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Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection resulting in the
coronavirus disease 2019 (COVID-19) has afflicted hundreds of millions of people in a worldwide pan-
demic. Several safe and effective COVID-19 vaccines are now available. However, the rapid emergence
of variants and risk of viral escape from vaccine-induced immunity emphasize the need to develop
broadly protective vaccines. A recombinant plant-derived virus-like particle vaccine for the ancestral
COVID-19 (CoVLP) recently authorized by Canadian Health Authorities and a modified CoVLP.B1351 tar-
geting the B.1.351 variant (both formulated with the adjuvant AS03) were assessed in homologous and
heterologous prime-boost regimen in mice. Both strategies induced strong and broadly cross-reactive
neutralizing antibody (NAb) responses against several Variants of Concern (VOCs), including B.1.351/
Beta, B.1.1.7/Alpha, P.1/Gamma, B.1.617.2/Delta and B.1.1.529/Omicron strains. The neutralizing anti-
body (NAb) response was robust with both primary vaccination strategies and tended to be higher for
almost all VOCs following the heterologous prime-boost regimen.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction mostly attributable to highly transmissible SARS-CoV-2 Variants
Since the declaration of a pandemic situation caused by the
SARS-CoV-2 by the World Health Organisation (WHO), over 410
million cases have been reported and >5.8 million people have died
from COVID-19 (WHO Coronavirus Disease (COVID-19) Dashboard,

https://covid19.who.int/, 2021). The rapid development and
approval of vaccines with efficacy up to 95% led to hope in mid-
2021 that the worst of the pandemic was over [1–4]. However,
the total number of COVID-19 cases is still growing rapidly world-
wide with almost 300 000 reported deaths in just the last month,
of Concern (VOCs). The most worrisome variants are those with
mutations in the Spike (S) protein that not only enhance transmis-
sibility but also increase virulence and evasion of vaccine-induced
immunity [5–10] or resistance to neutralization by monoclonal
antibodies [8,9,11]. The S protein plays a crucial role in SARS-
CoV-2 infection through the interaction of its receptor binding
domain (RBD) with the angiotensin-converting enzyme 2 (ACE2)
receptor on host respiratory epithelial cells [12–14]. All of the cur-
rently approved vaccines target the S protein of the ancestral strain
of SARS-CoV-2 identified in Wuhan and a growing number of
reports demonstrate that their efficacy against mainly the B.1.351
and the B.1.617.2 variants is reduced [15–18]. Medicago has devel-
oped a SARS-CoV-2 vaccine using a platform technology based on
transient expression of recombinant proteins in non-transgenic
Nicotiana benthamiana plants and a disarmed Agrobacterium tume-
faciens as a transfer vector to move targeted DNA constructs into
the plant cells [19]. The S protein trimers displayed on the surface
of the plant-derived coronavirus-like particles (CoVLP) are in a sta-
bilized, prefusion conformation that resemble native structures on
wild-type SARS-CoV-2 virions. Plant-based VLP vaccines are an
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emerging production platform that has many potential advantages
such as proper eukaryotic protein modification and assembly, low
risk of contamination with adventitious agents, scalability, and
rapid production speed [20]. Currently, several plant-based VLP
vaccine candidates against pathogens such as Hepatitis B virus
[21], Rabies virus [22], Influenza virus [23] and Norwalk virus
[24] are under clinical development. At the time of writing, only
two plant-based VLP vaccine candidates against SARS-CoV-2 have
reached the clinical stage; Medicago’s CoVLP has completed its pri-
mary vaccine efficacy analyses in Phase 3 (NCT04636697) and has
recently been authorized by Canadian Health Authorities [25] and
Kentucky Bioprocessing-201 is in Phase 1/2 (NCT04473690).
Herein, we present the preclinical evaluation of a CoVLP candidate
targeting the B.1.351 variant compared with the original CoVLP tar-
geting the ancestral SARS-CoV-2 strain, both of which were formu-
lated with AS03, an Adjuvant System containing DL-a-tocopherol
and squalene in an oil-in-water emulsion. Both homologous and
heterologous primary immunization strategies induced strong neu-
tralizing antibody (NAb) responses with broad cross-reactivity
against the B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2
(Delta), and B.1.1.529 (Omicron) VOCs. SARS-CoV-2 variant strains
were selected based on the WHO designation for VOCs and degree
of global public health concern.
2. Materials and methods

