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PepNN: a deep attention model for the
identification of peptide binding sites
Osama Abdin 1, Satra Nim2, Han Wen2 & Philip M. Kim 1,2,3✉

Protein-peptide interactions play a fundamental role in many cellular processes, but remain

underexplored experimentally and difficult to model computationally. Here, we present

PepNN-Struct and PepNN-Seq, structure and sequence-based approaches for the prediction

of peptide binding sites on a protein. A main difficulty for the prediction of peptide-protein

interactions is the flexibility of peptides and their tendency to undergo conformational

changes upon binding. Motivated by this, we developed reciprocal attention to simulta-

neously update the encodings of peptide and protein residues while enforcing symmetry,

allowing for information flow between the two inputs. PepNN integrates this module with

modern graph neural network layers and a series of transfer learning steps are used during

training to compensate for the scarcity of peptide-protein complex information. We show

that PepNN-Struct achieves consistently high performance across different benchmark

datasets. We also show that PepNN makes reasonable peptide-agnostic predictions, allowing

for the identification of novel peptide binding proteins.
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Interactions between proteins and peptides are critical for a
variety of biological processes. A large fraction of
protein–protein interactions are mediated by the binding of

intracellular peptide recognition modules (PRMs) to linear seg-
ments in other proteins1. Moreover, peptide ligands binding to
extracellular receptors have important functions2. In total, it is
estimated that there are roughly 104 human proteins that contain
at least one PRM3 and that there are over 106 peptide motifs
encoded in the human proteome1. Disruption of these interac-
tions and their regulation can consequently result in disease; for
instance, many proteins with PRMs harbour oncogenic
mutations4. It has also been shown that viral proteins encode
peptidic motifs that can potentially be used to hijack host
machinery during infection5.

In the absence of ample experimental data including solved
structures, gaining molecular insight into these interactions and
their associated disease states is contingent on the ability to model
peptide binding computationally. This has been a difficult pro-
blem that has traditionally been approached with peptide-protein
docking6. One widely used peptide docking tool is FlexPepDock,
a Rosetta protocol that refines coarse-grain peptide-protein con-
formations by sampling from the degrees of freedom within a
peptide7. In general, benchmarking studies have shown that
peptide docking approaches often fail to accurately identify the
native complex conformation8–10, indicating that this problem
remains unsolved; current approaches are limited by the high
flexibility of peptides as well the inherent error of scoring
heuristics6. Machine learning approaches provide potential
alternatives to docking, as they can sidestep the issue of explicit
enumeration of conformational space and can learn scoring
metrics directly from the data.

A number of machine learning approaches have been applied
to the problem of predicting the binding sites of peptides with
varying amounts of success, including random forests and sup-
port vector machines (SVMs)11–16. More recently, a deep con-
volutional neural network was developed that takes as input
a voxelized protein structure and outputs predicted binding sites
on the protein, which achieved high accuracy17.

Here, we present an alternative deep learning architecture that
allows for both sequence and structure-based prediction of pep-
tide binding sites and performs the latter in a rotationally and
translationally invariant manner. In particular, we develop an
architecture that is partially inspired by the Transformer, a model
that primarily consists of repeated multi-head attention
modules18. These modules are effective at learning long-range
dependencies in sequence inputs and have been successfully
adapted to graph inputs19. Graph neural networks in general have
had success on various related problems, including protein
design19,20. Importantly, we build upon attention to develop
reciprocal attention, a variant that updates two input encodings
based on dependencies between the two encodings, while main-
taining symmetry in the updates. This architecture updates the
embedding of both residues participating in an interaction
simultaneously, and reflects the fact that the conformation of a
bound peptide depends on the interacting protein target21.

One significant hurdle to the development of deep learning
approaches for the modelling of peptide-protein complexes has
been the paucity of available training data. To overcome this
problem, we exploit available protein–protein complex informa-
tion, thereby adding an order of magnitude more training data.
The “hot segment” paradigm of protein-protein interaction sug-
gests that the interaction between two proteins can be mediated
by a linear segment in one protein that contributes to the majority
of the interface energy22. Complexes of protein fragments with
receptors thus represent a natural source of data for model pre-
training. In addition, the idea of pre-training contextualized

language models has recently been adapted to protein biology for
the purpose of generating meaningful representations of protein
sequences23,24. The success of these approaches provides an
opportunity to develop a strictly sequence-based peptide binding
site predictor.

In this study, we integrate the use of contextualized-language
models, available protein–protein complex data, and a task-
specific attention-based architecture, to develop parallel models
for both structure and sequence-based peptide binding site pre-
diction: PepNN-Struct and PepNN-Seq. Comparison to existing
approaches reveals that our models perform better in most cases.
We also show that the developed models can make reasonable
peptide-agnostic predictions, allowing for their use for the iden-
tification of novel peptide binding sites.

