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Abstract

The Red List of Threatened Species, published by the International Union for Conservation

of Nature (IUCN), is a crucial tool for conservation decision-making. However, despite sub-

stantial effort, numerous species remain unassessed or have insufficient data available to

be assigned a Red List extinction risk category. Moreover, the Red Listing process is subject

to various sources of uncertainty and bias. The development of robust automated assess-

ment methods could serve as an efficient and highly useful tool to accelerate the assess-

ment process and offer provisional assessments. Here, we aimed to (1) present a machine

learning–based automated extinction risk assessment method that can be used on less

known species; (2) offer provisional assessments for all reptiles—the only major tetrapod

group without a comprehensive Red List assessment; and (3) evaluate potential effects of

human decision biases on the outcome of assessments. We use the method presented

here to assess 4,369 reptile species that are currently unassessed or classified as Data

Deficient by the IUCN. The models used in our predictions were 90% accurate in classifying

species as threatened/nonthreatened, and 84% accurate in predicting specific extinction

risk categories. Unassessed and Data Deficient reptiles were considerably more likely to be

threatened than assessed species, adding to mounting evidence that these species warrant

more conservation attention. The overall proportion of threatened species greatly increased

when we included our provisional assessments. Assessor identities strongly affected predic-

tion outcomes, suggesting that assessor effects need to be carefully considered in extinction

risk assessments. Regions and taxa we identified as likely to be more threatened should be

given increased attention in new assessments and conservation planning. Lastly, the

method we present here can be easily implemented to help bridge the assessment gap for

other less known taxa.
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Introduction

The International Union for Conservation of Nature’s (IUCN) Red List of Threatened Species

[1] is the most comprehensive assessment of the extinction risk of species worldwide [2]. Since

its inception in 1964, the Red List has been instrumental in “generating scientific knowledge,

raising awareness among stakeholders, designating priority conservation sites, allocating fund-

ing and resources, influencing development of legislation and policy, and guiding targeted

conservation action” [3]. For example, the 2004 completion of IUCN’s Global Amphibian

Assessment reported their dire global state [4] and led to the creation of organizations dedi-

cated to amphibian conservation and to increased funding for research and conservation pol-

icy focused on amphibians [3]. Additionally, the IUCN’s Red List forms a basis for the

designation of priority areas for conservation, such as Key Biodiversity Areas [5]. For example,

the Alliance for Zero Extinction [6] works directly with decision-makers to establish protected

areas for threatened species represented by a single population, using Red List data.

The Red List assigns evaluated species to categories based on their distribution, population

trends, and specific threats [7]. The categories Least Concern (LC) and Near Threatened (NT)

are deemed not threatened, while Vulnerable (VU), Endangered (EN), and Critically Endan-

gered (CR) species are deemed threatened. Other species are assessed as Extinct in the Wild

(EW), Extinct (EX), or Data Deficient (DD). DD category is assigned to species for which

information is insufficient to assign them any of the above categories. Still, most of global bio-

diversity remains Not Evaluated (NE) by the Red List. This is predominantly due to the labori-

ous nature of Red List assessments, which are based on voluntary expert participation, usually

through multiparticipant in-person meetings [7]. Importantly, NE and DD species are gener-

ally not prioritized for conservation decision-making, although Red List guidelines specifically

state that they “should not be treated as if they were not threatened” [7]. Even though DD spe-

cies have been shown to be comparable to CR ones with respect to their levels of overlap with

human impact [8]. These assessment gaps [9,10] led to the use of several automated methods

to provisionally assess species [11,12]. These methods employ algorithms including phyloge-

netic regression models [13–15], structural equation models [16], random forests [17,18], deep

learning [19,20], Bayesian networks [21,22], and even linguistic analysis of Wikipedia pages

[23]. Most previous attempts (e.g., [13,17,18]) employed a binary classification of threatened

(categories CR, EN, and VU) versus nonthreatened (NT and LC). Few studies attempted to

predict specific categories (e.g., [19,20,24]), which are more useful to decision makers as they

enable prioritizing among threatened species. A more comprehensive review of these methods

[25] also calls for attention to obstacles for their implementation in the assessment process.

This review argues that a major obstacle for their implementation is the lack of communica-

tion between conservation researchers developing such methods and IUCN personnel [25].

A challenge that remains unaddressed in automated assessment is human decision bias.

Biases are introduced by ambiguities in the interpretation of IUCN guidelines by assessors and

reviewers, heterogeneity in assessor expertise levels, and personal agendas [26]. The IUCN

tries to decrease reliance on subjective expert opinions [2], even employing automated assis-

tance for generating and verifying assessments [12]. However, expert input (and guidance

from the IUCN personnel who lead each workshop) remains an important part of the assess-

ment process. Automated methods that ignore such biases in their training data risk reproduc-

ing or even amplifying them in their predictions [27].

Reptiles remain the only tetrapod group without comprehensive IUCN assessment. As of

July 2021, approximately 28% of 11,570 reptile species remain unassessed and approximately

14% of those assessed have been classified as DD [1] Moreover, many of the reptile assessments

are more than 10 years old rendering them outdated as per IUCN guidelines [1]. This
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assessment gap is not random. Smaller species, with narrow distributions, located in the trop-

ics, are less likely to have been assessed [9]. Bland and Böhm [28], and Miles [19], automati-

cally assessed some reptile species. Their models predicted approximately 20% of NE and DD

species are threatened, a similar proportion to those assessed as such (excluding DD). How-

ever, in both studies, models were trained and validated using a small set of species with a

wealth of morphological, ecological, and life history data (which are rare for DD species). Such

exercises might provide important information on the mechanisms underlying extinction risk.

However, these data-hungry methods are greatly limited in their utility because such data are

unavailable for the vast majority of DD and NE species (e.g., DD and newly described reptiles,

most invertebrate taxa). Ultimately, we need methods that will enable precise automated

extinction risk assessments of species, which acknowledge different biases and data gaps.

