be computed from any four non-coplanar 

points within the IMU if their geometrical relation to the sensor’s measurement coordinate 

system is known. For simplicity, in this simulation study we assume that these four points 

are the IMU’s origin r and the points x, y and z at the tips of the three axes’ unit vectors ux, 
uy, and uz. We also assume that the sensor has small, highly attenuating metal components 

at these four points making their projected 2D positions easy to track on an X-ray projection 

image. Since the C-arm system geometry is calibrated prior to performing CT acquisitions, 

the 3D position of each 2D detector pixel, and the 3D source position for each projection are 

also known. Then the searched points r(t), x(t), y(t), and z(t) are positioned on the straight 

line between the source and the respective projected point (Fig. 3a).

In the considered case, the four points need to fulfill the following properties:

• The vectors ux(t), uy(t) and uz(t) spanned by r(t), x(t), y(t) and z(t) must have 

unit length.

• The euclidean distance between two of the points x(t), y(t) and z(t) must be 2.

• The inner product of two of the vectors ux(t), uy(t) and uz(t) must be zero.

• The right-handed cross product of two of the vectors ux(t), uy(t) and uz(t) must 

result in the third vector.

Solving the resulting non-linear system of equations defined by these constraints for the first 

projection at time point t = 0 yields the 3D positions of r(t = 0), x(t = 0), y(t = 0), and z(t = 

0) and thereby the initial sensor pose S(t = 0).

2) Initial IMU velocity: The initial IMU velocity v(t = 0) is needed to compute the 

velocity update in (9). In the following paragraphs, we describe a process to estimate the 

initial velocity, which is illustrated in Fig. 3b.

The IMU acquires data with a higher sampling rate than the C-arm acquires projection 

images (120 Hz and 31 Hz, respectively). If the two systems are synchronized the 

correspondence between the sampling time points t of the IMU and the projection image 

acquisition points i is known. The first projection image corresponds to the first IMU sample 

at time point t = i = 0 and is used to estimate the initial pose S(t = 0). The second projection 
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image at i = 1 corresponds to the IMU sampling point t = n with n > 1 and is used to 

estimate the pose S(t = n).

Since each IMU pose can be computed from the previous one by applying the pose change 

between frames with (5) and (6), the IMU pose at frame t = n can also be expressed as

S(t = n) = S(t = 0)Δl(t = 0)Δl(t = 1)…Δl(t = n − 1) , (11)

which can be rearranged to

S(t = 0)−1S(t = n) = Δl(t = 0)Δl(t = 1)…Δl(t = n − 1) . (12)

However, since v(t = 0) is not known, also Δl(t = 0) and all subsequent local change matrices 

are not known. Therefore, instead of the actual v(t = 0), we use the zero-vector as initial 

velocity introducing an error vector e:

v′(t = 0) = 0 = v(t = 0) + e . (13)

This error is propagated and accumulated in the frame by frame velocity computation in (9) 

and for t >= 1 the resulting error-prone velocity is

v′(t) = v(t) + G(t − 1)⊺G(t − 2)⊺…G(0)⊺e . (14)

These error-prone velocities v′(t) lead to incorrect pose change matrices Δl′(t) and thereby to 

an incorrect computation of S′(t = n):

Δl′(t) =
G t v′ t
0⊺ 1

, (15)

S(t = 0)−1S′(t = n) = Δl′(t = 0)Δl′(t = 1)…Δl′(t = n − 1) . (16)

Inserting (14) and expanding (16) shows that the incorrect initial velocity only has an effect 

on the translation of the resulting affine matrix:

S(t = 0)−1S′(t = n) = S(t = 0)−1S(t = n) +
03, 3 ne

0⊺ 1
. (17)

In this equation, 03,3 denotes a 3×3 matrix filled with zeros. If the translation of S(t = 

0)−1S′(t = n) is denoted as t′ and the translation of S(t = 0)−1S(t = n) is denoted as t, this 

leads to:

t′ = t + ne . (18)
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The correct initial velocity v(t = 0) is computed as

v(t = 0) = − e = − 1
n ⋅ (t′ − t) . (19)

E. Rigid projection matrix correction

Under the assumption that the legs move rigidly during the CT scan, it is sufficient to use 

the measurements of only one sensor placed e.g. on the shin for motion estimation. The pose 

change matrices estimated in (6) and (10) can then be directly applied for motion correction. 

