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Abstract

Scanning probe microscopies and spectroscopies enable investigation of surfaces and even buried 

interfaces down to the scale of chemical-bonding interactions, and this capability has been 

enhanced with the support of computational algorithms for data acquisition and image processing 

to explore physical, chemical, and biological phenomena. Here, we describe how scanning 

probe techniques have been enhanced by some of these recent algorithmic improvements. One 

improvement to the data acquisition algorithm is to advance beyond a simple rastering framework 

by using spirals at constant angular velocity then switching to constant linear velocity, which 

limits the piezo creep and hysteresis issues seen in traditional acquisition methods. One can also 

use image-processing techniques to model the distortions that appear from tip motion effects and 

to make corrections to these images. Another image-processing algorithm we discuss enables 
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researchers to segment images by domains and subdomains, thereby highlighting reactive and 

interesting disordered sites at domain boundaries. Lastly, we discuss algorithms used to examine 

the dipole direction of individual molecules and surface domains, hydrogen bonding interactions, 

and molecular tilt. The computational algorithms used for scanning probe techniques are still 

improving rapidly and are incorporating machine learning at the next level of iteration. That 

said, the algorithms are not yet able to perform live adjustments during data recording that could 

enhance the microscopy and spectroscopic imaging methods significantly.
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INTRODUCTION

During the past four decades, computers have evolved as everyday instruments in research 

laboratories. Experimentalists benefit from data digitization that has fundamentally changed 

the process of data acquisition, analysis, and presentation. Theorists have leveraged the 

computational power and memory space of modern computers to obtain results from 

physical models previously unsolvable by pen-and-paper approaches. Nanoscale imaging 

is one of the fields revolutionized by the use of computers. One example that illustrates 

the power of the computer-aided processes is super-resolution fluorescence microscopy. 

Invented and pioneered by Hell,1,2 Betzig,3 Moerner,4,5 (S.) Weiss,6 Xie,7 Zhang,2,8 and 

others, super-resolution microscopy took advantage of real-time computer fitting of point 

spread functions of the excitation laser profile to overcome the optical diffraction limit. This 

technique is now driving innovations throughout biological research,2,9 including exploring 

protein localization patterns in bacteria,10 unraveling amyloid aggregates structures,11 and 

direct observation of DNA and RNA dynamics in cells and bacteria.12,13

Similar to super-resolution microscopy, scanning probe microscopy (SPM) also uses point-

wise nanoscale data to reconstruct entire images. However, instead of shaping light beyond 

the diffraction limit, a nano-sized sharp tip is rastered near surfaces—SPM is a surface 
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imaging technique. Depending on the feedback mechanism, different observables can 

be mapped along with topographical information, such as surface electronic structure, 

mechanical interactions, and electrochemical reactivity, via scanning tunneling microscopy 

(STM), atomic force microscopy (AFM), and scanning electrochemical microscopy 

(SECM), respectively, as well as a host of spectroscopic imaging methods that have been 

developed and applied.14–22 The introduction of laser excitation into SPM adds another 

data dimension and enables hyperspectral investigation of charge-transfer phenomena and 

molecular vibrations at the single-molecule level.23–26

The rich information content and the intrinsic oversampling nature of SPM images serve 

as ideal platforms for developing computer-aided imaging processing routines. This mini 

review covers the development, acquisition, and implementation of computer-aided imaging 

acquisition and processing in nanoscale surface images. Specifically, we focus on recent 

advances in the improvement of scanning patterns and data segmentation of SPM images. 

This mini review aims to give a general understanding of the progress of computer-aided 

image processing of SPM images and to look ahead to fully automated information 

extraction from multimodal date led by machine learning and artificial intelligence (vide 
infra).