Here, we use robust machine learning to automatically predict IUCN extinction risk cate-

gories to all reptile species globally, to (1) present a new automated assessment framework and

(2) provisionally fill the reptile assessment gap. Our methods rely only on readily available data

(mostly geographic ranges, phylogenetic structure, and body mass) and estimate potential

effects of assessor or reviewer identities. We use these methods to assign provisional extinction

risk categories to 4,369 reptile species, of which 3,286 are currently unassessed and 1,083 are

currently classified as DD. We further explore global trends in extinction risk across all reptiles

and highlight the effects of our new provisional categories on overall patterns in this class.

Lastly, we highlight potential sources of biases and incongruences in the assessment process.

Results

General model results

We implemented a novel automated assessment method, using the XGBoost algorithm [29],

and provided provisional assessment to 4,369 reptile species that were previously NE or

assessed as DD (S1 Data). Of these 4,369 species, we assessed 1,161 (27%) as threatened (244 as

CR, 467 as EN, and 450 as VU), and 3,208 as non-threatened (3,021 as LC and 187 as NT).

This is compared to 21% threatened species in the assessed/training dataset (1,375 of 6,520, χ2:

26.947, p-value:<0.001).

The model we used to predict extinction risk for DD and NE species included spatial and phy-

logenetic autocorrelation and excluded assessor/reviewer effects, achieved 90% validated accuracy

for the binary threatened/nonthreatened classification, and 84% accuracy for predicting specific

categories (AUC - Area Under Curve: 0.83, Tables 1 and 2). The complete model, including spa-

tial and phylogenetic autocorrelation, and assessor/reviewer effects, achieved similar results, as did

the model excluding spatial and phylogenetic autocorrelation but retaining assessor/reviewer

effects (Table 1). The model excluding both autocorrelations and assessor/reviewer effects, and

the models including either spatial or phylogenetic autocorrelation, were less accurate (Table 1).

However, the model obtained the highest accuracies when excluding threatened species classified

under criteria other than B from the training dataset (Table 1; details below). We predicted extinc-

tion risk categories for DD and NE species using the model that excluded assessor/reviewer effects

but retained spatial and phylogenetic data, since we cannot know the identity of assessors who

will evaluate currently unassessed species. For analyses regarding potential assessor/reviewer

effects, we used the complete model. Detailed accuracy metrics are presented in Table 2. The low-

est accuracy across models was in separating the NT and LC categories (Table 2).

Across different classification tasks and extent of occurrence classes, the average ranking of

the importance of feature classes in the complete model was predominantly due to (1) spatial

autocorrelation; (2) assessor effects; (3) phylogenetic autocorrelation; (4) climate; and (5)

human encroachment. In the model excluding assessor/reviewer effects, the ranking was: (1)
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spatial autocorrelation; (2) phylogenetic autocorrelation; (3) climate; (4) human encroach-

ment; and (5) insularity (for full details on feature importance across models, see S1 Fig and S2

Table; for a list of variables in each category, see S1 Data). The hyperparameter configuration

for the model chosen for predictions is summarized in S3 Table. The features selected for each

combination of range size (calculated as extent of occurrence) class and classification task are

provided in S1 Data. The contribution of each feature class to predictive performance for each

combination of range size class and classification task is presented in S1 Fig.

Criterion B for IUCN extinction risk assessments—which is predominantly based on spe-

cies range sizes [7]—is the most widely used criterion for assigning a threatened status in rep-

tile assessments (74% of species assessed under any criteria). The model only trained on

species assessed as threatened based on criteria B, as well as NT and LC species, was more

accurate for both binary (93%, AUC: 0.84, Table 1) and specific categorizations (87%, AUC:

0.80, Table 1). Further, excluding assessor/reviewer effects resulted in similar accuracy (binary

classification: 92% accuracy, 0.80 AUC; specific classification: 86% accuracy, 0.78 AUC;

Table 1). Despite their higher accuracy, these models tended to misclassify non-criterion B–

threatened species, assigning them to lower extinction risk categories than observed (S4

Table 1. Comparison of accuracy metrics of 8 automated assessment models for classifying reptile species into IUCN extinction risk categories.

Model Task Species sampling Predictors Accuracy AUC

Complete Binary all Environmental + body mass + PEM + MEM + assessor/reviewer

effects

0.904 0.833

Specific all Environmental + body mass + PEM + MEM + assessor/reviewer

effects

0.852 0.812

Environment and body mass Binary all Environmental + body mass 0.877 0.784

Specific all Environmental + body mass 0.821 0.777

Assessor/reviewer effects Binary all Environmental + body mass + assessor/reviewer effects 0.890 0.805

Specific all Environmental + body mass + assessor/reviewer effects 0.835 0.802

Spatial Binary all Environmental + body mass + MEM 0.889 0.807

Specific all Environmental + body mass + MEM 0.825 0.791

Phylogenetic Binary all Environmental + body mass + PEM 0.884 0.800

Specific all Environmental + body mass + PEM 0.826 0.781

Spatial-phylogenetic (used for

prediction)

Binary all Environmental + body mass + PEM + MEM 0.900 0.828

Specific all Environmental + body mass + PEM + MEM 0.837 0.801

Complete—Criterion B Binary Criterion B + NT,

LC

Environmental + body mass + PEM + MEM + assessor/reviewer

effects

0.926 0.838

Specific Criterion B + NT,

LC

Environmental + body mass + PEM + MEM + assessor/reviewer

effects

0.875 0.803

Spatial-phylogenetic—Criterion B Binary Criterion B + NT,

LC

Environmental + body mass + PEM + MEM 0.915 0.800

Specific Criterion B + NT,

LC

Environmental + body mass + PEM + MEM 0.858 0.782

The “complete” model includes environmental predictors, body mass, spatial and phylogenetic autocorrelations, and assessor/reviewer effects. The model used to

predict extinction risk for DD and NE species—“Spatial-phylogenetic” model—includes environmental predictors, body mass, and spatial and phylogenetic

autocorrelations but excludes assessor/reviewer effects, as this information is not available for unassessed species. The species sampling column indicates which species

were used in the training of each model, in regard to their extinction risk category and criteria used by IUCN on their assessment. The “Binary” task represents the

separation of threatened (CR, EN, and VU) from nonthreatened categories (NT and LC). The “Specific” task represents classification into IUCN extinction risk

categories. MEM and PEM represent spatial and phylogenetic autocorrelations, respectively. More detailed metrics are presented in Table 2.