Note that the angular velocity and velocity are resampled to the CT acquisition frequency 

before pose change computation using the synchronized correspondences between C-arm 

and IMU.

An affine motion matrix M(i) containing the rotation and translation is computed for each 

projection i. The motion matrix for the first projection i = 0 is defined as the identity 

matrix M(i = 0) = I, i.e. the pose at the first projection is used as the reference pose. Each 

subsequent matrix is then obtained using the global pose change matrix computed from the 

sensor measurements:

M(i + 1) = M(i)Δg(i) . (20)

In order to correct for the motion during the CBCT scan, we then modify the projection 

matrices P(i) of the calibrated CT scan with the motion matrices M(i) resulting in motion 

corrected projection matrices P(i):

P(i) = P(i)M(i) . (21)

The corrected projection matrices are then used for the volume reconstruction as described 

in Section III-A.

F. Non-rigid motion correction

Contrary to the assumption in Section II-E, the leg motion during the scan is non-rigid since 

the subjects are not able to hold exactly the same squatting angle for the duration of the scan. 

As a consequence, the motion can not entirely be described by a rigid transformation. To 

address this issue, we propose a non-rigid motion correction using both IMUs placed on the 

model. Using the formulas presented in II-C, we can compute the poses tS(t) and fS(t) of 

the IMUs on tibia and femur, respectively. Since the placement of the IMUs on the segments 

relative to the joints is known, the IMU poses can be used to describe the positions of ankle, 

knee and hip joint, a(t), k(t) and h(t), at each time point t.

These estimated joint positions are used to non-rigidly correct for motion during the scans. 

We propose two approaches that make use of Moving Least Squares (MLS) deformations in 

order to correct for motion [29], [30]. The first approach applies a 2D deformation to each 
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projection image, and the second approach performs a 3D dynamic reconstruction where the 

deformation is integrated into the volume reconstruction.

1) Moving least squares deformation: The idea of MLS deformation is that the 

deformation of a scene is defined by a set of m control points. The original positions of the 

control points are denoted as pj, and their deformed positions are qj with j = 1, …, m. For 

each pixel ν in the image or volume, the goal is to find its position in the deformed image 

or volume depending on these control points. For this purpose, the affine transformation f(ν) 

that minimizes the weighted distance between the known and estimated deformed positions 

should be found:

∑
j

ωj ∣ f(pj) − qj ∣2 . (22)

This optimization is performed for each pixel individually, since the weights ωj depend on 

the distance of the pixel ν to the control points pj:

ωj = 1
∣ pj − ν ∣2

. (23)

The weighted centroids p∗ and q∗ and the shifted control points pj = pj − p∗ and qj = qj − q∗
are used in order to find the optimal solution of (22) in both the 2D and 3D case:

p∗ = ∑jωjpj
∑jωj

, (24)

q∗ = ∑jωjqj
∑jωj

. (25)

According to Schäfer et al. [29], in the 2D image deformation case, the transformation 

minimizing (22) is described by:

f(ν) = ∣ ν − p∗ ∣ ∑jqjAj
∣ ∑jqjAj ∣ + q∗ , (26)

where

Aj = ωj
pj

−pj
⊥

ν − p∗

−(ν − p∗)⊥ . (27)

Finding the transformation that minimizes (22) in the 3D case requires the computation of a 

singular value decomposition, as explained by Zhu et al. [30]:
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∑
j

ωjpjqj
⊺ = UΣV⊺ . (28)

The optimal transformation is then described by:

f(ν) = VU⊺(ν − p∗) + q∗ . (29)

2) 2D projection deformation: In our first proposed non-rigid approach, we deform 

the content of the 2D projection images in order to correct for motion. The initial pose of the 

subject is used as reference pose, so the first projection image i = 0 is left unaltered. Each 

following projection image acquired at time point i is transformed by MLS deformation 

using the estimated hip, knee and ankle joint positions h(i), k(i) and a(i) by using them as 

control points for the MLS deformation as described in the following paragraph.

To obtain the 2D points needed for a 2D projection image deformation, the 3D positions 

h(i), k(i) and a(i) are forward projected onto the detector using the system geometry. 

