Skip to main content
. 2022 May 26;5:503. doi: 10.1038/s42003-022-03445-2

Table 1.

Comparison of the developed model to existing approaches.

Test dataset Training dataset size Model ROC AUC MCC
TS092 2517 PepNN-Struct 0.855 0.409
PepNN-Struct on AlphaFold models 0.850 0.409
PepNN-Seq 0.781 0.272
AlphaFold-Multimer 0.605
AlphaFold-Gap 0.518
475 PBRpredict-flexible16 0.587 0.084
PBRpredict-moderate16 0.569 0.071
PBRpredict-strict16 0.543 0.049
TS251 251 PepNN-Struct 0.833 0.366
PepNN-Seq 0.769 0.277
Interpep11 0.793
AlphaFold-Multimer 0.566
AlphaFold-Gap 0.470
TS639 640 PepNN-Struct 0.868 0.352
PepNN-Seq 0.795 0.246
PepBind12 0.767 0.348
AlphaFold-Multimer 0.450
AlphaFold-Gap 0.432
TS125 956 PepNN-Struct 0.885 0.390
PepNN-Seq 0.794 0.259
BiteNetpp17 0.882 0.435
640 PepBind12 0.793 0.372
1156 SPRINT-Str26 0.780 0.290
1199 SPRINT-Seq13 0.680 0.200
1004 Visual15 0.730 0.170
AlphaFold-Multimer 0.576
AlphaFold-Gap 0.448

Bolded values indicate the highest metric for each dataset.