AUC, Area Under Curve; CR, Critically Endangered; DD, Data Deficient; EN, Endangered; IUCN, International Union for Conservation of Nature; LC, Least Concern;

MEM, Moran’s Eigenvector Maps; NE, Not Evaluated; NT, Near Threatened; PEM, Phylogenetic Eigenvector Maps; VU, Vulnerable.

https://doi.org/10.1371/journal.pbio.3001544.t001
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Table). This is probably because species are only classified under non-B criteria if such criteria

assign them to a similar, or higher, extinction risk category. Thus, we proceeded with models

trained on all species for the remaining analyses. Our model correctly classified 93.8% of previ-

ously assessed species (6,112 of 6,520 species). The 6.2% misclassified species (408 of 6,520 spe-

cies) were nearly twice as likely to be assigned to nonthreatened categories than to shift in the

opposite direction and generally to shift to less threatened specific categories (S2 Fig). This was

consistent in most biogeographical realms, except in the Nearctic and Neotropical realms, in

which the numbers were similar for the binary classification (S2 Fig).

Comparison with previous methods

We compared our method to similar past endeavors. Our simplest model (“Environment and

body mass”; Table 1) obtained higher accuracy (88%) than methods based on Random Forest

(85%) and Neural Networks (79%), using the same predictors (S5 Table). The extreme class

imbalance in the dataset greatly hindered both methods, especially Neural Networks (S5

Table), despite the use of supersampling to account for uneven class distributions. In fact, Neu-

ral Networks are known to be sensitive to such imbalances [30], while XGBoost is considered

more robust to them [29]. While previous methods have incorporated similar predictors to

ours, and have separately incorporated features such as tolerating missing values, identifying

specific IUCN categories, and accounting for spatial and phylogenetic autocorrelation, none

did so in combination, as our method did (S6 Table). Our method is also the first to account

for assessor bias (as an exploratory tool, not for prediction; S6 Table).

Predictions for data deficient and not evaluated species

DD and NE species were significantly more likely to be assigned threatened categories than

assessed species (DD: 29%, NE: 26%, assessed non-DD: 21% threatened; Fig 1A, S7 Table). DD

Table 2. Accuracy metrics of automated assessment models classifying reptile species into IUCN extinction risk categories, under 2 different approaches: (1) com-

plete model, accounting for spatial and phylogenetic autocorrelation and assessor/reviewer effects; (2) accounting for spatial and phylogenetic autocorrelation (this

was the model used for predictions).

Binary CR EN VU NT LC

Complete

Sensitivity 0.955 0.773 0.699 0.532 0.278 0.964

Specificity 0.711 0.997 0.976 0.977 0.983 0.691

AUC 0.833 0.885 0.837 0.755 0.631 0.828

Precision 0.925 0.927 0.731 0.649 0.556 0.890

Recall 0.955 0.773 0.699 0.532 0.278 0.964

F1 0.940 0.843 0.715 0.585 0.370 0.925

Spatial-phylogenetic (used for predictions)

Sensitivity 0.952 0.621 0.726 0.278 0.532 0.950

Specificity 0.703 0.995 0.969 0.976 0.979 0.683

AUC 0.828 0.808 0.847 0.627 0.756 0.816

Precision 0.923 0.872 0.689 0.463 0.667 0.886

Recall 0.952 0.621 0.726 0.278 0.532 0.950

F1 0.938 0.726 0.707 0.347 0.592 0.917

“Binary” represents the separation of threatened (CR, EN, and VU) from nonthreatened categories (NT and LC). Remaining columns represent the predictive accuracy

for assigning species to the 5 extinction risk categories: CR, Critically Endangered; EN, Endangered; LC, Least Concern; NT, Near Threatened; VU, Vulnerable. See S1

Table for remaining models.

https://doi.org/10.1371/journal.pbio.3001544.t002
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species were more likely than assessed species to be predicted as VU, EN, or CR, and less likely

to be predicted as NT or LC. NE species were more likely than assessed species to be VU, and

EN, and less likely to be predicted as NT or LC (Fig 1B, S7 and S8 Tables).

Phylogenetic and spatial patterns

The proportion of threatened species increased overall for Squamata and Crocodylia, but

decreased for Testudines (Fig 2, S9 Table), especially in the turtle families Chelidae, Chelydridae,

and Kinosternidae. Anguimorph lizards (except Varanidae) proportion of threatened species

decreased following our predictions. The 3 largest lizard clades—Iguania, Scincomorpha, and

Gekkota—(as well as Lacertoidea except Lacertidae) showed increased threat, as did the largest

snake clades (Colubridae, Dipsadinae, Elapidae) and Serpentes as a whole (Fig 2, S9 Table). Includ-

ing predictions for DD and NE species, the proportions of threatened species increased in ecore-

gions across most of South and North America, Australia, and Madagascar (Fig 3, S10 Table).

Effect of assessor/reviewer identities on predictions

We permuted the identity of assessors and reviewers until we identified the group of assessors

and reviewers that would assign each species to the least threatened category possible, while

maintaining the other predictors’ values (optimistic scenario) and to the most threatened cate-

gory possible (pessimistic scenario). Proportions of species predicted as threatened increased

from optimistic to observed to pessimistic scenarios for all categories (Fig 4A, S11 Table) and

across most biogeographical realms. In the Nearctic and Madagascar, the observed and pessi-

mistic scenarios were similar, and in Oceania no differences were detected (Fig 4B, S12 Table).

Species that changed category between the observed assessments and the optimistic scenario

moved overwhelmingly to a single category (LC), while in the pessimistic scenario, species

showed a more diverse distribution of new categories (S3 Fig).