2.1. AS03-Adjuvanted CoVLP vaccine and CoVLP.B1351 vaccine
candidate

The full-length S glycoprotein of SARS-CoV-2 from the GISAID

database (https://www.gisaid.org/), strain hCoV-19/USA/
CA2/2020 (nucleotides sequence 21,563 to 25,384 from
EPI_ISL_406036) corresponding to the ancestral Wuhan strain for
CoVLP or hCoV-19/Belgium/AZDelta05413-2105R/2021 (nu-
cleotides sequence 21,521 to 25,342 from EPI_ISL_961189) for
CoVLP.B1351 were expressed in Nicotiana benthamiana plants as
previously described [19]. The S protein was modified at the S1/
S2 cleavage site (CoVLP: R667G, R668S and R670S substitutions;
CoVLP.B1351: R682G, R683S and R685S substitutions; relative to
native S protein from original B strain from EPI_ISL_406036) to
increase stability and to stabilize the protein prefusion conforma-
tion (CoVLP: and K971P and V972P substitutions; CoVLP.B1351:
K986P and V987P; relative to native S protein from original B strain
from EPI_ISL_406036). The signal peptide was replaced with a
plant gene signal peptide and the transmembrane domain (TM)
and cytoplasmic tail (CT) of S protein were also replaced with
TM/CT from Influenza H5 A/Indonesia/5/2005 to increase VLP
assembly and budding. The self-assembled VLPs bearing S protein
trimers were isolated from the plant matrix and subsequently
purified using a process similar to that described for Medicago’s
plant-derived influenza VLP vaccine candidates [26].

The AS03 Adjuvant System, an oil-in-water emulsion containing
11.86 mg DL-a-tocopherol, 10.69 mg squalene and 4.86 mg
Polysorbate 80 per adult human dose, was supplied by GSK, (Rix-
ensart, Belgium) and was used as recommended by the manufac-
turer. The control article was phosphate buffered saline (PBS)
solution with Polysorbate 80. On each dosing day, CoVLP and
CoVLP.B1351 were diluted with PBS to achieve the appropriate
concentration and then mixed in a 1:1 (volume:volume) ratio with
adjuvant prior to administration.

2.2. Animals, immunizations and In-Life/Post-Mortem observations

Female specific pathogen free BALB/c mice (8 weeks old) were
supplied from Charles River (St-Constant, Québec, Canada) and
4018
the study was conducted at ITR Laboratories Canada Inc (Baie
d’Urfe, Quebec, Canada). The study protocol was approved by ITR’s
internal Animal Care Committee (ACC) and all animals used were
cared for in accordance with the principles outlined in the current
‘‘Guide to the Care and Use of Experimental Animals” published by
the Canadian Council on Animal Care, the NIH’s ‘‘Guide for the Care
and Use of Laboratory Animals” and the Animal Research Reporting
In Vivo Experiments guidance. In summary, animals were main-
tained under standard laboratory conditions (lighting: 12 / 12 h,
temperature: 21 ± 3 �C, relative humidity: 50 ± 20%) with certified
rodents pellet feed and drinking water ad libitum. The mice (8/-
group, except for no vaccine control; 5/group) were immunized
intramuscularly (IM) with 3.75 lg AS03-adjuvanted CoVLP or
CoVLP.B1351 or the PBS control on Days 0 and 21 (final volume
0.1 mL; 0.05 mL per injection site). The administered dose was cal-
culated based on the total protein content (measured by the BCA
method) and adjusted for the purity of the CoVLP content. The pur-
ity is based on the relative abundance of the S protein measured by
reduced SDS-PAGE and densitometry analyses. The purity of CoVLP
and CoVLP.B1351 were 81% and 80% respectively. The AS03-
adjuvanted vaccines were administered as either a homologous
(CoVLP-CoVLP or CoVLP.B1351-CoVLP.B1351) or heterologous
(CoVLP-CoVLP.B1351) prime-boost during primary vaccination
(Fig. 1). Mortality, clinical signs, body weight, food consumption
and injection site observations were evaluated throughout the
study. Macroscopic observations were performed at euthanasia
on Day 35. Blood was collected on Days 0 (pre-immune), 21 and
35 to measure serum NAb levels.

