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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The recent revolution in computational protein structure prediction provides folding models

for entire proteomes, which can now be integrated with large-scale experimental data. Mass

spectrometry (MS)-based proteomics has identified and quantified tens of thousands of

posttranslational modifications (PTMs), most of them of uncertain functional relevance. In

this study, we determine the structural context of these PTMs and investigate how this infor-

mation can be leveraged to pinpoint potential regulatory sites. Our analysis uncovers global

patterns of PTM occurrence across folded and intrinsically disordered regions. We found

that this information can help to distinguish regulatory PTMs from those marking improperly

folded proteins. Interestingly, the human proteome contains thousands of proteins that have

large folded domains linked by short, disordered regions that are strongly enriched in regula-

tory phosphosites. These include well-known kinase activation loops that induce protein

conformational changes upon phosphorylation. This regulatory mechanism appears to be

widespread in kinases but also occurs in other protein families such as solute carriers. It is

not limited to phosphorylation but includes ubiquitination and acetylation sites as well. Fur-

thermore, we performed three-dimensional proximity analysis, which revealed examples of

spatial coregulation of different PTM types and potential PTM crosstalk. To enable the com-

munity to build upon these first analyses, we provide tools for 3D visualization of proteomics

data and PTMs as well as python libraries for data accession and processing.

Introduction

Posttranslational modifications (PTMs) are an important mechanism to regulate the activity

and function of proteins. Mass spectrometry (MS)-based proteomics has become the method

of choice not only to identify and quantify proteomes [1,2], but also to investigate PTMs on a

proteome-wide scale [3–5]. Despite impressive technological progress, a key challenge in the

PTM and signaling fields remains to distinguish PTMs that are of direct functional relevance

from the tens of thousands that are routinely measured. This is necessary to match the proteo-

mics data to dedicated, low-throughput biochemical follow-up studies that characterize the

biological functions of candidate PTMs.
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To assess functional relevance of PTMs on a more global scale, Beltrao and colleagues

recently presented a machine learning model that uses information from different features

indicative of proteomic, structural, regulatory, or evolutionary relevance to derive a functional

score for a large catalog of phosphosites [6]. Another recent study directly evaluated the func-

tional relevance of phosphorylations purely based on available structural information [7].

Based on these and many previous studies, we know that phosphorylations are predominantly

observed on spatially accessible amino acids and particularly in intrinsically disordered

regions (IDRs) [7–9]. Furthermore, it stands to reason that phosphorylations in flexible

regions within folded domains and on binding interfaces are more likely to be functional com-

pared to those that are buried or less accessible in rigidly folded regions [7]. Although these

studies impressively highlight the value of integrating structural information into the analysis

of PTMs, they have been limited to phosphorylation and to the set of available experimentally

derived structures deposited in PDB, which furthermore inherently favor stable regions of pro-

teins [10].

Recently, there has been a key breakthrough in computational protein structure prediction

from just the amino acid sequence of a protein. The novel deep learning models in AlphaFold2

(henceforth referred to as AlphaFold) [11], rapidly followed by RoseTTAFold [12], were

shown to regularly achieve high accuracy in predicting protein structures that are largely com-

parable to those determined by experimental methods. By providing structural information

for almost the complete human proteome as well as the proteomes of over 20 model organ-

isms, the AlphaFold protein structure database (AlphaFold DB; https://alphafold.ebi.ac.uk)

now enables structural investigations on a proteome-wide scale, thus promising to accelerate

our understanding of the structure-to-function relationship of proteins [13,14]. It has further

been proposed that AlphaFold has immense potential for incorporating and analyzing PTMs,

for instance, glycosylation [15].

Here, we set out to systematically combine the wealth of structural information from

AlphaFold with proteomics data, especially large-scale PTM information, with the goal of

shedding new light on the long-standing question of functional relevance of PTMs. We present

a first systematic assessment of how PTM data can be integrated with deep learning–predicted

structures on a proteome-wide scale. We then explore key features in the structure function

domain by combining predictions of functional relevance with domain features and discover a

multitude of sites with potential regulatory roles. To enable the community to further explore

the numerous related biological questions, we provide a Python package called StructureMap,

which allows to easily and quickly access and integrate structural data from AlphaFold DB

with proteomics data and information on PTMs. Finally, we provide an extended version of

our previously published AlphaMap tool for sequence visualization [16], which now enables

the mapping of peptides and PTMs to three-dimensional protein structures.

Results

Estimation of side chain exposure and intrinsically disordered regions

from predicted protein structures

To make the information provided by predicted structures accessible for systematic analyses,

we first wanted to extract it into tractable metrics such as amino acid side chain exposure or

the categorization of amino acids into structured and intrinsically disordered regions (IDRs).

At this point, it is important to make a clear distinction between predicted and experimentally

derived structures. Experimental structures are often incomplete and may only cover a specific

sequence region. In contrast, the predicted structures in AlphaFold DB in principle cover the

entire protein sequence from N- to C-terminus. Importantly, each amino acid in the predicted
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structure is associated with a specific prediction confidence (pLDDT) derived from the deep

learning models [11]. Additionally, the relative position of amino acids to each other is anno-

tated with an expected distance error in Ångströms (predicted aligned error (PAE)). Although

experimental structures are available for a large set of proteins, we decided to base all our anal-

yses on predicted structures only. This prevents ambiguities in the integration of multiple con-

flicting structures and allows us to leverage the complete sequence information, confidence

metrics, and PAE estimates.

We found that it is crucial for all structure-based calculations to take AlphaFold’s confi-

dence and PAE metrics into account for best accuracy, as also pointed out before [17]. This

ensures that the predicted structures from AlphaFold are not considered as “static,” but as esti-

mates with a certain degree of positional uncertainty that varies across the protein sequence.

This is particularly important for estimating metrics for intrinsically disordered proteins and

proteins with longer IDRs. Therefore, we developed a prediction-aware metric to evaluate

amino acid side chain exposure. For this, we built upon the previously introduced half-sphere

exposure (HSE) [18,19]. This method essentially calculates the half-sphere of a given amino

acid in the direction of its side chain at a defined radius and counts the number of alpha car-

bon atoms from other residues within it, with a larger number reflecting less exposure and vice

versa (S1A Fig). We adjusted the HSE to take prediction uncertainties into account, meaning

that an alpha carbon atom is only considered as a neighbor if it still lies within the defined

radius after addition of its PAE for this alpha carbon pair. We further introduce an angle

parameter that determines whether to consider the full-sphere, half-sphere, or any other angle

in direction of the amino acid side chain. Accordingly, we termed our metric prediction-aware

part-sphere exposure (pPSE). To illustrate, Fig 1A shows the AlphaFold predicted structure of

mitogen-activated protein kinase 3 (MAPK3) colored by pLDDT and by the pPSE using a

radius of 12 Å and an angle of 70˚. We chose these values after considering the average size of

amino acids of approximately 3.5 Å and side chain flexibility around the direction of the beta

carbon (please refer to the Methods section for further details).