Fig 1. Proportion of reptile species assigned to extinction risk categories by IUCN manual assessment (assessed) and by an automated assessment model

(Data Deficient and Not Evaluated). (A) Grouping categories into threatened and nonthreatened and (B) specific extinction risk categories: CR, Critically

Endangered; EN, Endangered; LC, Least Concern; NT, Near Threatened; VU, Vulnerable. Number of species in each category is indicated above each bar.

Significant differences in a Pearson’s χ2 test are indicated by asterisks, colored according to which proportions are being compared (S7 Table). The data

underlying this figure can be found in S2 Data.

https://doi.org/10.1371/journal.pbio.3001544.g001
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Discussion

Our model assigned IUCN extinction risk categories to the 40% of the world’s reptiles that cur-

rently lack published assessments or are classified as DD. Our novel modeling approach

Fig 2. Differences in the percentage of threatened species in reptile families before and after the addition of extinction risk estimates for DD and NE

species, obtained from an automated assessment method. Colors in internal nodes represent the difference in percentages for all descendant tips. Trees by

Tonini and colleagues [31] (Squamata) and Colston and colleagues [32] (Archelosauria). The shift between red and blue is proportional to the (symmetric log

scale) increase/decrease in extinction risk per branch when using our assessments. Branch widths are proportional to log species richness in each clade.

Proportion of threatened species for each family, before and after inclusion of automated assessments are detailed in S9 Table. The data underlying this figure

can be found in S2 Data. DD, Data Deficient; NE, Not Evaluated.

https://doi.org/10.1371/journal.pbio.3001544.g002
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enabled classifying specific extinction risk categories with high accuracy using only readily

available data (ranges and body sizes). Our methods also gained better accuracy than previ-

ously explored methods (S5 Table). We predicted that the prevalence of threatened reptile spe-

cies is significantly higher than currently depicted by IUCN assessments. This pattern is

widespread across space and phylogeny. Our results show that, while high prediction accuracy

can be achieved without explicitly accounting for assessor/reviewer identities, the identity of

assessor/reviewers greatly affects predictions.

General model results

The classification accuracy of more extreme categories (CR, EN, and LC) was higher than cate-

gories straddling the threatened/nonthreatened threshold (VU and NT; S1 Table). This likely

reflects ambiguities inherent to the assessment of borderline cases, while extreme cases are eas-

ier to identify. This is compounded in the category it proved hardest to predict (NT), as there

are no distinct quantitative thresholds for NT as there are for threatened categories (although

guidance is given by the IUCN on how NT should be assessed [7]). Such thresholds are a pri-

mary factor for assigning criterion B extinction risk designations (and for our modeling). Mis-

classifications of assessed species tended toward less threatened categories (S2 Fig) indicating

that our predictions of unassessed species may actually be more optimistic than the true state

of extinction risk for reptiles.

Machine learning methods, such as XGBoost, are geared primarily toward prediction not

inference [33]. Any ecological interpretation of feature importance should thus be taken with

caution. The greater importance of spatial and phylogenetic eigenvectors in our classification

tasks (S1 Fig, S2 Table) is most likely due to the greater number of features included in these

Fig 3. Global spatial changes in the percentage of threatened reptile species resulting from our automated assessments. The spatial data are grouped by

WWF terrestrial ecoregions. The shift between red and blue is proportional to the (symmetric log scale) increase/decrease in extinction risk per ecoregion

when using our assessments. Bar plots indicate proportion of species in threatened categories for each biogeographical realm, before and after the inclusion of

automated assessments. The data underlying this figure can be found in S2 Data. IUCN, International Union for Conservation of Nature; WWF, World Wide

Fund for Nature.

https://doi.org/10.1371/journal.pbio.3001544.g003
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categories. Nevertheless, this shows that extinction risk has highly predictable spatial and phy-

logenetic patterns, i.e., that some regions and some taxa are more prone to extinction than oth-

ers. This can be used to approximate the conservation status of less studied taxa, for which no

other information is available. The climatic and human encroachment variables obtained high

importance scores. A previous meta-analysis found widespread negative effects of human land

modification on reptile abundance but no effect of climate [34]. This discrepancy could be due

to climate acting as proxy for other highly spatially autocorrelated factors. Insularity was also

important in many of the classification tasks in agreement with previous studies that identified

it as a major contributor to extinction vulnerability in reptiles [35]. Range size, another major

correlate of extinction risk, did not rank high in our models, likely due to it already being used

as an a priori criterion to separate species before training models. Future studies should

expand on the mechanisms underlying the spatial and phylogenetic patterns in extinction risk

identified in this study.

Nine species classified as CR by IUCN were considered LC by our model. Some of these

have fragmented ranges (Spondylurus lineolatus, Liolaemus azarai, and Emoia slevini), which

might have caused our model to underestimate their extinction risk. Our models used extent

of occurrence as a proxy of range size, which can greatly differ from area of occupancy in spe-

cies with fragmented ranges. Thus, species evaluated under area of occupancy criteria might

be harder to capture in our model. Small and fragmented ranges can also be more unstable,

which might result in discrepancies between the datasets used to train the model. GARD range

data represents historical ranges, including parts of the range from which populations may

have been extirpated. This might cause some of the discrepancies observed. For example, the

GARD database includes range fragments of S. lineolatus that are classified as possibly extinct

in the IUCN database.

Fig 4. Proportion of threatened reptile species under different assessor bias scenarios. Analysis includes only species that have IUCN assessments (6,520

species). (a) Proportion of reptile species assigned to each extinction risk category for the actual IUCN assessments (Observed); proportion expected if the most

optimistic group of assessors assessed every species (Optimistic); proportion expected if the most pessimistic group assessed every species (Pessimistic). (b)

Proportion of threatened species in each biogeographical realm for Observed, Optimistic, and Pessimistic assessments. Significant differences in a Pearson’s χ2

test are indicated by asterisks, colored according to which proportions are being compared (S11 Table). The data underlying this figure can be found in S2

Data. AA, Australasian; AT, Afrotropical; CR, Critically Endangered; EN, Endangered; IM, Indomalayan; LC, Least Concern; MA, Madagascan; NA, Nearctic;

NT, Near Threatened; NT, Neotropical; OC, Oceanian; PA, Palearctic; VU, Vulnerable.

https://doi.org/10.1371/journal.pbio.3001544.g004
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Other species classified as less threatened by the model suffer from threats such as invasive

species (Liolaemus paulinae and Cyrtodactylus jarakensis), quarrying (Homonota taragui and

Cyrtodactylus guakanthanensis), tourism (Calamaria ingeri), and fires (Bellatorias obiri),
which are not accounted for in our modeling. Although some of the human encroachment fea-

tures included might act as proxies for such threats, some local stressors will escape this

approximation.