2.3. Pseudovirus neutralization assay (PNA)

The PNA was performed by Nexelis (Laval, Quebec, Canada)
using a pseudovirus based on SARS-CoV-2 ancestral Wuhan strain
(reference MN908947) as previously described [27]. Analyses were
performed in duplicate and included appropriate controls. The
assay was qualified for the ancestral pseudovirus strain. Cross-
reactivity was evaluated using modified pseudovirions expressing
SARS-CoV-2 S glycoproteins from representative B.1.351 (L18F,
D80A, D215G, del242-244, R246I, K417N, N501Y, E484K, D614G,
A701V, plus D19aa C-terminal for the PP processing), B.1.1.7
(del69-70, del144, N501Y, A570D, D614G, P681H, T716I, S982A,
D1118H, plus D19aa C-terminal for the PP processing), P.1 (L18F,
T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y,
T1027I, V1176F, plus D19aa C-terminal for the PP processing),
B.1.617.2 (T19R, G142D, Del156, Del157, R158G, L452R, T478K,
D614G, P681R, D950N) and B.1.1.529 (A67V, D69-70, T95I,
G142D/D143-145, D211/L212I, ins214EPE, G339D, S371L, S373P,
S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493K,
G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K,
P681H, N764K, D796Y, N856K, Q954H, N969K, L981F) strain
sequences. In brief, serum samples were heat-inactivated at
56 ± 2 �C for 30 min and diluted in duplicates in cell growth media
at a starting dilution of 1/25 or 1/250, followed by a serial dilution
(2-fold dilutions, 5 times). A previously pre-determined concentra-
tion of pseudovirus was then added to diluted sera samples and
pre-incubated for 1 h at 37 �C with CO2. The mixture was then
added to pre-seeded confluent Vero E6 cells expressing the ACE2
receptor (ATCC CRL-1586) and incubated for 18–24 h at 37 �C with
5% CO2. Following incubation and removal of media, ONE-Glo EX
Luciferase Assay Substrate (Promega, Madison, WI) was added to
cells and incubated for 3 min at room temperature with shaking.
Luminescence was measured using a SpectraMax i3x microplate
reader (Molecular Devices, San Jose, CA). A titration curve was gen-
erated based on a 4-parameter logistic regression (4PL) using
Microsoft Excel. The NAb titer was defined as the reciprocal of
the sample dilution for which the luminescence was equal to a

https://www.gisaid.org/


Fig. 1. Experimental Design Female BALB/c mice were intramuscularly vaccinated twice (Days 0 and 21) with 0.1 mL of control (PBS), CoVLP or CoVLP.B1351 adjuvanted
with AS03 (final CoVLP dose of 3.75 lg) as homologous or heterologous prime-boost regimen. n, number of mice within the group. Syringe indicates immunization day. Red
drop indicates blood collection day.
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pre-determined cut-point value corresponding to 50 % neutraliza-
tion. Responders were considered positive if the NAb titer
was � 25. NAb results presented in the current study were
obtained using pseudotyped SARS-CoV-2 virus. Note that results
obtained with PNA generally correlates with live virus based
microneutralization assay [28].
2.4. Statistical analyses