However, since the detector is too small to cover the whole leg of a subject, the projected 

positions of the hip and ankle would be outside of the detector area. For this reason, 3D 

points situated closer to the knee on the straight line between hip and knee, and on the 

straight line between ankle and knee are computed with α = 0.8:

h′(i) = (1 − α)h(i) + αk(i) , (30)

a′(i) = (1 − α)a(i) + αk(i) . (31)

Then, for each projection i, the initial 3D reference positions a′(i = 0), k(i = 0) and h′(i 
= 0) are forward projected onto the detector resulting in the 2D control points pj(i) with 

j = 1, 2, 3. The 3D positions h′(i), k(i) and a′(i) at time of projection acquisition i are 

forward projected to obtain qj(i) with j = 1, 2, 3. Each projection image is then deformed 

by computing the transformation f(ν) according to (26) for each image pixel using these 

control points. Finally, the motion corrected 3D volume is reconstructed from the resulting 

deformed projection images as described in Section III-A.

3) 3D dynamic reconstruction: The second proposed non-rigid approach applies 3D 

deformations during volume reconstruction. In the typical back-projection process of CT 

reconstruction, the 3D position of each voxel of the output volume is forward projected 

onto the detector for each projection image i, and the value at the projected position is 

added to the 3D voxel value. For the proposed 3D dynamic reconstruction, this process is 

altered: before forward projecting the 3D voxel position onto the detector for readout, it is 

transformed using 3D MLS deformation. However, the readout value is added at the original 

voxel position.
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For MLS deformation during reconstruction, the estimated positions of hip, knee and ankle 

joint h(i), k(i) and a(i) are used. The reference pose is again the first pose at i = 0 and 

the 3D positions of hip, knee and ankle h(i = 0), k(i = 0) and a(i = 0) are used as control 

points pj with j = 1, 2, 3. The 3D positions h(i), k(i) and a(i) are used as qj(i) with j = 

1, 2, 3. Note that the 3D positions pj are the same for each projection, contrary to the 2D 

approach where they depend on forward projection using the system geometry. Using these 

control points, during reconstruction the transformation f(ν) is computed for each voxel 

of the output volume and each projection according to (29) and applied for deformation 

resulting in a motion-compensated output volume.

III. Evaluation and Results

A. IMU-based motion compensation

All volumes are reconstructed by GPU accelerated filtered back-projection in the software 

framework CONRAD [31]. The filtered back-projection pipeline included a cosine 

weighting, a Parker weighting, a truncation correction and a Shepp Logan ramp filtering. 

The reconstructed volumes have a size of 5123 voxels with isotropic spacing of 0.5 mm. 

In the case of rigid motion compensation, the motion compensated projection matrices P′ 
are used for reconstruction. In the case of 2D non-rigid motion compensation, the deformed 

projection images are reconstructed using the original projection matrices. In the case of 3D 

non-rigid motion compensation, the original projection matrices and projection images are 

used, but the back-projection process is adapted as described in Section II-F.3.

For comparison, an uncorrected motion-corrupted volume is reconstructed. Furthermore, a 

motion-free reference is realized by simulating a CT scan where the initial pose of the model 

is kept constant throughout the scan. The IMU-based motion compensation approaches are 

compared with a marker-based gold standard approach [14]. For this purpose, small highly 

attenuating metal markers placed on the knee joint are added to the projections and tracked 

for motion compensation as proposed by Choi et al. [14]. All volumes are scaled from 0 to 1 

and registered to the motion-free reference reconstruction.

The image quality is compared against the motion-free reference by the structural similarity 

index measure (SSIM) and the root mean squared error (RMSE). The SSIM index ranges 

from 0 (no similarity) to 1 (identical images) and considers differences in luminance, 

contrast and structure [32]. The metrics are computed on the whole reconstructed leg and on 

the lower leg and upper leg separately.