METHODS

Image Acquisition

All SPM techniques share the same imaging principle of using a sharp tip as the probe 

for nanoscale surfaces. The first member of the SPM family is STM. A typical STM 

setup consists of a conductive/semiconducting surface and an atomically sharp metal tip 

brought within close proximity. When a voltage is applied across this nanoscale probe 

tip-sample junction, there is a net current of tunneling electrons from one side to the other 

(once any energy gaps are exceeded by the energy of the tunneling electrons). Moving 

the tip closer to the surface, the probability of electrons tunneling from one side to the 

other, and thus the current, increase exponentially. Using a feedback loop that maintains a 

constant tunneling current, the tip-sample distance is automatically adjusted to compensate 

for nanoscale changes in the surface electronic density of states. By recording the tip height 

at every scanned pixel, an STM topographic image can be reconstructed. The most common 

scan pattern is to raster the tip across the surface in a line-by-line fashion (Figure 1a).27 

For the first STM image, analog traces of piezoelectric locations were recorded by a chart 

recorder. Prior to computers, analog traces of piezoelectric locations were recorded by a 

chart recorder. A three-dimensional surface model was assembled from the original recorder 

traces with scissors, plexiglass, nails, and a camera to record the pictures of the glued model 

at different views (Figure 1b).28,29 Later images have been recorded directly to computer 

and assembled in software.

One of the major problems with the scanning pattern from Figure 1a, is the piezoelectric 

creep and hysteresis that occurs when the velocity of the tip changes by 180° at the end of 

the trace path (pink arrow in Figure 1a). This sudden change in direction distorts the image 

and is a time-inefficient method for scanning because the tip needs to return to its original 
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starting position before the next line can be acquired. Some of these issues can be minimized 

by using a different scanning paradigm or by image processing.

An important contribution to image processing started with mitigating the effects of 

piezoelectric transducer creep and hysteresis, as STM and AFM both use piezoelectric 

materials to move the scanning probe tip.30–32 Similarly, Yothers et al. and others have used 

image post-processing to decompose the components of thermal drift, hysteresis, and creep 

from their STM images.27,33,34 The processing used a linear transformation correlating the 

actual tip location with the tip location shown on their images. Matrix elements are used to 

fit and to minimize the apparent distortions, which enabled recording images to larger scales 

that are more true to the actual surface. Using an algorithmic approach to image distortions 

can improve the quality of images acquired through SPM techniques; however, they do not 

improve the efficiency of image acquisition. In addition, changing the image path algorithm 

can minimize the effects of hysteresis and creep.

As discussed above, many SPM experiments are performed by rastering a scanning-probe 

tip across the surface in the fast direction, labeled as trace in Figure 1a, then the tip returns 

to its original position before it moves one pixel in the slow direction to begin the process 

again. Though the instrumental design is simple, it also introduces the distortions of creep 

and hysteresis. Researchers, including Moheimani, have developed a variety of non-rastering 

patterns to speed up acquisition times.35,36 Ashby and coworkers engineered a version of the 

spiral raster pattern shown in Figure 2a that is more efficient in time and limits distortion 

effects.37 By using a mixture of constant linear velocity and constant angular velocity, they 

have shown an improvement to the simple raster mechanism. To capitalize on the entire 

image area, they use a constant angular velocity when the tip is close to the center of the 

image then transition to a constant linear velocity around the edges. Figure 2b is an example 

of an optimized spiral scanning method with the large image corresponding to the complete 

scan area. The images to the right correspond to the hashed regions of the total scan area. 

While varying the scan pattern is not novel,38 Fleming and coworkers found that using 

non-raster based patterns decreased the time required to image a surface at the expense 

of an increased vertical bandwith.39 These varied scan patterns also enable researchers to 

undersample their images decreasing the time required for each subsequent scan.39,40 For 

other AFM scanning methods, we invite the reader to read the review by Das et al.41

Data Segmentation

In addition to improvements to simple image processing and data acquisition, computational 

methods have also been used for advanced data analysis in STM, particularly in fusing 

information from different spectroscopic imaging modes. The STM images reveal rich 

information about the structure of self-assembled monolayers (SAM) since they convey the 

chemical and physical properties of the studied material. However, the STM images are a 

convolution of the electronic and geometric information. This convolution makes the images 

challenging to analyze by a simple computational routine (Figure 3a), such as a planar 

background subtraction or simple Fourier filters.

In Figure 3a, intensity differences occur over large regions in addition to textural 

(oscillating) patterns. Therefore, the ability to separate regions corresponding to variations of 
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these features (such as significant changes of intensity or textural patterns at different scales 

and/or orientations) is of the utmost importance in extracting the physical and chemical 

properties of the observed materials. These properties can include buried functionality 

and interactions, molecular orientation, tilt angles of individual molecules, molecular 

conductance, contact conductance, charge redistribution and long-range order of molecular 

domains.17,44–51

To extract chemical properties,43 STM images can be analyzed using an automated image-

processing framework. Since large constant intensity regions and textures carry different 

information, the first step consists of performing a cartoon (the term cartoon is used since 

large constant intensity regions look similar to actual cartoon art) and texture decomposition.