The descriptive statistics and statistical comparisons were per-
formed using GraphPad Prism software (Version 8.4.2; GraphPad
Prism Software, La Jolla, CA, USA). The geometric mean titers
(GMT) of NAb titers with 95 % confidence intervals (CI) and per-
centage of positive responders were calculated for each group of
mice. A titer value of 12.5 was attributed to titers lower than the
minimum required dilution (MRD) (i.e., 1/25). Statistical compar-
isons to evaluate differences between groups were performed
using either a one-way ANOVA followed by a Tukey post hoc test,
or a two-way ANOVA followed by a Bonferroni post hoc test on
log10-transformed antibody titers. Wilcoxon matched-pairs signed
rank was used to assess differences between the various SARS-
CoV-2 pseudovirus strains. The threshold for statistical significance
was set to p < 0.05.
3. Results

3.1. Neutralizing and Cross-Reactive antibodies induced by AS03-
Adjuvanted CoVLP and CoVLP.B1351 following homologous Prime-
Boost primary vaccination strategies

In this study, mice were immunized following either a homolo-
gous or heterologous prime-boost regimen with AS03-adjuvanted
CoVLP and/or CoVLP.B1351 (Fig. 1). A single dose of either AS03-
adjuvanted CoVLP or CoVLP.B1351 induced a significant NAb
response against the homologous strain (CoVLP versus ancestral
strain: GMT 661 [95% CI: 454–963]; CoVLP.B1351 versus the
B.1.351 strain: GMT 1 066 [95% CI: 852–1 333](Fig. 2A). All animals
in the CoVLP and CoVLP.1351 groups respectively mounted a
response above the MRD after the first dose. Cross-reactivity was
also observed (Fig. 2B) following a single dose of either CoVLP or
CoVLP.B1351 when tested against heterologous strains. These
responses were � 2x lower than against its homologous viral strain
(both p < 0.01). NAb responses induced by either AS03-adjuvanted
CoVLP or CoVLP.B1351 were increased approximately 10-fold after
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the boost (both p < 0.0001) with GMT against the homologous
strain of 7 183 [95% CI: 4 859–10 618] and 10 037 [95% CI:
5 816–17 324] for CoVLP and CoVLP.1351 respectively. Cross-
reactive responses after two doses with either CoVLP or CoVLP.
B1351 were increased to similar levels against the opposite strain
(Fig. 2C): CoVLP-CoVLP against the B.1.351 strain 6 363 [95% CI: 4
093–9 893] and CoVLP.1351-CoVLP.B1351 against the ancestral
strain 6 066 [95% CI: 4 628–7 952] (both p > 0.05).
3.2. High levels of Cross-Reactive response against other VOCs

Both homologous prime-boost strategies (CoVLP-CoVLP or
CoVLP.B1351- CoVLP.B1351) induced high levels of cross-reactive
NAbs against several other VOCs including B.1.1.7 and P.1.
(Fig. 2C). A significant decrease in NAbs was observed against the
B.1.617.2 and B.1.1.529 variants (Fig. 2C). The degree of cross-
reactive neutralization induced by AS03-adjuvanted CoVLP-
CoVLP was similar to that elicited by AS03-adjuvanted CoVLP-
B1351-CoVLP.B1351 (p > 0.05) (Fig. 3) except for the P.1 and
B.1.1.529 strains, for which the latter strategy generated signifi-
cantly higher titers (P.1 : GMT 22 380 [95% CI: 14 529–34 473] ver-
sus 9 929 [95% CI: 5 843–16 872], B.1.1.529: GMT 3 218 [95% CI: 1
547–6 693] versus 470 [95% CI: 218–1 016]: p < 0.05) (Fig. 3D and
3F). As previously shown in Fig. 2C, the degree of cross-
neutralization for the AS03-adjuvanted CoVLP-CoVLP homologous
prime-boost regimen varied across the tested VOCs as follows: P.
1 > B.1.1.7 > B.1.351 > B.1.617.2 > B.1.1.529 and for the CoVLP.
B1351-CoVLP.B1351 regimen (Fig. 2C): P.1 > ancestral/B.1.1.7 > B.
1.1.529 > B.1.617.2.
3.3. Heterologous Prime-Boost vaccination also induced a strong and
Cross-Reactive antibody response to VOCs