The proposed initialization method yields the correct initial pose and velocity for all scans 

and all further computations are based on these estimates. Figure 4 shows axial slices 

through the tibia and the femur, and a sagittal slice of one example reconstruction. All 

proposed methods are able to compensate for motion equally as well as the marker-based 

reference approach, or even slightly better. Differences between the methods can only be 

seen in a detailed overlay of the motion compensated reconstruction with the motion-free 

reconstruction. In Fig. 5, details of the axial slice through the thigh are depicted at the 

femoral bone and at the skin-air-border. The motion-free reconstruction is shown in red, and 

the motion compensated reconstructions of the rigid, non-rigid 2D and non-rigid 3D IMU 

Maier et al. Page 13

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



methods are shown in green in the three columns. All pixels that occur in both overlaid 

images are depicted in yellow. It is noticeable that the rigid correction method fails to 

estimate the exact thigh motion leading to an observable shift as a red or green halo at the 

bone interface and at the skin border. This is reduced for the non-rigid 2D correction and 

almost imperceptible for the non-rigid 3D correction.

This visual impression is confirmed by the SSIM and RMSE values in Table I. All 

proposed methods achieve SSIM and RMSE values that are similar or better than those 

of the reference marker-based method. Compared with the uncorrected case, this denotes an 

improvement of 24-35% in the SSIM and 78-85% in the RMSE values, respectively. Higher 

SSIM scores and lower RMSE values are achieved for the 30 degrees squat scans compared 

with the 60 degrees squat scans. When comparing the three proposed IMU methods, the 

results show a slight advantage of the non-rigid 3D approach over the other two IMU-based 

approaches.

To evaluate whether the proposed motion correction approaches lead to a perceived 

improved image quality compared to the marker-based method, a user study is conducted. 

Four medical imaging experts that have several years of experience with CT image 

processing are asked to evaluate the image quality of the motion-corrected images. Three 

of them have intensively worked on improving the reconstruction quality of CT images of 

the knee joint before. For rating the image quality, two slice images in the sagittal or axial 

plane from volumes corrected with different motion compensation methods are displayed 

side by side for comparison. The experts then need to decide which image is of better 

quality. The compared correction methods are marker-based, rigid IMU, 2D non-rigid IMU, 

and 3D non-rigid IMU. Each expert is shown seven image pairs per comparison of two 

methods, which results in a total of 42 comparisons per rater in a random order. The raters 

are not informed which motion compensation methods have been applied to obtain the two 

compared images. If raters have difficulties making a decision, they can request to be shown 

an overlay with the motion-free slice image (similar to the overlays displayed in Fig. 5) to 

highlight differences in more detail.

The results of the user study are shown in Fig. 6. The experts prefer the results of all IMU-

based methods over the marker-based corrected images. Only two times the marker-based 

image is chosen over the rigid IMU correction, whereas the 2D and 3D non-rigid approaches 

are always preferred against the marker-based approach. Both the 2D and 3D non-rigid 

IMU-based approaches are chosen around twice as often when comparing them with the 

rigid IMU-based approach. There is no clear preference observable in the direct comparison 

between 2D and 3D non-rigid approaches.

Only one rater asked for the overlay to decide between marker-based vs. the IMU-based 

methods for two comparisons. For almost 80% of the comparisons between two of the three 

IMU-based methods the raters required the overlay with the motion-free image.

B. Noise analysis

The influence of noise on the motion correction is evaluated in two ways:
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First, the estimated motion is compared by decomposing the motion matrices resulting 

from the noise-free signal and from the different levels of noisy signals into three-axial 

translations and rotations. Each noisy result is then compared to the noise- free estimate. 

For comparison, we compute the RMSE between each axis of the noise-free and the noisy 

translations and rotations, and then average over the three axes. We only evaluate on one 

scan of one subject, but average over five independent repetitions of adding random white 

noise and computing motion matrices and RMSE.

Secondly, volumes reconstructed from noisy signal motion estimates are analyzed. Based 

on the RMSE results from the first part of the analysis, certain noise levels are chosen for 

rigid motion compensated reconstruction. Rigid motion matrices are computed from the 

noisy signals as described in Sections II-C and II-E and used for volume reconstruction as 

described above. For image quality comparison, the SSIM and RMSE are again computed.

The decremental signal noise analysis shows that the RMS noise of current commercially 

available community IMUs would prevent a successful IMU motion compensation (Table 

II, top left). While the resulting rotation estimate shows an average RMSE to the noise-free 

estimate of 1.45°, the value of the estimated translation is considerably larger (9461 mm). 