Results
Parallel models for structure and sequence-based peptide
binding site prediction. PepNN takes as input a representation
of a protein as well as a peptide sequence, and outputs residue-
wise scores representing the confidence that a particular residue is
part of a peptide-binding site (Fig. 1a, b). The PepNN-Seq and
PepNN-Struct architectures are based in part on the Transformer
and a graph variant of the Transformer18,19. PepNN-Struct makes
use of graph attention layers to learn a contextual representation
of an input protein structure (Fig. 1a). PepNN-Seq generates
predictions based solely on the input protein and peptide
sequences (Fig. 1b).

PepNN differs from conventional Transformers in that it does
not follow an encoder-decoder architecture. Encoding the peptide
sequence independently from the protein representation would
implicitly assume that all information about how the peptide
binds the protein is contained within its sequence and this
assumption is not concordant with the fact that many disordered
regions undergo conformational changes upon protein binding21.
In other words, a peptide’s sequence is insufficient by itself to
determine its bound conformation. In fact, the same peptide can
adopt different conformations when bound to different partners.
Based on this, we introduce multi-head reciprocal attention
layers, an attention-based module that simultaneously updates
the peptide and protein embeddings while ensuring that the
unnormalized attention values from protein to peptide residues
are equal to the unnormalized attention values in the other
direction. This ensures that the protein residues involved in
binding have influence on the peptide residues and vice versa.

Transfer learning results in large improvements in model
performance. We used transfer learning in two ways to improve
model performance. The first was to pretrain the model on a large
protein fragment-protein complex dataset before fine-tuning it
with a smaller dataset of peptide-protein complexes (Fig. 1c). To
generate the fragment dataset, we scanned all protein–protein
complex interfaces in the protein databank (PDB) that were
deposited before 2018/04/30 using the Peptiderive Rosetta
protocol25 to identify protein fragments of length 5-25 amino
acids that contribute to a large portion of the complex interface
energy (Supplementary Fig. 1). These fragment-protein com-
plexes were filtered based on their estimated interface energy as
well as the buried surface area to ensure that they had binding
properties that were reasonably close to that of peptide-protein
complexes. The second application of transfer learning was the
use of a pre-trained contextualized language model, ProtBert23, to
embed protein sequences. These high dimensional, information-
rich, embeddings were used as input to PepNN-Seq and as part of
the node encodings for PepNN-Struct (Fig. 1b).
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To evaluate the impact of transfer learning on model
performance, we trained PepNN-Struct and PepNN-Seq using
different datasets, with and without providing the models with
ProtBert embeddings. Pre-training PepNN-Struct resulted in a
large improvement over models trained on only the fragment or
peptide complex dataset, both in terms of overall binding residue
prediction, and in terms of prediction for individual proteins
(Fig. 2a, b). Model predictions on the SPOC domain of PHF3
demonstrate this difference in performance, as only the pre-
trained variant of the model correctly predicts the peptide
binding site (Fig. 2e). More generally, both the improvements in
performance and absolute performance are not correlated to the
structural similarity of the test set examples to proteins in the pre-
training dataset (Fig. 2f, Supplementary Fig. 2). This illustrates
that the pre-training step helps bring the parameters closer to an
optimum for general peptide binding site prediction, rather than
improving performance solely on examples that match patterns
seen in the fragment-complex dataset.

Embedding protein sequences with ProtBert resulted in large
performance improvements over learned embedding parameters
for both PepNN-Struct and PepNN-Seq (Fig. 2a, d). Interestingly,
pre-training on the fragment complexes did not have as large and
impact on PepNN-Seq performance as it did on PepNN-Struct
(Fig. 2a, d), indicating that PepNN-Struct likely learns from
structural features in the pre-training dataset that are not
captured in the ProtBert embeddings.

PepNN outperforms an equivalent Graph Transformer. To
evaluate the impact of reciprocal attention on model perfor-
mance, we compared the performance of PepNN-Struct to a
graph Transformer with the same hyperparameters, using dif-
ferent training procedures and input encodings (tuned by random

search). We found that PepNN-Struct consistently achieves
higher performance than the Graph Transform, irrespective of
whether pre-training is done or ProtBert embeddings are inclu-
ded (Fig. 3a, b, Supplementary Fig. 3). As reciprocal attention can
account for conformational changes of the peptide upon binding,
we sought to investigate whether this effect is partly responsible
for the performance of PepNN-Struct (see Methods). PepNN-
Struct outperforms the Graph Transformer in almost all cases
where a peptide has a Cα-RMSD of at least 2.5Å from another
structure (Fig. 3c). One such example is a peptide at the
N-terminus of P53. This peptide undergoes a clear disorder-to-
order transition upon binding (Fig. 3d). Compared to PepNN-
Struct, the Graph Transformer predicts several residues that are
not part of the peptide-binding sites (Fig. 3c).

PepNN reliably predicts peptide binding sites. We evaluated the
developed models on an independent test set, TS092, of recent
peptide-protein complexes that are not redundant with the
training and pre-training datasets, as well as three benchmark
datasets from the previous studies11,12,26. For an unbiased esti-
mate of model performance, PepNN was re-trained on the
training datasets used in different studies prior to the evaluation
of their test sets. Unsurprisingly, we found that PepNN-Struct
consistently outperforms PepNN-Seq (Table 1). We do find,
however, that both methods place the ground truth binding site in
their top 10 predicted residues in most cases (Supplementary
Table 1).