The heterologous, AS03-adjuvanted CoVLP-CoVLP.B1351 vacci-
nation also successfully induced high titers of NAbs against both
strains included in the regimen as well as the other VOCs tested
(Fig. 3), with the exception of the B.1.1.529 variant, for which
NAb levels were 12–15 folds lower compared to the ancestral
and the B.1.351 strains. Compared to the AS03-adjuvanted
CoVLP-CoVLP group, the heterologous prime-boost group induced
a significantly greater cross-reactive response for the B.1.351
(Fig. 3B) and P.1 (Fig. 3D) VOCs (p < 0.05). Compared to the
CoVLP.B1351-CoVLP.B1351 homologous regimen, only the
response against the ancestral strain was higher in the heterolo-



Fig. 2. Serum Neutralizing Antibody Response and Cross-Reactivity Comparisons of AS03-Adjuvanted CoVLP or CoVLP.B1351 Following Homologous Prime-Boost
Regimen. BALB/c mice (n = 8) were immunized IM on Days 0 and 21 with 3.75 lg of CoVLP or CoVLP.B1351 formulated with AS03 adjuvant. NAb titers were measured against
SARS-CoV-2 pseudoparticles in serum samples using a cell-based PNA targeting the ancestral or B.1.351 strains. Half of the minimum required dilution (MRD) of the method
was assigned to non-responders (i.e. 12.5). (A) GMT with 95 % CI measured 21 days after the 1st immunization (Day 21) and 14 days after the 2nd immunization (Day 35).
Statistical comparisons were performed using a two-way ANOVA followed by a Bonferroni post hoc test on log10-transformed NAb titers. (B-C) Results from individual mouse
serum samples (n = 8 per antigen) are represented as dots on each figure with lines connecting ancestral of B.1.351 to the B.1.351, B.1.1.7, P.1, B.1.617.2 or B.1.1.529
neutralization titers. Statistical comparisons were performed using Wilcoxon matched pairs signed rank test. p-values are indicated on the graphs. ns: Not significant
(p > 0.05).

C. Dubé, S. Paris-Robidas, G. Andreani et al. Vaccine 40 (2022) 4017–4025
gous prime-boost group (Fig. 3A; p < 0.05). Again, a significantly
lower response against the B.1.1.529 strain was observed
(Fig. 3F; p < 0.05). The amplitude of the cross-reactive neutralizing
antibody response after heterologous prime-boost vaccination var-
ied across the strains tested (Fig. 4): P.1 > B.1.351 > ancestral/B.1.1.
7 > B.1.617.2 > B.1.1.529.

3.4. Safety of CoVLP and CoVLP.B1351 vaccines in animals

Overall, no safety concerns were raised following homologous
prime-boost strategies or the heterologous strategy. The post-
4020
immunization variations observed for body weight and food con-
sumption were transient and/or within the normal variations
(Figures S1 and S2). An unexpected increase in food consumption
was observed in the CoVLP + AS03 group between Days 7–14 that
was likely attributable to eating-like behavior (i.e. stashing of
food pellets at the bottom of the cage) in a small number of
the animals in this group. Transient signs of discomfort
(Table S1) and inflammation at the dosing sites (edema and ery-
thema) were reported in all treated groups following the prime
(Figure S3). All observations generally subsided within 10–14 days
and were no longer seen prior to the second administration. After



Fig. 3. Cross-Reactive Neutralization against the ancestral, Beta (B.1.351) Alpha (B.1.1.7), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) strains Following
Homologous or Heterologous Prime-Boost Regimen. BALB/c mice (n = 8) were immunized IM on Days 0 and 21 with 3.75 lg of CoVLP.B1351 or CoVLP (both formulated
with AS03 adjuvant). NAb titers were measured against SARS-CoV-2 pseudoparticles in serum samples using a cell-based PNA targeting the ancestral, B.1.351, B.1.1.7, P.1,
B.1.617.2 or B.1.1.529 strains. Half of the minimum required dilution (MRD) of the method was assigned to non-responders (i.e. 12.5). GMT with 95 % CI obtained 14 days
after the boost (Day 35) for the (A) ancestral, (B) B.1.351, (C) B.1.1.7, (D) P.1, (E) B.1.617.2 or (F) B.1.1.529 strains. Statistical comparisons between the CoVLP-treated groups
were performed using a One-way ANOVA followed by a Tukey post hoc test (Day 35) on log10-transformed NAb titers. Significant differences are indicated with p-values on
the graphs.
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the second administration, no signs of reactogenicity or discom-
fort were reported at the injection site. No macroscopic anomalies
were reported following euthanasia and collection of organs and
tissues.
4021
4. Discussion and conclusions