The higher the pPSE, the more other amino acids are in close proximity to the amino acid

being evaluated and, hence, the more structured its environment. In this respect, pPSE offers a

similar metric as the commonly used solvent accessible surface area (SASA), or relative SASA

(RSA). However, the pPSE directly considers side chain orientation, and, more importantly, it

takes the prediction error of AlphaFold into account. Estimating the pPSEs for all amino acids

in the 20,053 predicted human protein structures on AlphaFold only takes minutes on a laptop

computer with our implementation. This makes the tool especially useful for system-wide

studies where tens of thousands of proteins are evaluated for particular properties. In a com-

munity effort, it was recently shown that a smoothed AlphaFold confidence metric (pLDDT)

or RSA metric based on the predicted structures can confidently determine IDRs [17], improv-

ing on IUPred2, a state-of-the-art tool for IDR prediction [20]. We found that our smoothed

pPSE metric even obtains slightly better results when using a radius of 24 Å and a full sphere

(the true positive rate improves from 83% for RSA to 86% for pPSE; see Fig 1A, 1B, and 1C

and S1C and S1D Fig). Importantly, considering the positional uncertainty during pPSE esti-

mation considerably improves IDR prediction compared to neglecting it (TPR increase from

79% to 86%).

Most PTMs are enriched in intrinsically disordered regions, whereas

ubiquitinations accumulate in structured domains

Having the proteome-wide information on IDRs at hand, we next performed an enrichment

analysis of different PTMs located within those regions across the entire human proteome. We
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first used all PTMs annotated in the PhosphoSitePlus database that overlapped with structural

data, comprising a total of 334,529 sites, including phosphorylations (p), ubiquitinations (ub),

sumoylations (sm), acetylations (ac), methylations (m), and the glycosylations O-GlcNAc (gl)

and O-GalNAc (ga) [21]. In agreement with previous observations of phosphorylations [8,9],

most PTMs were indeed significantly enriched in IDRs (Fig 2A). In contrast, our analysis

revealed that ubiquitinations and, to a lesser extent, acetylations were significantly underrepre-

sented in IDRs (ubiquitination: odds-ratio = 0.6, adj. p-value� 0, number of sites = 91,388;

acetylation: odds ratio 0.9, adj. p-value = 6AU : Pleasenotethattheexponentialnotation}adj:p � value ¼ 6e � 08}inthesentence}Incontrast; ouranalysisrevealedthatubiquitinationsand; toa:::}hasbeenreformattedto}adj:p � value ¼ 6� 10 � 8; asperPLOSstyle:× 10−8, number of sites = 21,202). However, if only

PTM sites with a known regulatory function are considered, this effect disappeared for ubiqui-

tination and was even reversed for acetylation (ubiquitination: odds ratio = 1.0, adj. p-

value = 0.7, number of sites = 451; acetylation: odds ratio 2.0, adj. p-value = 1AU : Pleasenotethattheexponentialnotation}adj:p � value ¼ 1e � 18}inthesentence}However; ifonlyPTMsiteswithaknownregulatoryfunction:::}hasbeenreformattedto}adj:p � value ¼ 1� 10 � 18; }asperPLOSstyle:× 10−18, number

of sites = 631).

A possible explanation for nonregulatory ubiquitination sites in structured regions is the

tagging of misfolded proteins for degradation by the proteasome. Importantly, most datasets

that contribute ubiquitination sites to PhosphoSitePlus are from samples treated with protea-

some inhibitors (Fig 2B). This leads to the accumulation of misfolded proteins that presumably

Fig 1. Estimation of amino acid side chain exposure and IDRs. (A) AlphaFold predicted structure of MAPK3 colored by prediction confidence (pLDDT, left),

colored by our pPSE metric using a radius of 12 Å and an angle of 70˚ (center), and colored by our prediction of structured regions and IDRs (right). (B) ROC curve

for predicting IDRs based on IUPred2 in comparison to the smoothed pLDDT confidence scores from AlphaFold, the smoothed RSAs, and the pPSE with (+) and

without (w/o) considering the PAE (radius = 24 Å, angle = 70˚). (C) Corresponding AUC values and the TPRs at a 5% FPR. The numbers in square brackets behind

each metric indicate the smoothing windows that were used; see S1 Fig for a comprehensive parameter screen. Source data for (B) and (C) are available at Github.

AUCAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1 � 5:Pleaseverifythatallentriesarecorrect:, area under the curve; FPR, false positive rate; IDR, intrinsically disordered region; MAPK3, mitogen-activated protein kinase 3; PAE, predicted aligned error;

pPSE, prediction-aware part-sphere exposure; ROC, receiver operating characteristice; RSA, relative solvent accessible surface area; TPR, true positive rate.

https://doi.org/10.1371/journal.pbio.3001636.g001
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expose normally inaccessible lysine residues. Furthermore, ubiquitin might also be specifically

attached to structured regions to destabilize the protein fold, creating new short IDRs that are

required for proteasome binding and subsequent degradation [22].

To directly test our hypothesis, we contrasted ubiquitination sites from proteasome inhibi-

tor-treated and untreated samples in the same experiment [4]. Interestingly, ubiquitination

sites unique to the proteasome inhibition condition confirm the overrepresentation of ubiqui-

tination in structured regions (Fig 2A right, odds ratio = 0.4, adj. p-value = 0, number of

Fig 2. Enrichment analysis of PTMs in IDRs. (A) Enrichment of different PTMs annotated in the PhosphoSitePlus database in IDRs (left). Enrichment of

ubiquitinated lysines annotated in PhosphoSitePlus versus ubiquitinations detected in a dataset treated with proteasome inhibitor or untreated (right) [4]. PTMs

are abbreviated as follows: phosphorylations (p), ubiquitinations (ub), sumoylations (sm), acetylations (ac), methylations (m), and the glycosylations O-GlcNAc

(gl) and O-GalNAc (ga). Source data are available at Github. (B) Overview of datasets that contribute ubiquitination sites to PhosphoSitePlus. Publications

reporting>1,000 ubiquitination sites are listed separately and are colored based on their use of proteasome inhibitors. The additional 677 studies that contribute

fewer ubiquitination sites were aggregated to a gray bar irrespective of their use of proteasome inhibitors. Source data are available at Github. (C) AlphaFold

predicted structure of Ras GTPase-activating protein-binding protein 2 (G3BP2) colored by structured regions (blue) and predicted IDRs (gray) as well as

ubiquitination sites annotated in PhosphoSitePlus (yellow). IDR, intrinsically disordered region; PTM, posttranslational modification.

https://doi.org/10.1371/journal.pbio.3001636.g002
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sites = 19,517). The same effect can still be observed for the sites shared between both datasets

(odds ratio = 0.6, adj. p-valueAU : Pleasenotethattheexponentialnotation}adj:p � value ¼ 1e � 193}inthesentence}Thesameeffectcanstillbeobservedforthesites:::}hasbeenreformattedto}adj:p � value ¼ 1� 10 � 193; }asperPLOSstyle:= 1 × 10−193, number of sites = 11,741), whereas the ubiquitina-

tion sites unique to the untreated condition are enriched in IDRs (odds ratio = 1.4, adj. pAU : Pleasenotethattheexponentialnotation}adj:p � value ¼ 1e � 32}inthesentence}Thesameeffectcanstillbeobservedforthesites:::}hasbeenreformattedto}adj:p � value ¼ 1� 10 � 32; }asperPLOSstyle:-

value = 1 × 10−32, number of sites = 6,321), similar to most other PTMs. Overall, 78% of ubi-

quitinated lysines unique to the inhibitor treatment condition and 71% of shared ubiquitin

sites were in structured regions. In notable contrast, in the uninhibited condition, only 50% of

observed ubiquitinations are in structured regions.