To evaluate the performance of PepNN-Struct in the absence
of co-crystallized protein structures, we additionally bench-
marked its performance using AlphaFold models of receptors in
TS09227. Performance is very similar when the solved protein
structure is used and when the AlphaFold structural model is

Fig. 1 Model architecture and training procedure. a Attention layers are indicated with orange; normalization layers are indicated with blue and simple
transformation layers are indicated with green. b Input layers for PepNN-Seq. c Transfer learning pipeline used for model training.
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used (Table 1). In fact, in most cases the structure-based
prediction using the AlphaFold model is still closer to the ground
truth than the sequence-based prediction (Supplementary Fig. 4a).
To assess whether this trend depends on the quality of the model
generated by AlphaFold, the distributions of the model pLDDTs,
a confidence score generated by AlphaFold, was compared for
cases where PepNN-Struct performs better and cases where
PepNN-Struct performs better. While the pLDDT is on average
lower in cases where PepNN-Seq performs better (Supplementary
Fig. 4b), the difference is not statistically significant (likely owing
to the fact that AlphaFold generated consistently high-quality
protein models on this test dataset).We additionally ran the
sequence-based PBRpredict-Suite model on TS09216. All three
variants of this model performed worse than PepNN on this
dataset (Table 1) and notably, the observed performance was
drastically lower than the performance reported in the original
publication. This could potentially be due to the fact a smoothing
approach was used to annotate binding sites in the PBRpredict-
Suite study16, while binding site residues annotations were made
based only on distance to peptide residues in this study. Most
other designated peptide binding site prediction approaches lack
programmatic access, and a portion rely on alignments to
reference datasets that overlap with the test set. We hence used
values reported in the literature for comparison. PepNN-Struct
outperforms most peptide binding site prediction approaches,
and performs comparably to the BitNetpp approach, achieving a

higher area under the receiver operator characteristic curve (ROC
AUC), but performing worse in terms of Matthews correlation
coefficient (MCC).

Despite not being trained on protein-peptide complexes, it has
been additionally shown that AlphaFold, which has achieved
ground-breaking success on the problem of protein structure
prediction, can be adapted for protein-peptide complex
modelling27–29. More recently, AlphaFold-Multimer was devel-
oped to model protein-protein complexes, and outperforms the
initial AlphaFold implementation on this task30. AlphaFold-
Multimer was additionally shown to outperform conventional
docking approaches on the peptide-protein complex prediction31.
Given that AlphaFold-based methods represent the current state-
of-the-art in peptide-protein complex predictions, we compared
binding site predictions generated by PepNN-Struct to binding
sites derived from AlphaFold, (using the previously described gap
method32) and AlphaFold-Multimer predictions. Consistent with
what was shown in previous studies, AlphaFold and, to a greater
extent, AlphaFold-Mulimer achieve remarkable accuracy in
peptide-protein complex modelling in a large number of cases,
achieving a higher MCC than PepNN overall (Table 1, Supple-
mentary Figs. 5–6). On individual data points, there are many
cases where the complex output by AlphaFold-Gap is completely
detached from the receptor, however, and PepNN provides
accurate predictions in many of these cases; in fact, AlphaFold-
Gap much more frequently leads to poor predictions than PepNN

Fig. 2 Impact of transfer learning on model performance on the peptide complex validation dataset. a ROC curves on all residues in the dataset using
predictions from PepNN-Struct trained on different datasets with different sequence embeddings. Solid lines indicate models that use ProtBert embeddings.
b Comparison of the distribution of ROC AUCs on different input proteins using predictions from PepNN-Struct trained on different datasets with different
sequence embeddings (Wilcoxon signed-rank test, n= 311 protein-peptide complex structures). c ROC curves on all residues in the dataset using
predictions from PepNN-Seq trained on different datasets with different sequence embeddings. Solid lines indicate models that use ProtBert embeddings.
d Comparison of the distribution of ROC AUCs on different input proteins using predictions from PepNN-Seq trained on different datasets (Wilcoxon
signed-rank test, n= 311 protein-peptide complex structures). e Predictions of the binding site of the SPOC domain of PHF3 (PDB code 6IC9) using PepNN-
Struct trained on different datasets. f Relationship between the change in AUC ROC when PepNN-Struct is pretrained and the maximum TMalign score of
chains in the test dataset with chains in the pre-training dataset. Boxplot centerlines show medians, box limits show upper and lower quartiles, whiskers are
1.5 the interquartile range and points show outliers.
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(in 41% and 60% of cases in TS092 and TS125, respectively
Alphafold provides predictions with MCC < 0.3, whereas PepNN
only does so in 29% and 35%, respectively, see Supplementary
Fig. 5). AlphaFold-Multimer, on the other hand, generates poor
predictions less frequently, with only 18% and 24% of predictions
having an MCC < 0.3 (Supplementary Fig. 6).