The first anti-COVID-19 vaccines were approved for emergency
use within a year of the start of the pandemic with reported



Fig. 4. Cross-Reactivity Comparisons against Alpha (B.1.1.7), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) strains Following Heterologous Prime-Boost
Regimen. BALB/c mice (n = 8) were immunized IM on Days 0 with 3.75 lg CoVLP and 21 with 3.75 lg of CoVLP.B1351 (both formulated with AS03 adjuvant). NAb titers were
measured against SARS-CoV-2 pseudoparticles in serum samples using a cell-based PNA targeting the ancestral, B.1.351, B.1.1.7, P.1, B.1.617.2 or B.1.1.529 strains. Half of the
minimum required dilution (MRD) of the method was assigned to non-responders (i.e. 12.5). Results from individual mouse sera (n = 8 per antigen) are represented as dots on
each figure with lines connecting the ancestral or B.1.351 variant to the B.1.351, B.1.1.7, P.1, B.1.617.2 or B.1.1.529 neutralization titers. Statistical comparisons were
performed using Wilcoxon matched pairs signed rank test. p-values are indicated on the graphs. ns: Not significant (p > 0.05).

C. Dubé, S. Paris-Robidas, G. Andreani et al. Vaccine 40 (2022) 4017–4025
efficacies ranging from 50 to 95% [29]. Simultaneously however,
multiple viral variants have emerged in different geographic
regions with varied transmissibility, virulence and resistance to
vaccine-induced immunity [30–35]. Many parts of the world have
experienced rapid replacement of the ancestral Wuhan-like strain
with one or a sequence of these variants of concern ‘‘VOCs”. The
different waves of variants has complicated diagnostic efforts in
some cases [8,9,36] and generally frustrated efforts to control the
spread and impact of the pandemic [37]. Among the most impor-
tant VOCs that have emerged over the last year include the
B.1.1.7, B.1.351, P.1/B.1.1.248, B.1.617.2 and B.1.1.529 strains
[38–41].

The rapid worldwide spread of some VOCs can be attributed to
enhanced transmissibility. For example, transmission of the
B.1.617.2 variant is at least 40% greater than the ancestral or
B.1.1.7 strains [42,43] and it is estimated that the transmission rate
of the recent B.1.1.529 variant is at least 4-times higher than the
ancestral strain [44]. Several lines of evidence including animal
models and epidemiological observations suggest that this
increased transmissibility is related to Spike protein mutations
[45,46] such as D614G [47,48], P681R [49] or K417N/E484K/
N501Y [50]. These mutations have significant functional effects
related to transmissibility such as accelerated cell-to-cell spread
[49] and the generation of higher virus loads in the upper airways
when compared to the B.1.1.7 strain [42]. Although the relation-
ship between different mutations and disease severity is not yet
fully understood [51], recent evidence suggests that the B.1.1.7
variant is associated with a higher risk of emergency care consul-
tation and hospital admission for unvaccinated individuals com-
pared with B.1.1.7 variants [35]. It is very clear however that
some of these mutations can confer significant resistance to anti-
body neutralization in vitro, particularly those present in the
B.1.351 [52–54], B.1.617.2 [55], and B.1.1.529 [56] strains raising
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important concerns about the countermeasures available to over-
come the COVID-19 pandemic [57]. Indeed, reduced neutralizing
efficacy of antibodies from several of the deployed vaccines has
already been demonstrated against the P.1/B.1.1.248, B.1.351,
B.1.617.2, and B.1.1.529 variants in both clinical trials and real-
world evidence studies [5,11,18,58,59]. In several randomized con-
trolled trials with different vaccines, efficacy against the B.1.351
variant was observed to fall by 33–84% [15–17,60]