To further pursue these findings, we disregarded all amino acids in predicted IDRs and

asked if PTMs are enriched in amino acids with side chains of high versus low exposure within

structured regions. To this end, we calculated the pPSE for each amino acid at a radius of 12 Å
and an angle of 70˚. We considered amino acids with a pPSE� 5 to have a high exposure and

those with a pPSE > 5 as low exposure (see S1B Fig and the Methods section for details on the

cutoff selection). Due to much lower numbers of annotated PTMs in structured regions, statis-

tical significance decreases, but phosphorylations were still enriched in amino acids with high

side chain exposure, whereas ubiquitinations were enriched in those with low side chain expo-

sure (S2 Fig). This indicates that ubiquitinations are located on lysines that are buried within

the structure of a properly folded protein rather than on outwards facing amino acids of a

helix or beta-sheet at the protein’s surface.

In addition to these global analyses, we further explored modified proteins individually to

test if PTMs were specifically enriched in certain structural elements. For ubiquitination, this

revealed 71 proteins with a significant enrichment in structured regions (odds ratio < 1, adj.

p-value� 0.05). Interestingly 80% of them were DNA or RNA binding proteins. A striking

example is Ras GTPase-activating protein-binding protein 2 (G3BP2), an RNA-binding pro-

tein that plays an essential role in cytoplasmic stress granule formation [23]. Here, all 9 ubiqui-

tination sites are in structured regions (Fig 2C). Interestingly, 6 of those ubiquitinations are

localized in the NTF2-like domain, which ranges from amino acids 11 to 133 and plays an

important role in G3BP2 oligomerization and the binding of deubiquitinating enzyme 10

(USP10) [23].

Improving sequence motif analysis through structural context

PTMs are commonly introduced by dedicated enzymes such as kinases for phosphorylation,

E3-ligases for ubiquitination, and proteases for proteolytic cleavage, which generally recognize

specific sequence motifs. Given that most PTMs have a preference for exposed amino acids,

we reasoned that sequence motifs in accessible protein regions should be preferred compared

to inaccessible ones, adding another layer of selectivity. To explore this hypothesis, we first

selected a curated list of kinase phosphorylation motifs available in Perseus [24]. Based on

phosphosites in both PhosphoSitePlus and a recent in-depth, COVID-related phospho study

[25], we first confirmed that phosphorylations are generally enriched in kinase phosphoryla-

tion motifs compared to all serines, threonines, and tyrosines (STY sites) in the proteome.

This effect is even more pronounced for regulatory sites and sites from the Stukalov study (Fig

3A). Confirming our hypothesis, motifs in IDRs and motifs harboring exposed STY sites were

indeed preferentially modified (Fig 3B and S3A Fig).

These results highlight that proteome-wide structural information can provide valuable

insights for motif analysis and help interpret experiments determining enzyme-substrate rela-

tionships. We illustrate this with a large in vitro kinase substrate screen by Ishihama and col-

leagues [26]. These authors dephosphorylated HeLa cell lysates with phosphatases, which they

then deactivated by heat. The resulting—partially denatured—sample then served as a sub-

strate pool to which 385 different recombinant human protein kinases were individually
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added to investigate which kinases phosphorylate which specific amino acid sites. Their study

resulted in an unprecedented set of 20,669 phosphosites, 175,574 proposed kinase-substrate

relationships, and 1,427 kinase phosphorylation motifs.

Fig 3. Exploiting the 3D context of kinase phosphorylation motifs. (A) Enrichment of phosphorylation events in kinase motifs compared to all possible STY sites. PSP

stands for PhosphoSitePlus. Source data are available at Github. (B) Enrichment of phosphorylations in kinase motifs within IDRs compared to all possible kinase motif

occurrences. Source data are available at Github. (C) Enrichment of phosphorylations in IDRs compared to all possible STY sites. The phosphosites reported by Sugiyama

and colleagues [26] were filtered for sites also reported in PSP or by Stukalov and colleagues [25]. Source data are available at Github. (D) Sequence logos for different

kinases in context of the dataset from Sugiyama and colleagues [26]. Motifs for phosphosites of high exposure (pPSE� 5) are shown on the left and phosphosites of low

exposure (pPSE> 5) are shown on the right. The PSSMSearch tool [27] was used with a log odds scoring method [28]. IDR, intrinsically disordered region; pPSE,

prediction-aware part-sphere exposure; PSP, PhosphoSitePlus.

https://doi.org/10.1371/journal.pbio.3001636.g003
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Based on the denaturation of the proteome, and as already indicated by the authors, we

speculated that many of the previously inaccessible sites would now be amenable to phosphor-

ylation, providing an ideal test case for structure-based interpretation. Indeed, our analysis

revealed that the identified phosphosites were not enriched in IDRs, in contrast to the above

examples. However, the sites that overlapped with other studies did show the expected enrich-

ment in IDRs (Fig 3C). These results suggest that structural information can be used to refine

the list of reported phosphosites to a set that better represents the sites expected to occur on

endogenously folded proteins.

To further test the effect of 3D exposure filtering on sequence motif analysis in context of

the dataset from Sugiyama and colleagues [26], we selected kinases and performed a motif

analysis separately for sites of high surface exposure (pPSE� 5) and sites of low exposure

(pPSE > 5) using the PSSMSearch tool [27,28]. As can clearly be seen in Fig 3D, kinases

showed striking differences in sequence motifs between sites of high and low exposure. While

motifs for sites of high exposure are mostly in agreement with the reference set provided by

Perseus [24], this was not the case for the sites with low exposure. To account for the fact that

there are fewer sites in structured regions, we also selected random, equally sized subsets of the

high-exposure sites and repeated the motif analysis. This resulted in similar patterns as for the

full set of sites, but with lower enrichment scores (S3B Fig).

In the case of the RAC-alpha serine/threonine-protein kinase (ACT1), the phosphosites of

high exposure clearly display the R-x-R-x-x-pS-F motif (Fig 3D, top left panel). In contrast, phos-

phosites of low exposure only provide a noisy motif (Fig 3D, top right panel). For other kinases,

such as stress-activated protein kinase JNK1, a serine/threonine-specific protein kinase, the phos-

phosites of low exposure even have an unexpected enrichment for a phosphorylated central tyro-

sine residue and the proline at the +1 position is hardly enriched (Fig 3D, right panel).

Together, these results establish that the structural information from AlphaFold and the

tools presented herein can guide determining potential regulatory PTM sites found by in vitro

screens, increasing the confidence of measured kinase–substrate pairs by filtering out a subset

that are less likely to be true in vivo substrates. As we have shown, this can improve kinase

phosphorylation motif predictions and help to interpret individual sites of interest. Here, we

focused on phosphorylations but we expect similar benefits for the analysis of any other types

of motifs, including enzyme recognition or general protein binding.

Functionally relevant PTMs are enriched in short IDRs within large

structured domains exemplified by kinase activation loops

Having established the enrichment of most PTMs in disordered regions in the dataset, we fur-

ther explored the structural context of this effect. We found that these PTMs are often located

in short IDRs that are embedded within larger structured domains. To investigate if this was a

random effect or whether these short IDRs could be of biological relevance, we extracted all

proteins with short IDRs of maximally 20 amino acids length between 2 flanking structured

regions of at least 80 amino acids. Among the 20,053 human proteins in AlphaFold DB, 2,454

have such a pattern. Notably, enrichment analysis of these proteins revealed a significant over-

representation of GO molecular functions related to ATP binding, protein kinase activity,

ATPase activity, transmembrane transporter activity, and motor activity (Fig 4A).