The image processing community has widely studied this type of decomposition following 

the seminal theoretical work of Y. Meyer.52 Most decomposition models consider that the 

cartoon part (denoted u) and the texture part (denoted v) belong to specific function spaces 

reflecting their intrinsic characteristics.53–56 Denoting f, the input STM image, these models 

consist of minimizing some function based on the norms of these spaces, subject to the 

constraint that f = u+v. A linearized model55 was executed for the simplicity of its numerical 

implementation as well as its low computational cost (described in detail in ref 57).

Figure 3b and 3c illustrate the cartoon (u) and texture (v) parts extracted from the input 

image f depicted in Figure 3a, respectively. The next steps are to design segmentation 

algorithms specialized for each type of component. First, the cartoon part u is segmented 

using the Local Multiphase Chan-Vese model.58 The Ginzburg-Landeau approximation54 

was used to further reduce the expensive computation cost, which can be efficiently 

computed via the Merriman–Bence–Osher (MBO) scheme.52,60 Figure 3d illustrates the 

segmentation of the cartoon part given in Figure 3b.

In the image processing community, textures are recognized as the most challenging objects 

to segment. This challenge is predominantly due to their variability, which avoids the 

existence of a theoretical model of textures. However, it is widely accepted that textures 

contain characteristics at different scales and eventually with different orientations. For 

these reasons, wavelets (and in particular curvelets)59,61 have successfully extracted textures 

features used to feed some classifiers. Despite these successes, since standard wavelets 

(or curvelets) correspond to filter banks corresponding to fixed partitioning of the Fourier 

domain, they are not optimal in capturing the full variability of textures. To remedy this 

issue, the recently introduced empirical wavelets have been applied for segmentation.62,63

The advantage of empirical wavelets lies in the fact that they are adaptive (i.e., data-driven) 

wavelets. The wavelets automatically detect the supports, in the Fourier domain, of each 

wavelet filter leading to the construction of a wavelet decomposition that is “optimal” 

to extract harmonic (i.e., oscillating) modes. Several types of wavelet, including curvelet, 

transforms have been revisited and generalized to empirical transforms. Given that both 

scales and orientations are important textural characteristics in STM images, one can use the 

energy of the obtained empirical curvelet coefficients to build the expected texture features 
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(note that the superiority of such approaches has been demonstrated for more general texture 

segmentation/classification tasks in refs 64 and 65).

Finally, feeding the texture features into a multiclass MBO classifier results in the 

segmentation of the texture component. For example, Figure 3e illustrates the result 

corresponding to the texture component given in Figure 3c. Note that the algorithm detects 

the different textures and identifies the boundary regions between textures. In SPM images 

such boundaries are important clues to structural and other properties.18,66–71

Segmentations obtained from the cartoon and texture parts provide complementary 

information that is beneficial in understanding the studied material’s physical and chemical 

properties.47 The complete mathematical description and many more examples showing the 

efficacy of the proposed framework are available in ref 43. The corresponding Matlab code 

is freely available at https://github.com/kbui1993/Microscopy-Codes.

For other advanced computational SPM image processing techniques, we direct readers 

to more thorough reviews by Kalinin and coworkers for detailed discussions of machine 

learning in analyzing AFM images.70

Using image segmentation, we have been able to differentiate nanoscale surface features 

in STM images that may be difficult to perceive visually.46 In the field of chemistry, the 

reactive sites tend to be at the defect sites, including domain boundaries. Specifically, for 

extracting the chemical information in Figure 3a, we used the aforementioned wavelet 

algorithm to distinguish regions with similar angular coordinates and frequencies (Figure 

4B).42 This image processing method enables grouping regions of the images with similar 

chemical information, such as the bonding directions of the domains. The regions with 

different chemical interactions have been given false colors (Figure 4C) to signify the 

different angular directions of the domains (Figure 4D). Note that multiple domains have 

similar spacings and orientations. However, viewing these images without these highlights 

makes grouping of similar domain regions difficult.