Although most of the deployed vaccines continue to have good
efficacy against severe disease induced by most of the VOCs iden-
tified to date [15,61] and there is evidence of convergent evolution
[62,63], it is unlikely that SARS-CoV-2 has fully exhausted its
genetic repertoire. These observations highlight the need both to
evaluate the ability of vaccines already deployed or in advanced
development to neutralize the VOCs and to develop next genera-
tion vaccines with broader cross-reactivity. In this study, the
cross-reactive neutralizing antibody responses elicited by AS03-
adjuvanted CoVLP (targeting the ancestral SARS-CoV-2 strain)
were generally promising. Despite slight (1-2x) reductions in neu-
tralizing activity for the B.1.351 (-1.1x) and B.1.617.2 (-2.0x) vari-
ants compared to the ancestral strain, two doses of CoVLP with
AS03 still elicited high levels of serum cross-neutralizing antibod-
ies against the VOCs tested. These observations are similar to those
reported with other SARS-CoV-2 vaccines targeting the ancestral S
protein [58,64] although the decrement in neutralization for VOCs
was less pronounced for CoVLP, particularly for the B.1.351 strain.
Of particular note, similar trends were observed in recently
reported results on neutralization of VOCs with human serum sam-
ples collected in Medicago’s ongoing clinical development program
of AS03-adjuvanted CoVLP administered at 3.75 lg [65]. The
B.1.1.529 variant is now well known to escape neutralization by
many monoclonal antibodies and vaccine-induced humoral
responses that are active against other SARS-CoV-2 variants
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[43,56,59]. Hence it is not a surprise that an important decrease in
the neutralizing potential of antibodies against the B.1.1.529 vari-
ant strain was observed in the current study. Similar reductions in
neutralizing antibody titers have been reported in both clinical tri-
als [43,56,59] and studies in non-human primates immunized with
ancestral SARS-CoV-2 vaccines [66,67]. In the current study, the
decrease in neutralizing activity was less pronounced following
the administration of the candidate B.1.351 vaccine compared to
the vaccine based on the ancestral strain, possibly due to the closer
phylogenic relationship between B.1.351 and the Omicron variants
[68].

Despite these promising data, it is possible that one or more
VOCs will eventually emerge that is/are no longer effectively neu-
tralized by vaccine-induced immunity. It is in this context that
Medicago and others have chosen to develop next-generation vac-
cine candidates targeting the B.1.351 strain since this strain is one
of the most antigenically distant VOC to emerge to date. The
B.1.351 variant has consistently proved to be difficult to neutralize
in vitro [69,70] and has caused large decrements in vaccine efficacy
in several randomized controlled trials [15–17,61]. In the current
study, animals that received two doses of either AS03-adjuvanted
CoVLP or CoVLP.B1351 mounted neutralizing antibody responses
that were comparable for both homologous and heterologous
strains while reports for other candidate B.1.351 vaccines in mice
have shown either strong homologous (ie: B.1.351-specific)
responses only [71] or the requirement for three doses to achieve
high levels of NAbs [64]. The pattern of the NAb response was con-
sistent across multiple VOCs in the current study with the CoVLP.
B1351 candidate generally eliciting higher titers than the ancestral
CoVLP and this difference reached significance for the P.1 (2.3x)
and the B.1.1.529 (6.8x) strains. Although the level of cross-
neutralization in the animals that received CoVLP.1351 was lower
for the B.1.1.7 (-1.6x) and B.1.617.2 (-4.0x) variants compared to
the homologous response, such differences are expected given
the genetic and antigen ‘distance’ between these VOCs [43]. Fur-
thermore, while these relative decreases were observed, the abso-
lute titers of cross-reactive antibodies induced by two doses of
CoVLP.B1351 with AS03 against the VOCs tested was still substan-
tial. These findings are consistent with observations of others
[64,71,72] and suggest that vaccines targeting the original
Wuhan-like strain may be eventually become suboptimal in the
next stages of the pandemic, opening the door to less conventional
vaccination approaches including heterologous prime-boost
strategies.