To further evaluate the relevance of the short IDRs, we analyzed their occupancy with func-

tional phosphosites. To this end, we first considered regulatory phosphosites in PhosphoSite-

Plus [21]. Our analysis revealed that these regulatory sites, as compared to phosphosites in

general, are significantly enriched in short IDRs versus all IDRs (odds ratio = 1.57, adj. p-

value = 0.001; Fig 2B). We also extracted a second set of phosphosites from the abovementioned
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study of Beltrao and colleagues, where sites were given a functional score between 0 and 1, with

scores equal to or above 0.5 considered functional [6]. We indeed observed that the higher the

score, the stronger the enrichment of functional phosphosites in short IDRs, ranging from an

odds ratio of 1.43 at a cutoff of 0.5 to an odds ratio of 7.7 at 0.9 (Fig 4B). This raises the exciting

possibility that at least a subset of these phosphorylation sites may play important roles in struc-

tural and functional rearrangements of their neighboring domains.

Due to the strong enrichment of kinases among proteins with short IDRs, we next investi-

gated whether they overlap with any known kinase substructures annotated in KinaseMD

[29]. That database contains substructure annotations for 388 kinases, 365 of which also have

predicted structures in AlphaFold DB. We found a large overlap of 72 short IDRs with the 309

annotated activation loops, but none with the 171 G-loops or 230 Cα-helix positions in these

kinases. If the 5 amino acids flanking a short IDR are also considered, this number increases to

79 (also see Methods section). These results are particularly interesting, because the activation

loops of many kinases undergo structural rearrangements upon phosphorylation [30]. Strik-

ingly, 55 of the 79 kinases (70%) with an overlap of the extended short IDR and the annotated

activation loop have an annotated regulatory phosphosite in PhosphoSitePlus or a functional

score higher than 0.5 (as determined by Beltrao and colleagues [6]), for a total of 99 different

phosphosites. To illustrate, receptor-interacting serine/threonine-protein kinase 2 (RIPK2)

and mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1) both show an overlap

between our predicted short IDR and the annotated activation loop with known regulatory

phosphosites (Fig 4C, 4D, and 4E).

Next, we evaluated short IDRs outside of annotated kinase activation loops. An interesting

example of these is the serine/threonine-protein kinase CHK2 (CHEK2). Although the anno-

tated activation loop (amino acids 367 to 389) was not detected as a short IDR, our data con-

tained an alternative short IDR region (amino acids 262 and 263). Directly flanking this IDR is

a phosphorylation site with a functional score of 0.44 (S260). Notably, CHEK2 was reported to

be autophosphorylated at residue S260, which is important for triggering a conformational

change in CHEK2 that favors a dissociation of dimers into fully active monomers [31].

We also observed short IDRs in many proteins apart from kinases. One example is Band 3

anion transport protein (SLC4A1), where we found that the short IDR from residue 354 to 369

contains a known regulatory phosphosite on Y359 [32]. In addition to phosphorylations, other

PTMs might also be biologically relevant in the short IDRs. Indeed, 1 of 3 regulatory ubiquiti-

nation sites in another solute carrier protein—SLC22A6—is located directly in a short IDR,

whereas the other 2 are in close proximity (Fig 4F). These 3 ubiquitination sites have previ-

ously been shown to play an important role for the internalization of this protein [33].

Compared to phosphorylation, the percentage of other PTM sites with known functions is

even smaller. Our findings suggest that selecting candidates from PTM sites within or in close

proximity to short IDRs is a promising strategy to discover functional relevance. We found

that our predicted short IDRs extended by 5 amino acids contain a wealth of PTM sites that

are not yet annotated as regulatory in PhosphoSitePlus (1,437 phosphosites, 898 ubiquitination

sites, 118 acetylations, 43 sumoylations, 53 methylations, 33 GalNAc, and 1 GlcNAc) (Fig 4G,

S1 Dataset). We further provide a list of all human short IDRs for researchers to explore their

favorite proteins, enabling the integration of own experimental data from PTM studies or

other types of studies, such as mutational screens (S2 Dataset).

PTMs on proteins preferentially occur in three-dimensional clusters

It is well known that many proteins have hotspots of modifications. For example, multisite

phosphorylation in specific sequence regions is critical in regulating the activity of many
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Fig 4. Regulatory PTMs accumulate in short IDRs. (A) Enrichment analysis of proteins with short IDRs. Source data are available at Github. (B) Enrichment of

regulatory phosphosites from PSP in short IDRs compared to all other IDRs. Source data are available at Github and Github, respectively. (C) Sequence plot showing the

N- to C-terminus of different proteins colored by whether the amino acid is part of a structured region (blue) or an IDR (gray). All phosphosites annotated in PSP are

indicated by circles. Regulatory sites are colored in dark red and stand out higher than nonregulatory sites (salmon). Regions of short IDRs including a 5-amino acid

extension are indicated in light green below the sequence. Annotated kinase activation loops (A-loops) from KinaseMD are indicated in dark green above the sequence.

The predicted structures of RIPK2 (D) and MAP4K1 (E) are colored by structured regions (blue) and predicted IDRs (gray) as well as known regulatory phosphosites

annotated in PSP (dark red). Specific regions of interest are highlighted by an orange circle. (F) The predicted structure of SLC22A6 is colored by structured regions

(blue) and predicted IDRs (gray) as well as known regulatory ubiquitination sites annotated in PSP (yellow). (G) Overview of phosphorylations (left) and other PTMs

(right) that lie within short disordered regions or their flanking 5 AAs. Source data are available at Github. AA, amino acid; IDR, intrinsically disordered region;

MAP4K1, mitogen-activated protein kinase kinase kinase kinase 1; PSP, PhosphoSitePlus; PTM, posttranslational modification; RIPK2, receptor-interacting serine/

threonine-protein kinase 2.

https://doi.org/10.1371/journal.pbio.3001636.g004
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enzymes and their binding properties [34]. Furthermore, in the context of circadian biology,

we recently showed that regulated ubiquitinations frequently occur in sequence proximity [4].

Beyond colocalization of the same PTM types, phospho-acceptors near PTM-modified lysines

were shown to be preferentially phosphorylated in comparison to more distant residues [35].

Those prior findings were obtained on the basis of linear sequence analysis. Now, with the spa-

tial coordinates of each PTM acceptor residue provided by AlphaFold, we set out to evaluate

PTM proximity in three-dimensional space.

First, we investigated whether PTM acceptors near a modified amino acid residue are more

frequently observed to also be modified compared to more distant residues or to random

expectation. For this, we extended the strategy of Krogan and colleagues [35] to evaluate dis-

tance in 3D space and to assess both individual PTM types and PTM co-occurrence (see Meth-

ods section). Importantly, our metric considers the predicted positional uncertainty between

any 2 PTM sites as a factor in the analysis. This ensures that uncertainties in the relative posi-

tioning of folded domains that are linked by flexible IDRs are considered in the proximity cal-

culation. Furthermore, we only take structured regions and short IDRs into account for the

proximity analysis (that is, we removed all IDRs of more than 20 amino acids). This ensures

that proximity results are not influenced by regions of high structural uncertainty, as is the

case for IDRs. It further avoids any biases that arise from the fact that many PTMs are enriched

in IDRs and tend to cluster there in linear sequence space.