Four species (Tropidophis xanthogaster, Cubatyphlops perimychus, Celestus marcanoi, and

Chioninia spinalis) were classified as LC by IUCN, but as CR by our model. All are small ran-

ged species located in protected areas. Protected area effects, and local population dynamics

may not have been captured by our model in rare cases, leading to occasional overestimation

of threat. Alternatively, actual assessments may have been inconsistent with most of the Red

List. These are poorly known species, their IUCN assessments read: “while threats have been
identified, these are presently localized” (T. xanthogaster); “the limited information available
indicates that it is able to adapt at least to certain forms of disturbance” (C. perimychus); “there
is no information about its population. . . Further research into its distribution, abundance, and
population trends should be carried out to have more knowledge about how the threats are
impacting the species” (C. marcanoi). This lack of information opens room for the introduction

of biases, such as overly optimistic assessors overlooking important threats. All 4 species classi-

fied as LC by IUCN and CR by our model have extremely restricted ranges and are endemic to

islands with high proportion of threatened species. Thus, we suggest these species may be

more threatened than currently depicted in the Red List and would benefit from reassessment.

Similar attention should be given to all species that moved to a more threatened category in

our assessment (S1 Data). We recommend a strong precautionary approach in translating

such disparities into conservation action.

Other than differences in range sizes between GARD and IUCN datasets, misclassifications

of species as less threatened than assessed by the IUCN may be due to species meeting Red List

criteria other than B, as their exclusion led to higher model accuracy. These criteria are mostly

based on data on population sizes and trends, which are unavailable for most reptile species.

Population dynamics are difficult to approximate using remotely sensed predictors [36] such

as the ones used in most automated assessment methods. Excluding species classified as threat-

ened under non-B criteria from model training caused their extinction risk to be severely

underestimated (S4 Table). This highlights that the inclusion of population size and trend data

in the model can only increase the level of predicted extinction risk compared to the result

expected under criterion B only, mimicking the IUCN assessment process.

Nevertheless, most of our modeled classifications (for assessed species) are the same as the

IUCN ones (94%, 6,112 of 6,520). The modeled assessments we obtained can be used to iden-

tify priorities for assessment of NE species, with species estimated to be at higher risk requiring

more urgent assessment. Likewise, previously assessed species, which our method identified as

being at higher extinction risk than their current IUCN category indicates, should be priority

candidates for reassessment [25], especially in the case of species previously categorized as DD,

as their current assessment does not allow their prioritization in conservation efforts. A major

obstacle for the implementation of correlative automated assessment methods, such as the one

we present, is the lack of explicit parameters to justify the assessment under existing criteria

[25]. To overcome this obstacle, we propose the IUCN consider the creation of a parallel listing

for automated assessments, to be displayed alongside IUCN assessments with clear indication

of the provisional, modeled, status of the assessment. We recognize that the creation of this

new feature is not a simple endeavor but suggest it could be highly beneficial for the IUCN

Red List. As automated methods become more easily available and precise, they offer an

opportunity that should not be ignored for advancing the conservation of neglected (or newly
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described [37]) taxa and regions. Moreover, our provisional assessments and method can be

used in regional red lists, which have more flexible guidelines.

We applied our methods to all DD and NE reptiles globally. In practice, our method can also

be applied to regional- and country-level assessments. This is the scale at which national red

lists, which support many country-level conservation decisions, are made [38]. Nevertheless, in

some regions, challenges, such as lack of resources or standardized methods for regional assess-

ments, are especially salient [39]. Provisional assessments provided by automated methods such

as ours can also be used to inform conservation policy and action on DD and NE species, which

are currently often given little weight, if any. We recommend that the use of these provisional

categories in conservation will be aligned with expert input, especially for species in borderline

categories (VU and NT), for which the automated assessment was less reliable.

Predictions for data deficient and not evaluated species

Our results suggest DD species are more likely to be threatened than categorized species, add-

ing to growing evidence in that regard [8,14,17,40–42], but unlike previous automated assess-

ments for reptiles [19,28]. However, it is important to note that previous assessments have

drawn on different datasets, both with respect to predictors used and level of extinction risk, as

range maps and extinction risk categories have since been updated. We further found that NE

reptiles (similar to DD species) are more likely to be threatened than categorized species—sup-

porting the urgency of previous calls for a comprehensive reptile assessment [9]. Our method

relies on extent of occurrence maps, which were used as a hierarchical classifier in modeling.

Non-DD-assessed species have an extent of occurrence that is 16% larger, on average, than DD

and NE species (F-value: 6.93, p-value: 0.009). For NE species this may be caused by them

being recently described (i.e., later than a workshop on the fauna of the area they inhabit was

conducted) and thus having small extent of occurrence. Taxonomic revision resulting in spe-

cies splits will also give rise to NE species with small extents of occurrence. With such alarm-

ingly high levels of predicted threat, we recommend that decision-makers take a cautious

stance and assign DD and NE species similar priority as threatened species, unless evidence to

the contrary is available (e.g., having been assigned a nonthreatened category by an automated

assessment).

DD species may have incomplete distribution records or suffer from taxonomic uncertain-

ties (although only 69 of the 1,083 DD species examined here were classified as such due to tax-

onomic uncertainty), which might cause their ranges to be underestimated. On the other

hand, many truly rare and small-ranged species lack information to be assigned an extinction

risk category. It is useful to provide DD species with provisional assessments because they

often cannot be included in conservation prioritization [42]. Thus, it is safer to assume that

DD species indeed have the ranges from which they are presently known, rather than risking

leaving very threatened species in an unprioritizable category [8].