Peptide-agnostic prediction allows the identification of puta-
tive novel peptide-binding proteins. To quantify the extent to
which the model relies on information from the protein when
making predictions, we tested the ability of PepNN-Struct and
PepNN-Seq to predict peptide binding sites using random length
poly-glycine peptides as input sequences. While the models did
perform better when given the native peptide sequence than with a
poly-glycine sequence (p-value < 2.2e−16 for both PepNN-Struct
and PepNN-Seq, DeLong test), there was only a small overall
decrease in the ROC AUC when a poly-glycine peptide was given
(Fig. 4a, b). Comparing the probabilities that the model assigns to
different residues shows that in both the case of PepNN-Struct,
providing the native peptide increases the model’s confidence
when predicting binding residues (Supplementary Fig. 7). Pro-
viding the native peptide sequence is thus important for reducing
false negatives. Overall, these results suggest that while providing a
known peptide can increase model accuracy, the model can make
reasonable peptide-agnostic predictions and could potentially be
used to identify novel peptide binders. To assess whether per-
forming similar predictions is possible using AlphaFold-Multimer,
predictions were generated using poly-glycine inputs, as done with
PepNN. PepNN largely outperforms AlphaFold-Multimer when
predictions are generated this way (Supplementary Fig. 8, overall
MCCs 0.380 and 0.29 for PepNN and AlphaFold-Multimer
respectively), likely owing to the fact that PepNN was trained
specifically on peptide-protein complexes.

To quantify the model’s confidence that a protein is a
peptide-binding module, we generated a score that takes into
account the binding probabilities that the model assigns the
residues in the protein, as well as the percentage of residues that
the model predicts are binding residues with high confidence.
To compute this score, a Gaussian distribution was fit to the
distribution of binding residue percentages in each protein
from the training dataset (Supplementary Fig. 9a). The resulting
score was the weighted average of two metrics. The first is the
average the top n residue probabilities and the second was the
likelihood that a binding site would be composed of n residues
based on the aforementioned distribution. For each protein, n
was chosen to maximize this score. As done in a previous
study11, the weight assigned to each component of the score
was chosen to maximize the correlation between the MCC of
the prediction for each protein in the validation dataset, and its
score (Supplementary Fig. 9b, c). This was motivated by the fact
that the confidence of the model should correlate with its
correctness.

We used the models to predict binding sites for domains in
every unique chain in the PDB not within 30% homology of a
sequence in the training dataset or the pre-training set and
domains in every sequence in the reference human proteome
from UniProt33, not within 30% homology of a sequence in the
training dataset or pre-training set. Domains were extracted by
assigning PFAM34 annotations using InterProScan35 (Supple-
mentary Data 1–2). To assess the capacity of the models to
discriminate between peptide-binding modules and other
domains, we compared the distribution of scores for canonical
PRMs to that of other proteins. Previously defined modular
protein domains36, and peptide binding domains3 were con-
sidered canonical PRMs. In both the case of the PDB and the
human proteome, the scores for canonical PRMs were on average
higher than other domains (Fig. 4c, d).

Fig. 3 Comparison of PepNN-Struct and a Graph Transformer. a ROC curves on all residues in the TS092 dataset. b Comparison of distribution of ROC
AUCs on different input proteins (Wilcoxon signed-rank test, n = 92 protein-peptide complexes). c Comparison of model performance on examples where
bound peptides undergo conformational changes. d Prediction of the binding site of a P53 N-terminal peptide to RPA70N (PDB Code 2B3G). Unbound
peptide conformation is shown in magenta (PDB Code 2LY4). Boxplot centerlines show medians, box limits show upper and lower quartiles, whiskers are
1.5 the interquartile range and points show outliers.
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In total, PepNN-Struct assigns 31,868 domains in the PDB a
score higher than the mean PRM score and PepNN-Seq assigns
20,442 domains in the human proteome a score higher than the
mean PRM score. Analysis of the distribution of scores for
different domains reveals that many DNA binding domains were
assigned low scores on average by PepNN (Supplementary
Data 3–4). This indicates that PepNN has the capacity to
discriminate between different types of binding sites. There are,
nonetheless, some nucleic acid binding domains with high scores
(Supplementary Data 3–4) suggesting that there are false positives
and that downstream computational and experimental work is
required to validate putative peptide-binding sites.

One domain identified by PepNN-Struct is the sterile alpha
motif (SAM) domain of the Deleted-in-liver cancer 1 (DLC1)
protein (Supplementary Data 1). This domain was recently shown
to be a peptide-binding module37, demonstrating the capacity of
the model to identify novel peptide binders. Another interesting
hit identified using PepNN-Struct is the ORF7a accessory protein
from the SARS-Cov-2 virus (Supplementary Data 1). The model
assigns the highest residue binding probabilities to residues
between two beta-sheets at the N-terminal end of the protein
(Fig. 4e). Validating this peptide binding site involves identifying
a binding peptide and showing that the residues that comprise the
binding site are necessary for the interaction. The ORF7a
homolog from SARS-Cov has been shown to bind the
ectodomain of the human BST-2 protein38. BST-2 binds and
tethers viral particles to the cell membrane, thereby preventing
viral exit38. It was shown that by binding BST-2, ORF7a prevents
its glycosylation and thus reduces its ability to inhibit viral exit38.
Given the fact that BST-2 forms a coiled-coil structure, it is

possible that a linear segment along one of its helices binds to
ORF7a at the predicted peptide-binding pocket.