Our analysis revealed that the observed sites of PTM types annotated in PhosphoSitePlus

indeed form 3D modification hotspots. Phosphorylations, ubiquitinations, sumoylations, acet-

ylations, and methylations each form tight clusters in 3D space, where proximal amino acids

are preferentially modified compared to more distant residues or an equivalent random selec-

tion (Fig 5A). Due to an overall lower number of O-GlcNAc and O-GalNAc modified sites,

the results for these modifications are less conclusive but also show a similar trend (S4 Fig). In

addition to evaluating PTM types by themselves, we further investigated colocalization of dif-

ferent PTM types. This confirmed that phospho-acceptors near modified lysines (including

ubiquitination, sumoylation, and acetylation) are more frequently phosphorylated compared

to random expectation [35] (Fig 5B). This is also true for methylated lysines and arginines.

Conversely, investigating ubiquitination sites near other PTMs revealed that they also prefer-

entially occur close to phosphosites (Fig 5C). Other lysine modifications, however, often com-

pete for the same or directly neighboring residues, but they do not generally favor proximity.

Overall, our analysis reveals that many proteins have specific 3D regions and folds that are par-

ticularly prone to being modified by the same or different PTMs. This structurally supports

the notion of PTM cross-talk.

Following these global analyses, we next explored 3D PTM clusters of all individual pro-

teins. For this, we calculated all pairwise distances between modified amino acids and com-

pared their average against a distribution of random PTM sites (see Methods section). We

again only considered structured protein regions and included the positional uncertainty

between any 2 PTM sites in the distance calculation. Clustering analysis of phosphorylation

and ubiquitination sites in PhosphoSitePlus revealed many proteins with significant PTM clus-

ters, showing a strong enrichment for transmembrane proteins (Fig 5D). On those proteins,

we detected these PTMs on the cytosolic domains and in 3D proximity, nicely confirming that

the proximity analysis worked as intended.

To enable a more fine-grained inspection of PTM clusters, we explored an in-house phos-

pho-dataset [25]. Of 47 phosphoproteins with 3 or more sites in structured regions, 3D prox-

imity analysis yielded 6 significant ones (adj. p-value� 0.05 and� 3 phosphosites; S3

Dataset). As an example, the mitochondrial pyruvate dehydrogenase E1 component subunit

alpha (PDHA1) had an adjusted proximity p-value of 0.004, and all 6 detected phosphosites
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are located within 1 protein pocket (Fig 5E). Three of these (S232, S293, and S300) have previ-

ously been reported to be substrates of PDK family kinases. Any single one of these is sufficient

to inactivate PDHA1, and dephosphorylation of all sites is required for reactivation [36]. Our

3D analysis suggests that the other 3 phosphorylation sites would have the same effect. Another

interesting example is aldo-keto reductase family 1 member B1 (AKR1B1) (adj. p-value = 0.03).

In linear sequence space, S211 and S215 are close together, whereas S23 and Y49 are far apart.

However, in the folded protein structure, all 4 are in the same pocket (Fig 5F). Interestingly, it

also contains the annotated NADP binding site of AKR1B1, which consists of 2 distinct

sequence stretches from amino acids 10 to 19 and 211 to 273 (based on UniProt annotation).

Fig 5. PTM proximity analysis in 3D. (A) The fraction of modified PTM acceptor residues is shown as a function of the 3D distance to a given modified amino acid in

Å. Observed values (indicated in red when statistically significant and colored in salmon otherwise) are compared to the mean of 5 random samples including the same

number of modified PTM sites (gray). Error bars indicate one standard deviation. The x-axes are divided in distance bins ranging from each previous bin to the

indicated cutoff in Å. Source data are available at Github. (B) The fraction of modified phospho-acceptor residues is shown as function of the 3D distance to a given

modified amino acid in Å. Source data are available at Github. (C) The fraction of ubiquitinated lysines is shown as function of the 3D distance to a given modified

amino acid in Å. The smallest bin shows competition for the same central lysine residue. Source data are available at Github. (D) Enrichment analysis of proteins with

3D phospho- and/or ubiquitination clusters (FDR� 0.01). Source data are available at Github. (E) The predicted structure of PDHA1. Phosphorylations on the

phospho-loop A are indicated in dark red (T231 and S232). The phosphorylations on phospho-loop B are indicated in magenta (Y289, S293, S295, and S300) [36]. (F)

The predicted structure of AKR1B1. Residues annotated as NADP binding sites are highlighted in blue (amino acids 10 to 19) and turquoise (amino acids 211 to 273).

Phosphorylations are indicated in magenta. AKR1B1, aldo-keto reductase family 1 member B1; PDHA1, pyruvate dehydrogenase E1 component subunit alpha; PTM,

posttranslational modification.

https://doi.org/10.1371/journal.pbio.3001636.g005
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Community resources for enabling the systematic integration of PTM data

with structure predictions from AlphaFold

This study only scratches the surface of biological insights that can be gained from combining

PTM data with structural information. To enable the community to further investigate various

research questions of interest to them in their own data or in public repositories, we created a

toolset that facilitates systematic data exploration and integration. First, we provide Structure-

Map, an open-source Python package for processing predicted structures from AlphaFold DB

and for integrating the data with PTM information. Its functionalities include (1) accession of

predicted structures from AlphaFold DB and extraction of essential information into an inter-

nal data format; (2) calculation of the pPSEs of individual amino acids as well es estimation of

IDRs; (3) extraction of short IDRs for PTM site prioritization; (4) import and formatting of

PTM datasets; (5) enrichment analyses of PTMs in different structural regions and IDRs; (6)

motif analysis in 3D context and filtering based on side chain exposure; and (7) multidimen-

sional proximity analysis of PTMs. To further enable easy visualization of PTMs on the three-

dimensional structure of proteins, we also extended our previously published AlphaMap tool,

which is available as Python library as well as a stand-alone application with graphical user

interface [16]. The source code of both tools is openly available with an Apache license on the

MannLabs GitHub page and includes extensive documentation to readily enable researchers

to understand and further adopt code to any specific needs (https://github.com/MannLabs/

structuremap and https://github.com/MannLabs/alphamap). To support scientific transpar-

ency and reproducibility, we further provide data and python Jupyter notebooks to reproduce

all analyses and figures presented herein (https://github.com/MannLabs/structuremap_

analysis).

Discussion and outlook

PTMs provide essential mechanisms to regulate the activity and function of proteins. Although

MS-based proteomics routinely enables the identification and quantification of thousands of

PTMs, systematic assessment of their functional relevance remains a persisting challenge.

While previous work already demonstrated the merits of structural information for PTM anal-

yses [6–9,35], the recent revolution in computational protein structure prediction [11,12] only

now enables the proteome-wide integration of structural information with PTM data. In this

study, we provide a first overview of how the comprehensive structural context of all detected

PTMs can provide global and protein-specific insights into biological mechanisms, to filter in

vitro datasets for physiological relevance and to identify promising candidates for biochemical

follow-up studies.

Key to most of our analyses was that we used whole proteome structural information to

determine the exposure of each individual amino acid side chain, thus providing a measure of

how amenable that residue is for harboring a modification (Fig 1A). In contrast to experimen-

tally derived structures, the in silico structures come with prediction errors and positional

uncertainties, which turned out to be crucial for assessing amino acid exposure [17] (Fig 1B

and 1C and S1 Fig). Our analyses confirmed that most PTMs are strongly enriched on exposed

amino acids compared to residues that are buried within the protein fold (S2 Fig). This effect

is even more evident when comparing IDRs and structured regions (Fig 2A) and for specific

kinase phosphorylation motifs (Fig 3B and S3A Fig).