We also used empirical wavelets segmentation to separate the textures of the STM image 

shown in Figure 5A. This process enabled correlating subdomain characteristics of the 

surfaces to molecular orientations (Figure 5B). Although some subdomain features are 

easily visible without processing, the interfacial regions can be more challenging to 

ascertain. Three regions have been assigned where regions 1 and 2 are well-ordered domains 

with an offset of 120°. Here, classes II, IV, and VI correspond to region 1, and classes I and 

V correspond to region 2. Finally, class III is composed of the disordered regions that tend to 

be more reactive than the ordered regions and are likely locations for surface manipulation.

If complementary experimental measurables can be obtained simultaneously, for example, 

local barrier height measurments (LBH) and conventional topographic images, chemical 

information can be extracted by computing the correlations between the two spatially 

registered data sets. The connections between these two measurements enable resolution 

of long-range order within SAMs by correlating local maxima of the topography to local 

maxima of the LBH (Figure 6), which we have shown correspond physically to the 

exposed and buried ends of the molecules, respectively. Given two hypothetical SPM images 

Barr et al. Page 6

J Phys Chem C Nanomater Interfaces. Author manuscript; available in PMC 2022 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/kbui1993/Microscopy-Codes


containing local maximum data (i.e., p, the blue dots in the topography image and q, the red 

dots in the LBH image in Figure 6), the corresponding coordinates of p are grouped with 

q using a block-matching approach. This process is possible because both the topological 

image and the LBH are acquired simultaneously. The black square and the dashed black 

square are search windows used for the block-matching process. This procedure is repeated 

for each p, so p’s and q’s can be linked into a set of vectors that represent the orientations of 

the individual molecules in the SAM.

This approach was also used on self-assembled carboranethiol monolayers on Au{111} 

(Figure 7). Carboranes are composed of carbon–boron cage molecules with each atom 

bound to one hydrogen; the carboranethiols produce well-ordered monolayers on Au{111} 

with few defect sites, which by symmetry are limited to translational and rotational offsets in 

the registry of attachment in complete monolayers.46 However, depending on the locations 

of the carbons within the caged molecules, there can be a dipole at a variety of angles with 

respect to the surface normal. Surprisingly, we found that the dipoles within neighboring 

carboranethiol molecules align within multiple structural domains at low temperature.

RESULTS AND DISCUSSION

Hydrogen-Bonding Network and Images

Another use for LBH measurements is to elucidate hydrogen-bonding networks. We 

studied the long-range hydrogen-bonding networks buried within SAMs using image 

segmentation.44 Similar to how the dipole directions were measured in Figure 7, the tilts 

of molecules were measured by correlating the centers of the molecules to the LBH 

measurements. Using 3-mercapto-N-nonylpropionamide (ATC9), which contains a buried 

amide group within the monolayer, we found that there were two phases that formed on 

Au{111} relating to the tilt of the molecules—one with a tilt of 18° while the other was 

essentially normal to the surface (Figures 8 and 9, respectively). The STM topographic 

images (Figures 8A and 9A) of both phases were difficult to differentiate; however, the LBH 

measurements enabled us to assess the relative positions of two parts of the molecule—the 

top of the molecule and the hydrogen-bonding amide functional group. Schematics of the 

molecules on the surface are shown in Figures 8C and 9C. It is apparent when the top 

and bottom of the molecules are not directly overlapping (as can be seen in Figure 8C), 

the molecular domain has a tilt with respect to the surface normal. Similarly, the local 

topographic maximums were generally less than 3 Å apart from the LBH maximums within 

the 0° SAM.

In addition, it is possible to observe both domains within single image frames. Figure 10A 

and 10B correspond to a region where both domains, 0° and 18°, are in view, where Figure 

10A is the topographic measurement and 10B is the LBH measurement. The topographic 

image appears to have multiple structural domains, however no orientation information can 

be obtained simply from the image itself. Using the simultaneous acquisition of the LBH 

measurements, however, the two domains were segmented and stitched together. The blue-

shaded region corresponds to the normal phase of the molecules while the red-shaded region 

corresponds to the 18° tilt phase (Figure 10C). Therefore, to move beyond topography, 

which contains little chemical information, we can identify the molecular domains and the 
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chemical orientations by correlating the topography with another measurement (in this case 

LBH). Experimental details and procedures can be found in ref 44.