Phylogenetic and spatial patterns

Our results revealed an overall decrease in the proportion of threatened turtle species after the

addition of our predictions for DD and NE species (Fig 2). This could be due to the more com-

plete assessment of turtles than of squamates. Data on population sizes and trends are much

more readily available for testudines than for squamates [43]. Only 19% of squamates were

classified as threatened based (at least in part) on criteria other than B—compared to 83% of

turtles. The proportion of threatened species tended to increase in some squamate groups,

especially in small, fossorial, rare, and endemic taxa (Fig 2, S9 Table), which is consistent with

previously reported patterns of data deficiency [9], or possibly caused by underestimation of
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their ranges. Our method is thus better suited for data-poor clades than for extremely data-

rich ones. The latter have already been assessed or are easy to assess, but the former comprise

most of global biodiversity. Thus, our method could be especially useful for other data-poor

and underassessed groups, such as most invertebrate clades.

Our results suggest that the world’s unknown and rich biodiversity is at even greater risk

than previously perceived. This finding adds to accumulating evidence that geographical and

phylogenetic patterns of extinction risk and knowledge gaps are mostly congruent [10]. We

further found that the proportion of threatened species increases in most ecoregions in the

Americas, Australia, and Madagascar but decreases in most of Africa and Eurasia. This could

be driven by a taxonomic effect, as many of the families predicted to increase in proportion of

threatened species are especially diverse in the Americas, Australia, and Madagascar (e.g., Dac-

tyloidae, Diplodactylidae, Dipsadidae, Elapidae, Phrynosomatidae, and Scincidae; Fig 2).

Assessments of regions and taxa we identified as likely to be more threatened should be given

increased attention in new assessments and conservation planning.

Effect of assessor/reviewer identities on predictions

Our models achieved high levels of accuracy even without accounting for assessor/reviewer

effects (Table 1). Nonetheless, the composition of assessors may greatly influence predictions

across all categories (Figs 4A and S3 and S8 Table). A possible explanation for this pattern is

that such effects could be implicitly accounted for in spatial and phylogenetic autocorrelation

since assessors usually assess only particular taxa and locations (Table 1). For example, if a

group of assessors worked mostly on assessment of South American turtles, the biases they

introduce might be accounted by the spatial dependency associated with South America and

phylogenetic dependency associated with Testudines.

For all realms except Oceania, we found assessor and reviewer identities affected IUCN

assessments. The effect of permuting assessor/reviewer identities suggested that observed

assessments were similar to those expected if all species were evaluated by the most pessimistic

assessors/reviewers in Madagascar and the Nearctic realms. The lack of effects for Oceania

(Fig 4B, S12 Table) is likely due to the small number of species in this realm and the few people

assessing them. Several recommendations have been made to address assessor bias, including

the need for thorough documentation and divulgation of contentious assessments, so they can

be used for training and guideline refinement, and training assessors, specifically addressing

handling uncertainty and assessor’s attitudes to risk [12,26]. We further recommend that the

IUCN, and local or regional agencies wishing to assess extinction risk of species or popula-

tions, (1) conduct regular automated assessments of previously assessed species, followed by

examination of discrepant cases and reassessment if necessary; (2) create a new parallel listing

specifically tailored to provisional automated assessments, as long as the provisional status of

the assessment is always clearly indicated (as mentioned above); and (3) recommend that data

scientists are present during the assessment process, for the production and interpretation of

analytical inputs such as automated assessments. This last recommendation is important as

data science becomes an increasingly integral and important part of ecology and conservation

[44,45]. Training ecologists in data science is the way forward for more efficient environmental

science and conservation [46]. It is thus reasonable to expect that, in the near future, many vol-

unteer assessors will have the necessary expertise to employ emergent automated assessment

methods, but it is also crucial that developers make their methods easier to use, integrating

them with available user interface platforms [25]. Short-term solutions could include making

data scientists from within the IUCN network, and specifically within the IUCN Red List Part-

nership, available for consultation when needed.
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We also recommend, as further research avenues, the development of (1) analytical meth-

ods to identify which assessment criteria and subcriteria are more subject to ambiguities, and

how they can be refined; (2) applications for quick automated assessments using methods such

as the one proposed here; and (3) automated assessment methods specifically geared toward

modeling population sizes and trends (e.g., based on spatial distribution of threats such as land

use changes, climate change, invasive species ranges, and hotspots of wildlife trade), to evaluate

species using criteria other than B.

We have shown that accurate predictions can be made without explicitly accounting for

assessor/reviewer effects. Previous automated assessments, which reported high levels of accu-

racy without accounting for assessor/reviewer effects, showed much lower accuracy when

their predictions were confronted with manual assessments [28]. Biases from past assessments

can be indirectly captured by algorithms and be accurately incorporated in predictions, but

biases from future assessments could fall outside the scope of the training data. The contin-

gency of manual assessments on assessor identities makes automated assessments more reli-

able, but those are also subject to many sources of uncertainty [47,48]. Moreover, since

automated methods are trained using previous manual assessments, they risk carrying over

the biases of past assessors. Automated methods that explicitly incorporate uncertainty into

their predictions (e.g., [22]) are a promising avenue for future development, and they should

explicitly account for assessor/reviewer effects. Overall, automated assessment can be a useful

tool for provisional prioritization and assessment acceleration but should be viewed critically.

Conclusions

We show that, with the inclusion of estimates for DD and NE species, reptiles globally emerge

as more threatened than the IUCN Red List currently depicts. This underestimation is wide-

spread across space and phylogeny. Our automated assessments accurately captured the

extinction risk categories and could be widely used for generating provisional assessments for

numerous taxa awaiting assessments. We nonetheless recommend that special attention is

paid to population declines, which are less well captured by our model and result in it being

conservative in assigning extinction risk categories. From a precautionary principle perspec-

tive, our results also support the notion that DD and NE should be candidates for increased

conservation efforts until they are assigned a proper extinction risk category as they are

approximately 30% more likely to be threatened than the other assessed species (27% versus

21%). While IUCN assessments will continue to be the gold standard for categorizing species

threat, we recommend caution is necessary and that assessor/reviewer effects should be con-

sidered when using them. Altogether, our models predict that the state of reptile conservation

is far worse than currently estimated and that immediate action is necessary to avoid the disap-

pearance of reptile biodiversity.