In contrast to the other analyzed PTMs, ubiquitinations were strikingly enriched on struc-

tured regions and on amino acids that are expected to be inaccessible (Fig 2A and S2 Fig). We

showed that this effect is triggered by proteasome inhibition, supporting the idea that the ubi-

quitinations on structured regions are predominantly placed on misfolded proteins, tagged for
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degradation. Thus, our toolkit can help distinguish ubiquitination associated with protein

quality control from that mediating site-specific regulation. Interestingly, a majority of the

proteins with ubiquitin modifications enriched in structured regions are DNA or RNA bind-

ers, many of which are known to be ubiquitinated in cellular stress response [37]. As an exam-

ple, the RNA-binding protein G3BP2, which is essential for cytoplasmic stress granule

formation, has all of its 9 ubiquitination sites in structured regions, 6 of which lie in the

NTF2-like domain [23]. SET8 is ubiquitinated during DNA damage response, causing its deg-

radation followed by chromatin rearrangements [38], and our analysis placed 9 of 10 ubiquiti-

nation sites in normally structured regions (adj. p-value = 0.01). Together, these results raise

the possibility that ubiquitination of DNA and RNA binders and their direct regulators pro-

vides an effective regulatory mechanism for cellular stress responses. Coming back to G3BP2,

the role of the NTF2-domain as oligomerization and USP10 binding site suggests that the ubi-

quitination of G3BP2 might impact the formation of protein assemblies. Recent progress in

the prediction of protein complex structures will enable a systematic analysis of such effects in

future studies [39,40]. Further investigations could combine the above analyses with informa-

tion from linkage-specific ubiquitination studies (for instance, K48 versus K63) or even infor-

mation about different ubiquitin side chain architectures to elucidate possible 3D topologies

and associated functionalities.

As PTMs on properly folded proteins are expected to reside on exposed amino acid side

chains, we reasoned that our 3D analysis could help to prioritize sites from experiments per-

formed under less than physiological conditions. Here, we exemplified such a case by an in

vitro kinase substrate screen [26]. While the screen allowed defining sequence preferences for

kinase phosphorylation motifs, determining which sites could mediate bona fide regulation

remained a challenge. Modified sites that are observed on inaccessible amino acid residues can

be filtered out to reduce the target list to more physiologically relevant sites. Moreover, in our

analysis, the motifs of best-retained sites were strikingly better defined than those based on the

discarded ones (Fig 3D). We strongly suggest to employ such analyses in future in vitro PTM

studies. Apart from phosphorylations, we expect similar benefits for the analysis of other types

of PTMs or even for linear motifs involved in specific molecular binding events.

More generally, 3D analysis can highlight sites with a high potential to be functionally rele-

vant. Our unbiased, global analysis revealed that regulatory phosphosites are strongly enriched

in short disordered regions between large folded domains (Fig 4B). Many of these short IDRs

correspond to annotated kinase activation loops, which are known to undergo structural rear-

rangements upon phosphorylation [30]. Our analysis systematically reveals such functionally

highly relevant sequence regions on a proteome-wide scale, opening up multiple interesting

routes for further investigations: First, short IDRs in regions without known functional rele-

vance could specifically be investigated. Second, PTMs lying in or adjacent to such regions

could be prioritized in the selection of candidate PTMs for biochemical follow-up studies,

given their potential to cause structural rearrangements with functional consequences. We

provide the community with a resource of such short IDRs in the human proteome and also

with a set of promising PTM candidates from PhosphosSitePlus, which lie within or directly

adjacent to these short IDRs. Beyond phosphorylation, these candidate PTMs contain hun-

dreds of ubiquitinations as well as tens of sumoylations, acetylations, and methylations (Fig

4G). It would be exciting if future work in protein structure prediction enables the direct pre-

diction of protein folds including PTMs.

Stepping back, the structural context of PTMs can not only be evaluated by means of spatial

metrics, such as the exposure and folding state of individual amino acids, but also by using the

three-dimensional fold directly. To this end, we evaluated PTM proximity in 3D space, reveal-

ing that not only phosphorylations, but also most other PTM types tend to cluster in protein
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folds (Fig 5A). Beyond this colocalization of PTMs of the same type, we further showed that

phosphorylations and lysine modifications preferentially occur in 3D proximity (Fig 5B and

5C), extending previous findings in linear sequence space [35]. Interestingly, lysine modifica-

tions, including ubiquitination, sumoylation, acetylation, and methylation, often compete for

the same or directly neighboring residues, but they do not generally favor proximity (Fig 5C).

A possible explanation for this effect could be the high reactivity of specific lysine residues,

which will be an interesting follow-up to our study [41]. We further investigated PTM proxim-

ity on individual proteins in a proteome-wide fashion. This systematic analysis resulted in the

identification of interesting proteins with 3D clusters of phosphorylations in specific protein

pockets. For instance, in PDHA1, the relevant phosphorylation sites may all be important for

enzyme activation and inactivation [36]. In AKR1B1, the relevant phosphorylations surround

the known NADP binding site. We only observed functionally relevant PTM hotspots in pro-

tein pockets for phosphorylations here, but we expect that future improvements in the cover-

age of other PTM types will also enable the identification of 3D clusters for them. The current

3D proximity analysis builds directly on the structures predicted by AlphaFold. This comes

with the limitation that IDRs and domains that are linked by IDRs are often not accurately pre-

dicted and their relative positions are less defined. In our analysis strategy, we account for this

fact by removing long IDRs from the analysis and by considering the PAE for distance calcula-

tions. To further evaluate flexible protein regions in this type of analysis, ensemble structures

could provide valuable insights, albeit being only available for a small subset of proteins to date

[42]. Recent work extends the prediction of structures of individual proteins to the prediction

of structures for entire protein complexes [39,40]. The integration of proteome-wide estimates

of binding interfaces may make studies of PTM coregulation across proteins, such as the syn-

ergistic sumoylation of multiple proteins during DNA repair [43], feasible on a global scale.

In summary, our study, toAU : Pleasenotethatthephrase}toourknowledge}hasbeenaddedinthesentence}Insummary; ourstudy; toourknowledge; isthefirst:::}AsperPLOSstyle; thisphraseshouldbeaddedifthereisapriorityclaim:our knowledge, is the first systematic assessment of the structural

context of PTMs and how to leverage this information to gain novel biological insights and to

augment proteomic studies. By assessing predicted protein structures for almost the entire

human proteome, we here integrated PTM information at an unprecedented and comprehen-

sive scale. Gratifyingly, for phosphorylation—the most frequently studied PTM type—our

results confirm many previous findings about their structural preferences. They also reveal

novel insights that expand to other modification types, exemplified by the observed accumula-

tion of ubiquitination sites in structured regions. With the tools developed here, we have

shown that comprehensive, in silico structural information can be used to prioritize physiolog-

ical PTM sites from in vitro screens. Furthermore, they allowed us to select potentially regula-

tory sites by extracting PTMs in short IDRs; from phosphorylated kinase activation loops and

extending to sequence regions with PTMs that are currently unexplored but likely to be of

functional importance. Finally, based on the predicted structures, StructureMap identifies pat-

terns of PTM proximity, revealing potential regulatory mechanisms that occur in 3D space. By

providing the open-source Python packages StructureMap and AlphaMap, we equip the scien-

tific community with a toolset to easily integrate information from AlphaFold-predicted struc-

tures into any kind of proteomics study and to visualize proteomics data on the predicted

protein fold. We envision that this will enable scientists to directly assess observed PTMs in

their structural context and to evaluate their physiological feasibility, to prioritize promising

candidates for functional follow-up studies, and to find three-dimensional hotspots of PTM

regulation. Future work could explore 3D motifs for enzyme substrate recognition as well as

the integration of protein binding information. Beyond our own work presented here, we are

convinced that the systematic integration of structural information with proteomics data will

open up new avenues to (re)evaluate both old and new research questions.
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Methods