As an unbiased test of this prediction, we performed global
docking of BST-2 onto ORF7a using the ClusPro webserver39,40.
In seven of the top ten poses, BST-2 was found to interact with
ORF7a at the predicted binding site (Supplementary Fig. 10).
Based on the predicted residue binding probabilities and the
docking poses, alanine substitutions were introduced at two
residues in the predicted binding site and two residues at an
alternative binding site that was predicted with lower confidence
(Fig. 4e). A co-immunoprecipitation assay demonstrated that the
residues at the predicted binding site (H19A/Q21A) are necessary
for ORF7a/BST-2 binding, corroborating the PepNN prediction
(Fig. 4f). To assess whether this binding is mediated by a peptide,
Peptiderive was run on the models generated by docking, where
BST-2 binds at the predicted site. In most cases, the majority of
the estimated interface energy can be attributed to a linear
fragment, suggesting a peptide-mediated interaction (Fig. 4g). As
additional validation, Masif-Site41, a geometric deep learning
approach training to predict protein binding sites, was used to
predict binding regions on the surface of ORF7a. Unlike PepNN,
Masif-Site does not predict the N-terminal binding site (Fig. 4h),
suggesting that it may be more characteristic of peptide binding
sites than globular protein binding sites.

Prediction of multiple peptide binding sites using PepNN.
Many proteins interact with multiple peptides at different sites.
Two such cases were found in TS092, where a single protein binds
two peptides simultaneously (Supplementary Fig. 11a, b). When
PepNN-Struct is used to predict binding sites in these proteins in
a peptide-agnostic fashion, both binding sites are predicted with
some confidence, with slight preference towards one. When the
prediction is done with a native peptide sequence, the confidence
in the correct binding site increases. In cases where the correct
binding site was initially favoured, the confidence in the alter-
native binding site also decreases (Supplementary Fig. 11a, b).

To assess the ability of PepNN-Struct to predict multiple
binding sites more broadly, we used PepNN-Struct to generate
predictions for individual domains and full proteins derived from
non-redundant PDB chains that are composed of multiple PRMs.
As PepNN-Struct consistently predicts binding sites in individual
canonical PRMs (Fig. 4c), correlation of the single domain and
full protein predictions indicates that multiple binding sites are
predicted. For most examples, the predictions for the single
domains and full proteins are well correlated (Supplementary
Fig. 11c, d). The one exception is FF domains 4-6 of the TCERG1
protein, where PepNN-Struct only predicts binding sites at FF
domains 4 and 5 in the full protein (Supplementary Fig. 11e).
Interestingly, previous work has shown that when binding
peptides at the C-terminal domain of RNA-polymerase, only
residues in domains 4 and 5 contribute to the interaction42

(Supplementary Fig. 11f). This supports the notion that PepNN-
Struct will preferentially predict sites with a high propensity for
peptide binding.

Discussion
We have developed parallel structure and sequence-based models
for the prediction of peptide binding sites. These models, PepNN-
Struct and PepNN-Seq, make use of an attention-based deep
learning module that is integrated with transfer learning to
compensate for the scarcity of peptide-protein complex data.
Evaluation on multiple benchmarks shows that PepNN is capable
of consistently identifying peptide binding sites. In addition,
compared to the leading approach AlphaFold-Multimer, PepNN
does not rely on the generation sequence alignments potentially

Table 1 Comparison of the developed model to existing
approaches.

Test
dataset

Training
dataset size

Model ROC AUC MCC

TS092 2517 PepNN-Struct 0.855 0.409
PepNN-Struct on
AlphaFold models

0.850 0.409

PepNN-Seq 0.781 0.272
– AlphaFold-Multimer – 0.605
– AlphaFold-Gap – 0.518
475 PBRpredict-flexible16 0.587 0.084

PBRpredict-
moderate16

0.569 0.071

PBRpredict-strict16 0.543 0.049
TS251 251 PepNN-Struct 0.833 0.366

PepNN-Seq 0.769 0.277
Interpep11 0.793 –

– AlphaFold-Multimer – 0.566
– AlphaFold-Gap – 0.470

TS639 640 PepNN-Struct 0.868 0.352
PepNN-Seq 0.795 0.246
PepBind12 0.767 0.348

– AlphaFold-Multimer – 0.450
– AlphaFold-Gap – 0.432

TS125 956 PepNN-Struct 0.885 0.390
PepNN-Seq 0.794 0.259
BiteNetpp17 0.882 0.435

640 PepBind12 0.793 0.372
1156 SPRINT-Str26 0.780 0.290
1199 SPRINT-Seq13 0.680 0.200
1004 Visual15 0.730 0.170
– AlphaFold-Multimer – 0.576
– AlphaFold-Gap – 0.448

Bolded values indicate the highest metric for each dataset.
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making PepNN more suitable to modelling synthetic interactions.
Given that PepNN and AlphaFold often generate successful
predictions on different data points, incorporating components
from both architectures may furthermore lend itself to the
development of a better end-to-end peptide-protein complex
modelling approach.