Materials and methods

Data acquisition

We obtained distribution estimates of 10,889 terrestrial and freshwater reptile species (94% of

the 11,570 currently recognized species) from an updated version of the Global Assessment of

Reptile Distributions (GARD 1.7—Data deposited in the Dryad repository: https://doi.org/10.

5061/dryad.9cnp5hqmb [49,50]). We extracted summary values for a suite of parameters

obtained using the overlap of each species’ range with 5 classes of remotely sensed predictors.

These include climate (76 features), human encroachment (45 features), biogeography (26 fea-

tures), topography (9 features), ecosystem productivity (8 features), as well as the latitudinal

centroid of each species’ distribution. Predictors and metadata are summarized in S1 Data. We
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added to these predictors species-level data on body mass and insularity assembled from the

literature as part of the GARD initiative ([51]; see S1 Data). As other biological attributes are

harder to come by (and consequently had a lot of missing values for our reptile species), we

only included body mass as a species-level biological attribute. We used these data, together

with measures of spatial and phylogenetic autocorrelation, and assessor and reviewer effects to

model IUCN extinction risk categories using a recent gradient boosting algorithm (details

below). While we used the best available data sources, with the most complete coverage, there

might still be geographical biases in their precision. Such biases are likely to occur in any

exploration of such a wide scope and we believe they do not detract from our method. We set

aside 20% of species for validation. We used the 15 March 2021 IUCN reptile assessments [1].

All datasets were standardized to the taxonomy of the March 2021 version of the Reptile Data-

base [52], with the input of experts from the GARD initiative. All analysis were conducted in R

4.0.3 [53].

Incorporating spatial and phylogenetic autocorrelation

We used Moran’s Eigenvector Maps and Phylogenetic Eigenvector Maps to represent spatial

and phylogenetic structure in our models [54,55]. The main advantage of these techniques is

that they can be incorporated in modern machine learning methods, such as XGBoost [29]

(description below). Eigenvector methods have been criticized for requiring the omission of

part of the autocorrelation structure and not explicitly incorporating an evolutionary model

[13,56]. Some of these critiques have since been resolved [55] and are less relevant in our case

as we simply use eigenvectors as proxies for broad scale predictors of extinction risk (see also

[57]).

We used the GARD distribution dataset to calculate Moran’s eigenvectors, employing R

package “adespatial” [58]. We intersected species distribution polygons as neighbors and

weighted the neighborhood matrix by inverse centroid distances calculated with function

“nbdists” from package “spdep” [59]. To calculate phylogenetic eigenvectors, we used package

“MPSEM” [60] and the phylogenies from Tonini and colleagues [31] for Squamata and Col-

ston and colleagues [32] for Testudines and Crocodylia. We assumed a Brownian motion

model of trait evolution. Species with distribution data, but no phylogenetic information (n =
167), were assigned an NA value for all phylogenetic eigenvectors. Squamata species were

assigned NA value for the eigenvectors derived from the Testudines and Crocodylia tree, and

Testudines and Crocodylia were assigned NA values for the eigenvectors derived from the

Squamata tree. Positive eigenvalues are associated with autocorrelation at broader scales

[54,55]. Since autocorrelation at small scales does not provide information on the entire struc-

ture [61], we used eigenvalues to reduce the number of eigenvectors, retaining only eigenvec-

tors with eigenvalues larger than 10% of the eigenvalue of the first eigenvector. This left us

with eigenvectors corresponding to autocorrelation structures deeper in the trees and across

broader spatial scales. Following this procedure, we retained 236 spatial and 78 phylogenetic

eigenvectors.

Incorporating assessor and reviewer effects

We obtained the identity of 983 assessors and 192 reviewers for all evaluated reptiles on the 15

March 2021 using R package “rredlist” [62]. Many of these assessors and reviewers worked

together on the assessments of different species in different combinations. To address this, we

used an autocorrelative approach similar to our spatial autocorrelation detection/correction

method, to incorporate potential assessor/reviewer effects in our models. We considered asses-

sors/reviewers that worked together on a species assessment to be neighbors in the
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neighborhood matrix, with the number of species each pair assessed together as the weight of

each pair’s association. Therefore, frequently associated assessors had more similar scores than

those that associated occasionally. Assessors/reviewer scores were averaged for each eigenvector

on each species. Therefore, species that were evaluated by a similar set of assessors/reviewers

had more similar scores than species evaluated by more distinct sets of assessors/reviewers. We

performed a priori selection based on eigenvalues, as described above, using the same thresh-

olds, which resulted in 216 eigenvectors being retained for assessors and 39 for reviewers.

Modeling threat

We used the XGBoost regularizing gradient boosting classification framework in our modeling

of extinction risk categories. XGBoost is a recently developed machine learning algorithm that

combines computational efficiency, versatility, and high levels of accuracy [29]. It is considered

a state-of-the-art machine learning technique and is a popular choice for machine learning

competitions [63]. Another advantage of XGBoost is its “Sparsity-aware Split Finding” algo-

rithm, which enables effective classification of entries containing missing data [29]. XGBoost

is also robust to imbalanced datasets [29], as is the case for reptile extinction risk categories,

72% of which are currently classified as LC [1]. We implemented this algorithm using the R

package “xgboost” [64]. To compare model accuracy and efficiency across algorithms, we fur-

ther fit a similar model using the AdaBoost algorithm [65], implemented in the R package

“adabag” [66]. This approach obtained lower accuracy (see S1 Text).