Concern over the ability of any single S protein antigen to elicit
a broad enough response to neutralize all of the known and possi-
bly future VOCs prompted us to evaluate the possible benefits of a
heterologous prime-boost strategy with the Wuhan-like CoVLP as
the prime and CoVLP.B1351 as the boost; both adjuvanted with
AS03. Heterologous vaccination strategies that use two distinct
platforms and/or deliver two slightly different antigens have
shown considerable promises for a wide range of viral pathogens
that rapidly mutate such as HIV [73], hepatitis C virus [74] or influ-
enza to both broaden the immune response and focus the response
on conserved epitopes [75]. This approach was largely confirmed in
the current study since the neutralizing antibody titers were con-
sistently higher in the animals that had received the AS03-
adjuvanted CoVLP-CoVLP.B1351 regimen, reaching statistical sig-
nificance over the AS03-adjuvanted CoVLP-CoVLP regimen for
B.1.351 and P.1 strains and over the AS03-adjuvanted CoVLP.
B1351-CoVLP.B1351 regimen for the ancestral strain. It is not cur-
rently known if these differences between high and very high neu-
tralizing antibody responses will have any clinical significance.
However, induction of very high initial titers is likely desirable
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since it is well-documented that antibody titers wane substantially
with time after both natural disease and vaccination [76]. These
observations are similar to the results recently released by others
[72,77] [Pfizer, Novavax] but distinct from those reported by Mod-
erna [71] in that no evidence of original antigenic sin was noted
[78]. Since these animals only received two doses, it is currently
unknown how humoral response against VOCs would be influ-
enced by a third (booster) dose but others have reported very high
and cross-protective neutralizing antibody responses both in ani-
mals [64,71] and human trials [65,79,80] after this additional dose.

Finally, it is worth noting that these observations focus entirely
on vaccine-induced antibody responses and particularly on the
induction of antibodies capable of neutralizing SARS-CoV-2 vari-
ants in vitro. Although many consider NAb levels to be a good can-
didate for a correlate of protection [81], this is a fairly limited
evaluation of vaccine-induced immunity and it is very likely that
non-neutralizing but functional antibodies and cellular responses
also contribute to vaccine-induced protection [82]. Data from a
large non-human primate study [83] as well as ongoing clinical tri-
als [27,65,84] demonstrate that AS03-adjuvanted CoVLP stimulates
multiple arms of the adaptive response to SARS-CoV-2. Results
from Medicago’s ongoing pivotal Phase 3 efficacy study [25]
(NCT04636697), performed in different regions of the world where
several VOCs have been circulating, demonstrated a good protec-
tion of the CoVLP vaccine (targeting the ancestral strain) against
several VOCs such as B.1.617.2 and P.1. These results are in line
with the non-clinical cross-neutralization data presented in this
study. Based on these Phase 3 results, it is unclear what immediate
benefit might be gained by switching to a heterologous prime-
boost strategy for primary vaccination. However, both the magni-
tude and the breadth of response need to be considered as SARS-
CoV-2 continues to mutate under increasing immune pressure
including the most recent example of the B.1.1.529 variant. The
data presented herein suggest two doses of AS03-adjuvanted
CoVLP or CoVLP.B1351 can induce a strong immune response
against a broad range of VOCs. Moreover, recently published pre-
clinical data also highlight the added value of a third dose
[64,71]. These observations provide further support for the grow-
ing body of data suggesting that the use of heterologous antigens,
whether B.1.351 of some new VOC yet to emerge, in either primary
or third-dose booster strategies may have advantages over tradi-
tional homologous antigen vaccination approaches and further
clinical trials will be needed to confirm the efficacy of such vacci-
nation strategies.
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