Prediction of intrinsically disordered regions (IDRs) and benchmarking

against IUPred2

To benchmark IDR prediction, we first downloaded ground truth datasets for both disordered

and structured protein regions as defined by Beltrao and colleagues [17]. To avoid inconsisten-

cies, we removed any amino acids that were labeled as both disordered and structured. We

downloaded and formatted the AlphaFold structure predictions for 3,062 of the remaining

3,080 proteins. The other 18 proteins did not have a complete structure deposited in Alpha-

Fold DB [13,14]. As a reference dataset for our benchmark, we obtained direct IDR estimates

for all proteins from IUPred2A (https://iupred2a.elte.hu/) [20].

RSA values for all amino acids of the benchmarking proteins were calculated using DSSP

from Bio.PDB (version 1.79) using default parameters [44]. Similar to Beltrao and colleagues,

we applied a local smoothing of both the pLDDT and RSA values by averaging along the

sequence with a window size of 5, 10, 15, 20, and 25 amino acids [17].

To evaluate the ability of our pPSE metric to predict IDRs, we calculated the pPSE values

of all amino acids with different parameter settings. Given the goal of finding IDRs, we chose

a constant angle term of 180˚. This corresponds to the full sphere exposure, which is inde-

pendent of side chain orientation. For the distance, we screened over multiple parameters

including 12 Å, 16 Å, 20 Å, 24 Å, and 28 Å. pPSE values were calculated both with and with-

out considering the PAE. Similar to the pLDDT and RSA values, pPSE values were also

smoothed by averaging along the sequence with a window size of 5, 10, 15, 20, or 25 amino

acids.

The performance of IUPred2, pLDDT, RSA, and pPSE in predicting IDRs was evaluated

based on the AUC and TPR at 5% FPR, when screening over different scoring thresholds. The

best results in this analysis were obtained by the pPSE metric when considering PAEs and a

distance threshold of 24 Å. Here, a smoothed pPSE� 34.27 obtained a TPR of 85% at a FPR of

5%. IDR prediction for our proteome-wide analysis was therefore performed based on these

parameters for pPSE calculation.

For evaluating the benchmark analysis, it is important to keep in mind that the annotations

of structured regions and IDRs in the benchmark dataset were unfortunately not associated

with a specified amino acid sequence, but only with sequence positions. While this should be

correct for most proteins, there might be some differences between the original sequences for

which the IDRs were predicted and the sequences used to predict structures by AlphaFold,

thus potentially leading to slight inconsistencies.

All data and code for the IDR benchmark analysis are available at https://github.com/

MannLabs/structuremap_analysis/blob/master/IDR_benchmark.ipynb.

Definition of short IDRs

The goal of our “short IDR” detection strategy was to find flexible regions that are embedded

into large folded domains. We defined short IDRs as amino acid stretches that we predicted to

be IDRs and that comprise maximally 20 residues sandwiched between 2 flanking structured

regions of at least 80 amino acids. Based on our strategy to identify IDRs by a sliding average

of the pPSE exposure, some short IDRs only contain very few amino acids that reach the

threshold to be classified as IDRs. To account for this effect, we introduced the extended

regions of 5 amino acids on either side of short IDRs. We further expect the extension of short

IDRs to be very beneficial in identifying potentially interesting PTMs, given that modifications

on residues directly next to a flexible region could also affect its 3D conformation.
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pPSE parameters for estimating amino acid side chain exposure

The pPSEs for side chain expose estimation were calculated based on a distance threshold of

12 Å and an angle of 70˚. These values were chosen based on considerations about the average

size of amino acids of approximately 3.5 Å and side chain flexibility around the direction of

the beta carbon. Visualization of the resulting pPSE values showed expected patterns, as can be

seen in Fig 1A (middle):

• Amino acids at the core of the protein fold have the highest pPSE values.

• Beta sheets have an alternating pattern of high and low exposure sites.

• Outwards-facing amino acids of alpha-helices have a higher exposure than inwards-facing

sites.

• Amino acids in badly predicted sequence regions (e.g., the tailing sequence) have a pPSE

value close to 0.

To categorize amino acids into low versus high exposure, we selected a pPSE threshold of 5.

This means that amino acids with a pPSE� 5 were considered to have a high exposure. S1B

Fig illustrates the distribution of pPSE values across all amino acids in structured protein

regions (non-IDRs).

Due to missing ground truth data, we could not perform a comprehensive parameter screen

and robustness test. However, based on considerations of the molecular distances involved

and on exemplary visualizations, we expect meaningful exposure metrics for parameters rang-

ing from approximately 10 to 25 Å distance and an angle between approximately 45 and 90˚.

Interpretability then depends on different pPSE thresholds. In future studies, it may be useful

to adjust parameters depending on the research question and possibly the type and size of

modification types that are being assessed.

PTM enrichment analyses

All enrichment analyses were performed using the two-sided Fischer’s exact test available in

scipy.stats version 1.7.1 [45]. P values were subsequently adjusted for multiple testing [46]

using statsmodels.stats.multitest.multipletests version 0.13.0 [47].

Motif analysis with PSSMMatch

The kinase-specific phosphosites were extracted from S2 Table from Sugiyama and colleagues

[26]. UniProt IDs were matched to UniProt accessions, and the sequence windows corre-

sponding to ±6 amino acids around each phosphosite were extracted from the current human

protein fasta file (version: 2021_03, downloaded on 02.08.2021). Any sites not matching the

expected phosphoacceptor residue were removed from the analysis. For each selected kinase,

targeted sequence windows were filtered as follows:

1. All reported sequence windows with a phosphosite pPSE� 5. The number of resulting

sequence windows is defined as Nexposed.

2. All reported sequence windows with a phosphosite pPSE > 5. The number of resulting

sequence windows is defined as Nnot-exposed. Usually, Nexposed > Nnot-exposed.

3. A randomly selected subset of size Nnot-exposed of the reported sequence windows with a

phosphosite pPSE� 5.
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Motif analysis was subsequently performed using the PSSMSearch tool for each of the 3 sets

of sequence windows by selecting “log odds” as scoring method [27,28].

Gene ontology enrichment analysis with DAVID

All gene ontology enrichment analyses presented herein were performed on the DAVID plat-

form version 6.8 [48,49].

For the enrichment analysis of proteins with short IDRs, we compared the 2,454 proteins

with short IDRs against the background of all 20,053 human proteins with available structural

information. Direct Gene Ontology terms of the “Molecular function” category were consid-

ered. Filtering was set to an FDR threshold of 0.01, a minimum fold enrichment of 2 and a

minimum count of 10.