Deviations above 1 mm and 1° of the translation and rotation are expected to decrease 

the reconstruction quality considerably. For noisy acceleration and angular velocity, an 

average RMSE value below these thresholds was only achieved if the RMS noise value 

was decreased by a factor of 104 or 105. For this reason, and in the further analysis, the 

estimated motion matrices of these noise levels are used to perform a motion compensated 

reconstruction. The resultant reconstructions are shown in Fig. 7. While the image quality 

for fa = 5 is similar to the motion-free case, streaking artifacts are visible when fa = 4, 

independent of fg = 4 or fg = 5. The quantitative analysis of the noisy results in Table 

III confirms this finding: The average SSIM and RMSE values are only slightly decreased 

respectively increased compared with the noise-free estimation if fa = 5, but deteriorate 

markedly when fa = 4.

IV. Discussion

The presented initialization approach based on the system geometry and the first two 

projection images works well under the optimal conditions of a simulation. In a real setting, 

it is unlikely that the IMU will contain clearly distinguishable metal components at the IMU 

coordinate system and they are unlikely to be resolved using current flat panel detectors. 

However, the presented approach can be applied with arbitrary four IMU points, assuming 

their relation to the origin and coordinate system is known. The IMU should then be 

positioned such that their projections are well distinguishable in the two projection images 

required for initialization.

The results of all proposed IMU-based motion compensation methods are qualitatively and 

quantitatively equivalent, or even improved, compared with the gold standard marker-based 

approach that estimates a rigid motion. For the marker-based approach, individual multiple 

tiny markers have to be placed successively, and need to be attached directly to the skin 

in order to limit soft tissue artifact. For effective marker tracking, it should be ensured that 
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they don’t overlap in the projections. The metal also produces artifacts in the knee region. 

An advantage of our proposed methods is the need for only one or two IMUs on the leg. 

Here, the only is that the components used for initialization need to be visible in the first 

projection images. Since the shank and thigh are modeled as stiff segments, the sensors can 

be placed sufficiently far away from the knee joint in order not to cause metal artifacts that 

could hinder subsequent image analyses.

It is noticeable that all methods performed slightly better on the scans where subjects were 

asked to hold a squat of 30 degrees compared with those for the 60 degrees squat. This is 

likely a result of it being more challenging to hold the same pose at a lower squat, where the 

motion in these cases has a higher range leading to increased error.

With the non-rigid 3D IMU approach, improved results are achieved compared with the 

rigid IMU approach, especially in the region of the thigh. Although this is only a small 

improvement, it may have significant impact on further image analyses, as the expected 

cartilage change under load lies in the range of 0.3-0.5 mm [33]. Considering that the pixel 

spacing of the reconstructed volumes is 0.2 mm, this corresponds to a change of 1-3 pixels. 

Thus, it is of utmost importance to be as close as possible to the motion-free case, even if the 

improvement by the non-rigid approaches seems to be subtle.

The results of the user study confirm the superior quality of images resulting from the 

IMU-based methods compared with the marker-based correction. The subtle differences 

between the images corrected by the IMU-based approaches seem to be hard to recognize, 

as the raters very often needed the overlay to decide between the images. However, with this 

support, in the majority of cases the non-rigidly corrected images are rated to have higher 

quality compared with the rigid IMU-based correction. The study also confirms that both 

non-rigid approaches produce results of similar quality, as there is no clear trend of raters in 

favor of or against one of the methods.

The simple model of three moving joint positions and an affine deformation is considerably 

less complex than the XCAT spline deformation during projection generation suggesting that 

further improvements can be achieved by using a more realistic model.

The non-rigid 2D IMU approach provides small improvements in visual results compared 

with the rigid approach (Fig. 5), but the quantitative evaluation shows similar SSIM and 

RMSE values. Although the non-rigid motion estimate might be more accurate, at the same 

time the image deformation introduces small errors, since X-rays measured at a deformed 

detector position would have also been attenuated by other materials.

It is notable that the noise has a larger effect on the processing of the accelerometer 

signal compared with that of the gyroscope signal (Table II). On the one hand, the double 

integration performed on the acceleration leads to a quadratic error propagation. On the 

other hand, the noisy gyroscope signals used for gravity removal and velocity integration 

introduce additional errors that are accumulated during acceleration processing.