We furthermore demonstrated that PepNN can make accurate
peptide-agnostic predictions, and that PepNN outperforms
AlphaFold-Multimer in this mode of prediction. This observation
is concordant with recent work that has suggested that a protein’s
surface contains the majority of information regarding its capa-
city for biomolecular interactions41. Other approaches, trained on

negative binding data, are better suited than PepNN to dis-
criminate between identified binding peptides3,43. By contrast,
PepNN can uniquely be used to score proteins lacking a known
peptide ligand to predict their ability to bind peptides. Running
this procedure on all proteins in the PDB and the reference
human proteome revealed a number of putative novel peptide
recognition modules, suggesting that a large portion of the space
of PRMs has yet to be characterized. As a demonstration of the
model’s capacity to identify novel peptide binders, we showed
that residues at a predicted peptide binding site are critical for the
interaction between ORF7a and BST-2. The observation that
PepNN can make predictions in the absence of a known peptide

Fig. 4 Peptide agnostic prediction using PepNN. a ROC curves on the validation dataset using PepNN-Struct with different input peptide sequences.
b ROC curves on the validation dataset using PepNN-Seq with different input peptide sequences. c Scores assigned by PepNN-Struct to different domains
in the PDB (Wilcoxon rank-sum test, 56,756 total protein chains). d Scores assigned by the PepNN-Seq to different domains in the reference human
proteome (Wilcoxon rank-sum test, 92,141 total proteins). e ORF7a peptide binding site prediction and key residues at the predicted binding site and an
alternate binding site. f Co-immunoprecipitation of wild type and mutant ORF7A with BST-2. g Energies and relative energy contributions of different
fragments calculated using Peptiderive on ORF7a/BST-2 docking poses. h Binding site prediction on ORF7a using PepNN and BST-2.
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binder can also be used to discern regions of proteins that can be
readily targeted by peptides. PepNN predictions can thus be used
to inform the application of high-throughput experimental
approaches to different proteins for the purpose of identifying
therapeutic peptides.

More generally, the success of PepNN serves as a proof-of-
concept of the efficacy of reciprocal attention. This module can
effectively be used to model bidirectional relationships between
pairs of data points, and can thus be extended to other biomo-
lecular interactions, including protein–protein and protein–DNA
interactions. In these cases, sequences or structures of amino acid
or nucleic acid sequences can be propagated through sequence or
graph attention modules. Reciprocal attention can then be used to
effectively relate the residues of the receptor protein to nucleo-
tides or residues in the input, while maintaining symmetry in the
updates of the representations. Additionally, the use of transfer
learning in the development of PepNN is instructive for the
development of approaches to solve related problems. Pre-
training on “hot fragment” datasets resulted in large improve-
ments in the performance of PepNN, demonstrating the capacity
of deep learning modules to learn transferable biophysical fea-
tures from these datasets. The generated pre-training datasets of
protein fragment-protein complexes are thus a valuable resource
for modelling peptide–protein interactions.

Methods
Datasets. The training of protein-peptide complexes was generated by filtering
complexes in the PDB deposited before 2018/04/30. Crystal structures with a
resolution of at least 2.5Å that contain a chain of more than 30 amino acids in
complex with a chain of 25 or fewer amino acids were considered putative peptide-
protein complexes. Using FreeSASA44, complexes with a buried surface area of less
than 400Å2 were filtered out. The sequences of the receptors in the remaining
complexes were clustered at a 30% identity threshold using MMseqs245, and the
resulting clusters were divided into training and validation sets at proportions of
90% and 10% respectively. To generate the independent test set, the same pipeline
was used to process PDB structures with accession dates after 2018/04/30. Test set
sequences with more than 30% identity at 70% coverage to a sequence in the
training or validation set were removed. The remaining sequences were clustered at
90% identity, and only the centroid of each cluster was kept. The resulting dataset
contained 92 sequences.

A similar process was used to generate a dataset of protein fragment-protein
complexes. Using the Peptiderive Rosetta protocol25, the PDB was scanned for
protein fragments of length 5-25 amino acids with a high predicted interface energy
when in complex with another chain of at least 50 amino acids. Complexes were
filtered out based on the distribution of predicted interface energies from the
dataset of real protein-peptide complexes. Only complexes with an interface score
less than one standard deviation above the mean of the peptide-protein complex
distribution were maintained. The complexes were also filtered by buried surface
area. Complexes with less than 400Å2 were once again filtered out. The final
dataset contained 406,365 complexes. For data splitting, complexes were again
clustered at 30% identity. In both datasets, binding residues were defined as those
residues in the protein receptor with a heavy atom within 6Å from a heavy atom in
the interacting chain. Chains with 30% identity at 70% coverage to sequences in the
test sets were removed.