To our surprise, we found that the hydrogen-bonding networks continued across structural 

domain boundaries and even regions of disorder.44 These observations of robust hydrogen-

bonding networks explain the passivating effects of amide-containing alkanethiols, which 

were observed but not understood at the time of our prior work on the ultrasonic preparation 

of eutectic gallium-indium (EGaIn) liquid metal nanoparticles.71 In that case, when amide-

containing monolayers were uses to protect the liquid EGaIn nanopartices as they were 

split (calved) to make smaller particles, little oxidation was observed. When n-alkanethiol 

capping ligands were used, there was significant oxidation of the EGaIn particles.

We have shown two examples in which chemical properties (work function, dipole moment 

directions, hydrogen-bonding directions, molecular orientations, etc.) were interpreted by 

using STM and LBH together. These measurements paint a chemical picture more detailed 

than simply the molecular location that traditional STM measurements yield. In order 

to understand how molecules are interacting with each other and their substrates, an 

understanding of the chemical environment is needed.

Functional Materials Properties

Although beyond the scope of the discussion here, we point interested readers to 

tremendous advances in using analogous machine-learning approaches to explore and to 

map electrostatic, ferroelectric, liquid crystal orientation, and other properties of functional 

materials.72–77 Among the pioneers in this area are the Oak Ridge National Lab team, led by 

Kalinin and co-workers.

CONCLUSIONS AND PROSPECTS

Scanning probe techniques have opened up the atomic-scale world to exploration, including 

being able to measure bonding and other interactions between molecules and parts 

of molecules. Increasing power in computational algorithms in the forms of scanning 

methodologies, fusing complementary information from different imaging modalities, 

image processing, and image segmentation help elucidate chemical properties at these 

and larger scales. By correlating the orientations and continuity of interactions, new 

opportunities beyond chemical bonding distances have been uncovered, which have 

significant consequences in surface functionalization and passivation, structural biology, 

and other areas. With this understanding of extended interactions, better materials and 

assemblies can be designed and fabricated.

Further improvements in these methods will dramatically improve our ability to “see” and 

to explore the nanoscale world in multiple physical, chemical, and functional dimensions. 

One key step will be efficiently fusing together multiple acquisition modalities to extract 

information and understanding. The next generation of SPM techniques will involve 

more computational algorithms. These opportunities include compressive sensing methods 

to minimize the number of points acquired without losing information78,79 and by 

using automated algorithms to manage the processes of sample preparation and image 
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acquisition,80–82 all of which will increase throughput and efficiency in acquiring a 

“complete” data set in terms of understanding the system under study.

As machine learning improves, gaining efficiency and speed, our ability to use algorithmic 

platforms will change the way both image collection and image processing are conducted. 

We target adaptive, real-time, image processing, so as to guide data acquisition to be more 

information rich and so as to be able to test and to constrain interpretations optimally, as data 

are being recorded. Though it is improving quickly, the technologies, as of this writing, are 

not yet able to make strong judgments about images without large libraries of training data. 

It is more realistic that, in the short term, we will use computational algorithms to increase 

the efficiency of image acquisition and separate images by quality and features. We will then 

be able to review images to understand how molecules and assemblies arrange, and with the 

support from complementary techniques, elucidate the chemistry of the interactions.
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Figure 1. 
(a) In a linear tip raster pattern, the probe is moved in one direction (orange arrows), is 

turned around (red arrows) to retrace the line (green arrows), and then advanced to the 

following line (blue arrows). (b) The first scanning tunneling microscopic observation on the 

atomic reconfiguration of surface atoms of Si{111}. Image (a) reproduced with permission 

from ref 27. Copyright 2017 AIP Publishing. Image (b) reproduced with permission from ref 

28. Copyright 1987 American Physical Society.

Barr et al. Page 14

J Phys Chem C Nanomater Interfaces. Author manuscript; available in PMC 2022 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
(a) Spiral tip raster pattern implemented for addressing the raster scan paradigm, the probe 

is moving spirally to minimize the change in acceleration. (b) Optimized spiral-scanning 

image the three box overlays correspond to the center, middle, and the peripheral imaged 

regions. Adapted with permission from ref 35. Copyright 2017 IEEE.
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Figure 3. 
(a) Illustration of the mix of information in a scanning tunneling microscope (STM) image. 