PTM import from PhosphoSitePlus

Lists of PTMs were downloaded from PhosphoSitePlus on 01.08.2021 [21]. PTM types include

phosphorylations (p), ubiquitinations (ub), sumoylations (sm), acetylations (ac), methylations

(m), and the glycosylations O-GalNAc (ga) and O-GlcNAc (gl). Additionally, the set of regula-

tory PTMs was downloaded and filtered for the modifications mentioned above. For each

PTM type, sites were filtered for a selected set of the most common acceptor residues as

follows:

• p: S, T, Y

• ub, sm and ac: K

• m: K, R (Note: all types of methylations were grouped together)

• ga, gl: S, T

In rare cases where regulatory sites were reported for a specific PTM type, but no matching

entry was found in the according dedicated PTM list, these sites were added there.

The data processing of PhosphoSitePlus data is available at https://github.com/MannLabs/

structuremap_analysis/blob/master/ptm_data_import/import_phosphositeplus.ipynb.

Global PTM proximity analysis

In our global PTM proximity analysis, we investigated whether PTM acceptors near a modified

amino acid residue are more frequently observed to also be modified compared to more dis-

tant residues or random expectation, a concept previously introduced by Beltrao and col-

leagues [35]. Here, we extended the concept to evaluate PTM proximity in 3D space and to

assess both individual PTM types and PTM co-occurrence. Starting from a set of observed

modifications, e.g., phosphorylations, we calculate the 3D distance to all observed modifica-

tions of either the same type, e.g., also phosphorylations, or of a different type, e.g., ubiquitina-

tions. Importantly, we consider the positional uncertainty of AlphaFold predictions by adding

the PAE to each distance. We also generate 5 random permutations, where the same number

of modifications are distributed randomly across all possible acceptor residues. Finally, we

select distance bins and count the number of modified residues in each of these bins for both

the real observations and the randomized background. To ensure that disordered regions do

not bias the results, only structured regions and short IDRs were considered in this analysis

(i.e., we removed all IDRs stretching more than 20 amino acids).

For PTM self-proximity, we started distance bins at 1 Å ranging up to a maximum of 35 Å
in step sizes of 5 Å. For PTM colocalization analysis, we started distance bins already at 0 Å to
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enable the evaluation of competition for the same site, especially between different lysine mod-

ifications such as ubiquitination, sumoylation, and acetylation.

Per protein PTM cluster analysis

To find proteins with a significant colocalization of PTMs, we calculated all pairwise distances

between the alpha carbons of modified acceptor residues. The matching PAE provided by

AlphaFold was added to each calculated distance to account for positional uncertainties. The

average distance was subsequently compared to the average distances of 10,000 random per-

mutations among the modified acceptor residues, thus resulting in empirical p-values. These

p-values were adjusted for multiple testing [46] using statsmodels.stats.multitest.multipletests

version 0.13.0 [47].

Protein structure visualization with AlphaMap

The 3D structure visualization in AlphaMap was implemented by integrating a Mol� Viewer

[50]. Code was adapted from https://github.com/molstar/pdbe-molstar.

Supporting information

S1 Fig. Estimation of amino acid side chain exposure and IDRs. (A) Visualization of the

strategy to calculate the pPSE. (B) Distribution of pPSE values across all amino acids in struc-

tured protein regions (non-IDRs). (C) Parameter screen to evaluate the ability of different

metrics to predict IDRs based on the TPR at a 5% FPR. Source data are available at https://

github.com/MannLabs/structuremap_analysis/blob/master/data/alphafold_data/pPSE_

bincount_df.csv. (D) Parameter screen to evaluate the ability of different metrics to predict

IDRs based on the AUC. The numbers in square brackets behind each metric indicate the

smoothing windows that were used. Source data for (C) and (D) are available at https://github.

com/MannLabs/structuremap_analysis/blob/master/data/disorder_data/IDR_ROC_curve.

csv. AUCAU : AbbreviationlistshavebeencompiledforthoseusedinS1; S2; andS4FigsandS1andS2Datasets:Pleaseverifythatallentriesarecorrect:, area under the curve; FPR, false positive rate; IDR, intrinsically disordered region;

pPSE, prediction-aware part-sphere exposure; TPR, true positive rate.

(EPS)

S2 Fig. Enrichment analysis of PTMs in amino acids with high versus low side chain expo-

sure. (A) Enrichment of different PTMs annotated in the PhosphoSitePlus database in amino

acids with side chains of high side chain exposure within structured regions. PTMs are abbre-

viated as follows: phosphorylations (p), ubiquitinations (ub), sumoylations (sm), acetylations

(ac), methylations (m), and the glycosylations O-GlcNAc (gl) and O-GalNAc (ga). (B) Enrich-

ment of ubiquitinated lysines annotated in PhosphoSitePlus versus ubiquitinations detected in

a dataset treated with proteasome inhibitor or untreated. Source data for (A) and (B) are avail-

able at https://github.com/MannLabs/structuremap_analysis/blob/master/data/ptm_

enrichment/ptm_enrichment_high_acc_5.tsv. PTM, posttranslational modification.

(EPS)

S3 Fig. Exploiting the 3D context of kinase phosphorylation motifs. (A) Enrichment of

phosphorylations in kinase motifs with amino acids of high side chain exposure compared to

all possible kinase motif occurrences in structured regions. Source data are available at https://

github.com/MannLabs/structuremap_analysis/blob/master/data/ptm_enrichment/

enrichment_p_inMotif_inHighAcc.tsv. (B) Sequence logos for different kinases based on a

random subset of high-exposure sites, comprising the same number of sites as compared to

the low-exposure set. The PSSMSearch tool (Krystkowiak and colleagues [27]) was used with a
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log odds scoring method (O’Shea and colleagues [28]).

(EPS)

S4 Fig. PTM proximity analysis in 3D. (A) The fraction of modified PTM acceptor residues

is shown as a function of the 3D distance to a given modified amino acid in Å. Observed values

(indicated in red when statistically significant and colored in salmon otherwise) are compared

to the mean of 5 random samples including the same number of modified PTM sites (gray).

Error bars indicate 1 standard deviation. The x-axes are divided in distance bins ranging from

each previous bin to the indicated cutoff in Å. Source data are available at https://github.com/

MannLabs/structuremap_analysis/blob/master/data/proximity_analysis/Fraction_of_

modified_acceptor_residues_self_noIDRs.csv. (B) The fraction of modified phospho-acceptor

residues is shown as function of the 3D distance to a given modified amino acid in Å. Source

data are available at https://github.com/MannLabs/structuremap_analysis/blob/master/data/

proximity_analysis/Fraction_of_modified_acceptor_residues_p_colocalization_noIDRs.csv.

(C) The fraction of ubiquitinated lysines is shown as function of the 3D distance to a given

modified amino acid in Å. The smallest bin shows competition for the same central lysine resi-

due. Source data are available at https://github.com/MannLabs/structuremap_analysis/blob/

master/data/proximity_analysis/Fraction_of_modified_acceptor_residues_ub_colocalization_

noIDRs.csv. PTM, posttranslational modification.

(EPS)

S1 Dataset. PTMs in short intrinsically disordered regions. PTM, posttranslational modifi-

cation.

(XLS)

S2 Dataset. Predicted short IDRs. IDR, intrinsically disordered region.

(XLS)

S3 Dataset. Proteins with significant phosphosite clusters.

(XLS)
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