In addition to TS092, the models were also tested on benchmark datasets
compiled in other studies. This includes the test dataset used to evaluate the
Interpep approach11 (TS251), the test dataset used to evaluate the PepBind
approach12 (TS639), and the test dataset used to evaluate SPRINT-Str26 (TS125). In
these datasets, the input protein was derived from the co-crystallized protein-
peptide complex structure. In the case of TS092, an additional benchmark was
included with AlphaFold models of the proteins in the complexes.

Input representation. In the case of PepNN-Struct, input protein structures are
encoded using a previously described graph representation19, with the exception
that additional node features are added to encode the side chain conformation at
each residue. In this representation, a local coordinate system is defined at each
residue based on the relative position of the Cα to the other backbone atoms19. The
edges between residues encode information about the distance between the resides,
the relative direction from one Cα to another, a quaternion representation of the
rotation matrix between the local coordinate systems, and an embedding of the
relative positions of the residues in the protein sequence19. The nodes include a
one-hot representation of the amino acid identity and the torsional backbone
angles19.

To encode information about the side-chain conformation, the centroid of the
heavy side chain atoms at each residue is calculated. The direction of the atom
centroid from the Cα is represented using a unit vector based on the defined local
coordinate system. The distance is encoded using a radial basis function, similar to
the encoding used for inter-residue distances in the aforementioned graph
representation19. A one-hot encoding is used to represent protein and peptide
sequence information. The pre-trained contextualized language model, ProtBert23,
is used to embed the protein sequence in PepNN-Seq, and this encoding is
concatenated to the node features in PepNN-Struct.

Model architecture. The developed architecture takes inspiration the original
Transformer architecture18, as well the Structured Transformer, developed for the
design of proteins with a designated input structure19. Like these models, the
PepNN architecture consists of repeating attention and feed forward layers
(Fig. 1a). PepNN differs from conventional Transformers, however, in that does
not follow an encoder-decoder attention architecture and it makes use of multi-
head reciprocal attention. This is an attention-based module that shares some
conceptual similarity to a layer that was recently used for salient object detection46.
Conventional scaled dot attention, mapping queries, represented by matrix Q, and
key-value pairs, represented by matrices K and V , to attention values takes the
following form:18

Attention Q; K;Vð Þ ¼ softmax
QKT

ffiffiffiffiffi

dk
p

 !

V ð1Þ

In reciprocal attention modules, protein residue embeddings are projected to a
query matrix, Q 2 Rn ´ dk and a value matrix, Vprot 2 Rn ´ dv , where n is the
number of protein residues. Similarily, the peptide residue embeddings are pro-
jected a key matrix, K 2 Rm´ dk , and a value matrix, Vpep 2 Rm´ dv , where m is the
number of peptide residues. The resulting attention values are as follows:

Attentionprot Q; K; Vpep

� �

¼ softmax
QKT

ffiffiffiffiffi

dk
p

 !

Vpep ð2Þ

Attentionpep Q; K; Vprot

� �

¼ softmax
KQT

ffiffiffiffiffi

dk
p

 !

Vprot ð3Þ

In order to extend the definition to multiple heads, the residue encodings are
projected multiple times and the resulting attention values are concatenated18. The
overall model architecture includes alternating self-attention and reciprocal
attention layers, with a final set of layers to project the protein residue embedding
down to a residue-wise probability score (Fig. 1a). For the purpose of
regularization, dropout layers were included after each attention layer.

Model hyperparameters were tuned using random search to optimize the cross-
entropy loss on the fragment complex validation dataset. Specifically, eight
hyperparameters were tuned; dmodel (the model embedding dimension), di (the
dimension of the hidden layer in the feed forward layers), dk , dv , the dropout
percentage, the number of repetitions of the reciprocal attention module, the
number of heads in each attention layer, and the learning rate. In total, 100 random
hyperparameter trials were attempted. dmodel was set to 64, di was set to 64, dk was
set to 64, dvwas set to 128, dropout percentage was set to 0.2, the number of
repetitions of the reciprocal attention module was set to 6, and each multi-head
attention layer was composed of six heads.

Training. Training was done using an Adam optimizer with a learning rate of 1e−4
during the pre-training and fine-tuning of PepNN-Struct and a learning rate of 1e−5
when fine-tuning PepNN-Seq. A weighted cross-entropy loss was optimized to take
into account the fact that the training dataset is skewed towards non-binding resi-
dues. In addition, during fine-tuning, examples were weighted by the inverse of the
number of examples in the same sequence cluster. In both the pre-training step with
the fragment complex dataset and the training with the peptide complex dataset,
early stopping was done based on the validation loss. Training was at most 150,000
iterations during the pre-training step and the at most 35,000 iterations during the
fine-tuning step.