The noise level improvements that are required for real application are in the range 

of 105 for the accelerometer and 104 for the gyroscope. Although recently developed 
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accelerometers and gyroscopes achieve these low noise levels, they are designed to measure 

signals in the mg-range and are far too delicate for the application at hand [34]-[36].

Additionally to aiming at reducing the noise level of the applied IMUs, alternative 

approaches towards handling the erroneous data need to be considered in future work. 

Kalman filters and sensor fusion would be well-suited to reduce the large deviations 

that are currently obtained. In many motion analysis applications these approaches have 

been successfully applied to improve motion tracking with noisy data [25], [37]. Further 

information about the sensor pose at certain points in time could for example be obtained 

similarly as in the presented initialization approach. By tracking the projected positions 

of the IMU elements in a few selected projection images an integration update could 

be performed to reduce errors. Moreover, including prior knowledge about the motion 

amplitudes could help to restrict the signal integration to reasonable values.

With regard to a real application, it must also be considered that, unlike during real 

recordings, the subjects in this study did not have a support bar available to hold on to 

(see Fig. 1a). Holding on to the support bar restricts the possible movement, which leads to 

smaller motion and further complicates motion compensation with IMUs.

In our study, we focus only on signal noise as one of the most severe IMU measurement 

errors. In the future, similar simulations might be performed in order to determine further 

necessary specifications.

V. Conclusion

With the presented simulation study, we have shown the feasibility and limitations of 

using IMUs for motion compensated CT reconstruction. While all proposed methods are 

capable of reducing motion artifacts in the noise-free case, our noise analysis shows 

that the applicability in real settings is not yet fully realizable. Our simulation analysis 

nevertheless provides important insights that will be of considerable value in future research. 

If developments continue to progress rapidly, and a robust sensor with low noise level and 

high measurement range is developed, our method could be applied in a real setting.
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Fig. 1: 
(a) Setup of a weight-bearing C-arm cone-beam CT scan of the knees, (b) Biomechanical 

model with virtual reflective markers on the legs (pink spheres) and IMUs on thigh and shin 

(green boxes).
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Fig. 2: 
Processing Pipeline presented in section II. Green boxes describe all parts of the simulation 

study presented in section II-A. Blue boxes refer to the proposed data processing, which is 

detailed in Sections II-B to II-F.
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Fig. 3: 
(a) Disproportionate visualization of the initialization concept. The green box represents 

the sensor with its coordinate system plotted inside. The X-rays (blue) pass through the 

metal components and hit the detector (gray). (b) Visualization of the velocity initialization 

approach. Computing the pose S′(t = n) with incorrect initial velocity v(t = 0) leads to a 

wrong translation t′ which is used for velocity initialization.
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Fig. 4: 
Exemplary slices of a reconstructed volume. Rows: axial slice through shin, axial slice 

through thigh, sagittal slice. (a) Scan without motion, (b) uncorrected case, (c) marker-based 

reference method, (d) rigid IMU method, (e) non-rigid IMU 2D projection deformation, (f) 

non-rigid IMU 3D dynamic reconstruction. Motion artifacts can be reduced by all proposed 

methods in a similar manner as the marker-based method.
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Fig. 5: 
Details of an axial slice through the thigh. Rows: femoral bone, skin border. Overlay of 

motion-free reference (red) and the result of the method (a) rigid IMU, (b) non-rigid 2D 

IMU, (c) non-rigid 3D IMU (green), overlapping pixels shown in yellow.
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Fig. 6: 
Results of the user study averaged over all four raters with standard deviation. The six bar 

plots refer to the comparison between two motion compensation methods each (yellow: 

marker-based, red: rigid IMU-based, green: 2D non-rigid IMU-based, blue: 3D non-rigid 

IMU-based). Each rater was shown seven image pairs per method comparison. The bar 

height shows how many times the raters on average chose a method over the other.
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Fig. 7: 
Comparison of noise-free and noisy rigid IMU compensation. Rows: axial slice through 

shin, axial slice through thigh, sagittal slice. (a) Noise-free IMU signal, in row (b)-(e) noise 

is added to the simulated acceleration and angular velocity. The RMS noise value is 1.8 

mg/s2 resp. 0.07 °/s divided by 10fa resp. 10fg.
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