The range size of a species (as measured by extent of occurrence) can be used as an impor-

tant a priori consideration for the assessment process, since most reptiles are assessed under

criterion B. Consequently, we first separated species into the range size classes used in the

IUCN Red List B criterion (over 20,000 km2, between 20,000 km2 and 5,000 km2, between

5,000 km2 and 100 km2, under 100 km2). This initial separation enabled different hyperpara-

meter tuning, feature selection, and model fitting for each extent of occurrence class. Next, we

used a decision tree (Fig 5) involving 4 hierarchical classification tasks for each extent of occur-

rence class: (1) separating threatened (CR, EN, and VU) from nonthreatened (NT and LC)

species (binary classification); (2) separating CR species from other threatened species (EN

and VU); (3) separating EN from VU in the remaining threatened species; and (4) separating

NT from LC in the pool of nonthreatened species. We repeated this modeling approach after

excluding threatened species not categorized under criterion B (360 species), to explore the

amount of uncertainty introduced by the other Red List assessment criteria, which are less

commonly used for reptiles. Hyperparameter tuning and feature selection was performed at

each classification task (description in S1 Text). A detailed tutorial on how to reproduce our

automated assessment method is available in S2 Text.

Since supervised machine learning methods, such as XGBoost, are primarily predictive,

rather than mechanistic, features contributing to better predictions are not necessarily useful

for making causal inferences [33]. Thus, we evaluated the contribution of phylogenetic eigen-

vectors, Moran’s eigenvectors, and assessor/reviewer effects by comparing models without

these factors to models including them individually and in different combinations (i.e., a

model with only autocorrelations and a model with autocorrelations and assessor/reviewer

effects; Table 1). This allowed us to explore if their inclusion increases predictive power. We

also fit a model for the dataset excluding threatened species assessed by criteria other than B,

but without assessor/reviewer effects as predictors, to evaluate the importance of these features

on this subset of assessments. We plotted the number of previously evaluated species that

changed from threatened to nonthreatened categories and vice versa, for each biogeographical

realm [67], to evaluate spatial biases in the model errors.
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Comparison with previous methods

We also compared the features of our model to previously published automated assessment

methods (incorporation of spatial and phylogenetic autocorrelation, assessor bias, tolerance to

missing data, and ability to predict specific IUCN categories). Beyond this, we implemented

Fig 5. Flowchart for classification tasks in automated extinction risk assessment method, using the XGBoost

algorithm [29]. Green boxes represent outcomes of the binary task and red boxes represent the outcome of the specific

tasks. Steps taken for each classification task (blue circle) are indicated after the asterisk. CR, Critically Endangered; EN,

Endangered; LC, Least Concern; NT, Near Threatened; VU, Vulnerable.

https://doi.org/10.1371/journal.pbio.3001544.g005
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previous methods’ algorithms (when available), using our dataset of reptiles and predictors.

These algorithms were Random Forest [17,18], and Neural Networks [19,20], implemented

using the R packages “randomForest” [68] and “IUCNN” [20], respectively. We compared the

prediction accuracy of these algorithms with the accuracy of our “Environment and body

mass” model (Table 1) in the binary task of separating threatened and nonthreatened catego-

ries. We excluded spatial and phylogenetic eigenvectors for this analysis because the original

implementation of the other methods we compared did not incorporate spatial and phyloge-

netic autocorrelation. Furthermore, phylogenetic eigenvectors contained a significant number

of missing values, which are not tolerated by the Random Forest and Neural Networks

implementations.

Predictions for data deficient and not evaluated species

We used the model without assessor bias to estimate the extinction risk categories of DD and

NE species. We used Pearson’s χ2 to test if the proportions of DD and NE species predicted to

be threatened were significantly different from the assessed ones. We further tested if propor-

tions predicted for each extinction risk category differ between DD, NE, and assessed species.

We adjusted p-values using the false discovery rate correction [69].

Phylogenetic and spatial patterns

We explored how our predictions for DD and NE species changed the overall proportion of

threatened species across the reptile phylogeny [31,32], different ecoregions [67], and bio-

geographical realms. For our phylogenetic representation we compared the proportion of

threatened species in each clade before and after the addition of our predictions for DD and

NE species. We did this for all reptile families, as well as for each clade above the family level,

and plotted the results along the branches of a composite phylogeny made from the trees of

Tonini and colleagues [31] and Colston and colleagues [32].

We assigned species to ecoregions by intersecting species’ ranges from GARD 1.7 [49,50]

with WWF terrestrial ecoregions of the world [67]. We compared the proportion of threatened

species for each ecoregion, before and after the addition of predictions for DD and NE species.

We also compared the percentage of threatened species before and after the inclusion of pre-

dictions for the eight terrestrial biogeographical realms: Afrotropics, Australasia, Indomalaya,

Madagascar, Nearctic, Neotropics, Oceania, and Palearctic. Each species was assigned to all

realms intersecting its range. The difference between proportions of threatened species in each

biogeographical realm, before and after the inclusion of predictions, was tested using a χ2 test,

with p-values corrected for multiple comparisons, using false discovery rate [69].

Effect of assessor/reviewer identities on predictions

We evaluated the effect of assessor/reviewer identities on predictions for each extinction risk

category. We sequentially permuted the assessor/reviewer eigenvector scores of each species to

all other species, ran the modeling procedure described above, and retained the scores that

resulted in least threatened (optimistic), and most threatened (pessimistic), categorizations.

This procedure represents the potential results that would be obtained if the most “optimistic”

and the most “pessimistic” group of assessors/reviewers assessed every species. This was done

using the complete model using spatial and species-level predictors, spatial and phylogenetic

autocorrelations, and assessor/reviewer effects, to minimize the effect of spatial and phyloge-

netic structure in assessor/reviewer assignments. We then tested if the resulting “optimistic”

and “pessimistic” predictions were significantly different from the observed categories, and

from each other, using χ2 tests, with p-values corrected for multiple comparisons, using false
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discovery rate. We performed a similar analysis to explore differences in assessor effects within

each biogeographical realm for the binary classification task (of threatened/non-threatened

categories).

Dryad DOI

https://doi.org/10.5061/dryad.9cnp5hqmb.
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