We observe intensity differences over large regions as well as regions with different textural 

patterns. These two types of information correspond to specific chemical and physical 

properties. (b,c) images display the separated cartoon, u, and texture, v, components 

extracted from the STM image, while images (d,e) show the corresponding segmentation 

results. Image (a) reproduced with permission from ref 42. Copyright 2016 American 

Chemical Society. Images (b,c,d,e) reproduced with permission from ref 43. Copyright 2019 

Springer Nature.
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Figure 4: 
a) Scanning tunneling microscopy image of a thermally annealed sample of AuCN on Au/

mica substrate b) Wavelets were used to separate the components of image (a) by angle and 

frequency. c) False-color reconstruction from wavelet algorithm in (b). Images below show 

texture relating to the Fourier space below each texture. Reproduced with permission from 

ref 42 Copyright 2016 American Chemical Society.

Barr et al. Page 17

J Phys Chem C Nanomater Interfaces. Author manuscript; available in PMC 2022 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
(A) Scanning tunneling microscope image of a self-assembled monolayer of AuCN on a Au/

mica substrate (B) Cartoon image of three domains of image (A) composed of six classes 

(shown above). Adapted with permission from ref 42. Copyright 2016 American Chemical 

Society.
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Figure 6: 
Local maxima in the topography image and local barier height image are defined as p (blue 

dots) and q (red dots) respectively. The block-matching approach is used to match p and q 
coordinates. The red square represents the rastering direction. Adapted with permission from 

ref 46. Copyright 2015 American Chemical Society.
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Figure 7: 
(A) Scanning tunneling micrograph of o-9-carboranethiol (O9) on Au{111} where the 

blue dots show the local topographic maxima. (B) Simultaneously acquired local barrier 

height (LBH) image, which is inverted to highlight dipole orientations, with computed local 

maxima (red). Insets in (A) and (B) depict the fast Fourier transforms (FFTs) of the images. 

(C) Overlay of the topographic image with the computed molecular dipole orientations. (D) 
A ball-and-stick model of O9 where hydrogen atoms are omitted for clarity. Adapted with 

permission from ref 46. Copyright 2015 American Chemical Society.
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Figure 8: 
(A) Scanning tunneling microscope topographic and (B) simultaneously acquired local 

barrier height (LBH) maps over an area of the more tilted (18°) structure of 3-mercapto-N-

nonylpropionamide (1ATC9), with respect to the underlying Au{111} surface. The local 

maxima of both topography (red) and inverted LBH (blue) in B are computed. Insets 

depict fast Fourier transforms showing the expected topographic hexagonal nearest-neighbor 

spacing, which is also found within LBH images. (C) All maxima were connected within 

a defined radial range and orientation; best fit molecular orientations show the expected 

polar tilt angles. (D) A ball-and-stick model of 1ATC9 showing a polar chain tilt of 18° (for 

the molecular segment above the amide) and amide bonds nearly parallel to the substrate. 

Adapted with permission from ref 44. Copyright 2016 American Chemical Society.
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Figure 9: 
(A) Scanning tunneling microscope topographic and (B) simultaneously acquired local 

barrier height (LBH) map over the normally oriented (0°) structure, with respect to the 

underlying Au{111} substrate, within monolayers of 3-mercapto-N-nonylpropionamide 

(1ATC9). Local maxima in both topography (red) in A and inverted LBH (blue) in B are 

computed. Insets depict fast Fourier transforms of both topography and LBH images. (C) 
Computed molecular orientations overlaid onto the LBH map. (D) A ball-and-stick model of 

1ATC9 normally oriented on Au substrates. Adapted with permission from ref 44. Copyright 

2016 American Chemical Society.
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Figure 10: 
(A) Scanning tunneling micrograph of 3-mercapto-N-nonylpropionamide on Au{111} along 

a tilt. (B) Simultaneously acquired local barrier height (LBH) image of A. (C) We separate 

the upper (highlighted as red) and lower (highlighted as blue) domains in LBH based on 

relative work function differences. (D) Image histogram of C showing the energy cutoff 

used that was also fit with two Gaussian curves to solve for peak-to-peak image contrast 

differences. Adapted with permission from ref 44. Copyright 2016 American Chemical 

Society.
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