Skip to main content
. 2022 May 27;20:2664–2671. doi: 10.1016/j.csbj.2022.05.040

Table 2.

Largest eigenvalues (expressed as mean and standard deviation), calculated for each graph model and centrality measure (CM), of the original graph (Original), the graph randomly deprived of k nodes (Random), and the graph deprived of the k most central nodes within the graph (Top-K). DC stands for degree centrality, BC for betweenees centrality, EC for eigenvalue centrality and CC for closeness centrality. A p-value lower than 0.05 means that the decrease in the distribution of the largest eigenvalue is significantly higher after deleting the Top-K central nodes.

Graph Model CM Original Top-K Random p-value
Erdős Rényi DC 400 ± 0.51 351.2 ± 0.65 368 ± 0.7 0.01
Erdős Rényi BC 400 ± 0.51 354.2 ± 0.65 365 ± 0.7 0.01
Erdős Rényi EC 400 ± 0.51 351.4 ± 0.21 367± 0.92 0.01
Gn,p Random Graph DC 400.18 ± 0.66 354.59 ± 0.61 365.44 ± 0,62 0.01
Gn,p Random Graph BC 400.18 ± 0.66 357.79 ± 0.61 368.44 ± 0,62 0.01
Gn,p Random Graph EC 400.18 ± 0.66 351.23 ± 0.21 371.44 ± 0.62 0.01
Duplication Divergence DC 15.2 ± 1.81 4.64 ± 0.52 15.08 ± 1.79 0.01
Duplication Divergence BC 15.2 ± 1.81 5.67 ± 0.51 14.88 ± 1.19 0.01
Duplication Divergence EC 15.2 ± 1.81 8.53 ± 1.4 17.14 ± 1.14 0.01
Barabási-Albert DC 129.38 ± 1.9 67.43 ± 3.45 115.85 ± 1.79 0.01
Barabási-Albert BC 129.38 ± 1.81 65.79 ± 0.51 120.98 ± 1.19 0.01
Barabási-Albert EC 129.38 ± 1.9 68.53 ± 1.4 117.14 ± 1.14 0.01