Scoring potential novel peptide binding sites. Peptide-agnostic prediction of
proteins in the human proteome and the PDB was performed by providing the
model with a protein sequence/structure and a poly-glycine sequence of length 10
as the peptide. The following equation was used to assign scores to putative
peptide-binding sites:

α
1
n
∑
n

i¼1
prðriÞ þ 1� αð Þpðn=NÞ ð4Þ

where prðriÞ is the residue binding probability of the residue with the ith highest
probability, N is the total number of residues in a protein, p is a pdf of a Gaussian
fit to the distribution of binding sites in the training data, and α is a weighting
factor. When computing scores using PepNN-Struct, α was set to 0.955. When
computing scores using PepNN-Seq α was set to 0.965. Pairwise comparisons were
done with the distributions of every PFAM domain to remaining domains with a

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03445-2

8 COMMUNICATIONS BIOLOGY |           (2022) 5:503 | https://doi.org/10.1038/s42003-022-03445-2 | www.nature.com/commsbio

www.nature.com/commsbio


Wilcoxon rank-sum test and multiple testing correction was done using the
Benjamini-Hochberg procedure.

Identification of peptides that undergo conformational changes. Peptides were
aligned to structures in the PDB with the same UniProt identifier as annotated in
the Structure Integration with Function, Taxonomy and Sequences resource
(SIFTS)47. Peptide with a Cα-RMSD of at least 2.5Å from another structure were
annotated as undergoing conformational changes.

Complex prediction using AlphaFold. To generate protein-peptide complexes
with AlphaFold, the sequences were concatenated and 200 was added to the residue
index of the peptide residues, as done in ColabFold32. Predictions on TS092 were
done with templates with dates before 2018/04/30. Predictions on the other
datasets, and predictions of receptor structures, were done without templates.

Statistics and reproducibility. To compare the distribution of scores and metrics
across proteins in a dataset, Wilcoxon signed-rank and rank-sum tests were done
using the SciPy python library48. Multiple testing correction for identifying highly
scoring protein domains was done using the statsmodels python package49. The
DeLong test for identifying differences in ROC curves was done using the pROC R
package50.

Protein-protein docking of ORF7a/BST-2. The structure of the SARS-CoV-2
ORF7a encoded accessory protein (PDB ID 6W37) and mouse BST-2/Tetherin
Ectodomain (PDB ID 3NI051) were used as input structures for the ClusPro
webserver39,40. The top ten poses, ranked by population, were used for downstream
analysis.

Cell lines and reagents. HEK293T cells were maintained in DMEM (ATCC)
supplemented with 10% FBS and 1% pen/strep/glutamine, and the appropriate
selection antibiotics when required. HA antibodies were obtained from Santa Cruz
(7392) and Flag antibodies were purchased from Sigma (A8592).

Western blotting. Transfected cells were scraped from six-well dishes and lysed
with lysis buffer (50 mM Tris-HCl pH7.4, 1% Nonidet P-40, 150 mM NaCl,
1 mM EDTA, 1× protease inhibitor mixture (Sigma)) for 30 min at 4 °C. The
insoluble pellet was removed following a 10,000 rpm spin for 5 min at 4 °C.
Lysates were analyzed by SDS-PAGE/western blot using 4–20% Mini-PROTEAN
Tris-glycine gels (Bio-Rad) transferred to PVDF membranes and blocked in 5%
milk containing PBS-Tween-20 (0.1%) for 1 h. PVDF membranes were then
incubated with specified primary antibodies followed by incubation with
horseradish peroxidase-conjugated secondary antibodies (Santa Cruz Bio-
technology) and detected using enhanced chemiluminescence (GE Healthcare).
HA antibodies were used at a dilution of 1:2000 and Flag antibodies were used at
a dilution of 1:1000.

Flag co-immunoprecipitation. HEK293T cells were cotransfected with Flag-tagged
protein and HA-tagged protein. Cells were lysed 48 h after transfections with
radioimmune precipitation assay buffer (50 mM Tris-HCl pH7.4, 1% Nonidet P-
40, 150 mM NaCl, 1 mM EDTA, 10 mM Na3VO4, 10 mM sodium pyrophosphate,
25 mM NaF, 1× protease inhibitor mixture (Sigma)) for 30 min at 4 °C and
coimmunoprecipitated with Flag beads (Clontech). The resulting immunocom-
plexes were analyzed by Western blot using the appropriate antibodies. Protein
samples were separated using 4–20% Mini-PROTEAN Tris-glycine gels (Bio-Rad)
transferred to PVDF membranes and blocked in 5% milk containing PBS-Tween-
20 (0.1%) for 1 h. PVDF membranes were then incubated with specified primary
antibodies followed by incubation with horseradish peroxidase-conjugated sec-
ondary antibodies (Santa Cruz Biotechnology) and detected using enhanced che-
miluminescence (GE Healthcare).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Files with PDB codes for the training datasets are included in Supplementary Data 5–7.
Full datasets with computed features can be downloaded from http://pepnn.ccbr.
proteinsolver.org and can be re-computed using the provided code. Unprocessed blots
are provided in Supplementary Fig. 12. Source data for Figs. 2 and 3 are available in
Supplementary Data 8 and 9.

Code availability
The code to run and re-train PepNN is available at https://gitlab.com/oabdin/pepnn52.
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