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Abstract Fatty acids are key components in the
structural diversity of lipids and play a strategic role
in the functional properties of lipids which determine
the integrity of neuronal and glial cell membranes,
the generation of lipid signaling mediators, and the
chemical reactivity of acyl chains. The present study
analyzes using gas chromatography the fatty acid
profiles of 13 regions of the human central nervous

Supplementary Information The online version
contains supplementary material available at https://doi.
org/10.1007/s11357-022-00527-1.

N. Mota-Martorell - M. Martin-Gari - J. D. Galo-Licona -
J. Sol - A. Fernandez-Bernal - M. Portero-Otin -

M. Jove (P<)) - R. Pamplona (D<)

Department of Experimental Medicine, University

of Lleida—Lleida Biomedical Research Institute (UdL-
IRBLIleida), 25198 Lleida, Spain

e-mail: mariona.jove @udl.cat

R. Pamplona
e-mail: reinald.pamplona@udl.cat

N. Mota-Martorell
e-mail: nataliamotamartorell @ gmail.com

M. Martin-Gari
e-mail: meritxell.martin @udl.cat

J. D. Galo-Licona
e-mail: jgalolic25 @gmail.com

J. Sol
e-mail: solcullere @gmail.com

A. Fernandez-Bernal
e-mail: anna.fernandez @udl.cat

system in healthy individuals ranging from 40 to
80 years old. The outcomes suggest the existence of
general traits in fatty acid composition such as an
average chain length of 18 carbon atoms, high mon-
ounsaturated fatty acid content, and predominance
in polyunsaturated fatty acids of those of series n-6
over series n-3 which are shared by all brain regions
regardless of age. Our results also show a general
sustained and relatively well-preserved lipid profile
throughout the adult lifespan in most studied regions
(olive, upper vermis, substantia nigra, thalamus,
hippocampus, putamen, caudate, occipital cortex,
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parietal cortex, entorhinal cortex, and frontal cortex)
with minor changes that are region-dependent. In
contrast, of particular relevance is the involvement of
the inferior temporal cortex and cingulate cortex. It is
proposed that during normal human brain aging, the
lipid profile is resistant to changes with age in most
human brain regions to ensure cell survival and func-
tion, but some particular regions involved in specific
memory domains are greatly affected.

Keywords Average chain length - Cerebral
cortex - Human brain regions - Fatty acid profile -
Peroxidizability index - Polyunsaturated fatty acids

Introduction

Human brain evolution and lipids are closely linked
[1, 2]. Structural and functional diversity and abun-
dance of lipids are also traits of the human brain [1,
3-5]. As result, all lipid classes are present in the
nervous system, likely as expression and support of
the structural and functional complexity of the system
[4, 6]. This abundance and diversity of lipids require
a quarter of the total brain energy to maintain cel-
lular activity involved in de novo lipid biosynthesis,
remodeling, turnover, and synthesis of lipid-derived
mediators, as well as continuous adjustment of the
spatial and temporal lipid organization of cell mem-
branes [7, 8].

Fatty acids are major components of glycerolipids,
glycerophospholipids, and sphingolipids. The com-
bination of fatty acids or fatty acids with different
head groups (depending on the lipid class) can gen-
erate around 10,000 different lipid molecular species
[6]. The length (number of carbon atoms) of the acyl
chain and number of double bonds are determinants
of the geometric traits of lipids influencing membrane
organization and function [4]. Furthermore, fatty
acids are substrates for the generation of lipid sign-
aling mediators [9]. An additional trait assigned to
fatty acids is their chemical reactivity in the face of
oxidative conditions [10], which, by extension, deter-
mines the susceptibility to oxidative stress for a given
membrane [10]. Thus, polyunsaturated side chains
are much more easily attacked by oxidant agents than
saturated or monounsaturated fatty acid side chains.

In this context, it has been suggested that the
morphological and functional diversity among
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neural cells in the human brain is also achieved by
the expression of region-specific lipid profiles [10].
In agreement with this hypothesis, we recently dem-
onstrated that particular fatty acids are significant
discriminators among human brain regions and that
these specific fatty acid profiles generate a differ-
ential cross-regional selective neural vulnerability
(expressed by the double bond index and peroxidiz-
ability index). In other words, there is a region-spe-
cific vulnerability to lipid peroxidation in human
brain [10]. Changes in global lipid composition have
been reported in human brain aging, and in several
age-associated neurodegenerative diseases such as
Alzheimer disease [5]. However, little is known about
alterations occurring across brain regions throughout
the adult human lifespan.

The present study analyzes the fatty acid profiles
of total lipids from the gray matter of 13 different
regions of the human central nervous system belong-
ing to the hindbrain (olive and upper vermis), mid-
brain (substantia nigra), diencephalon (thalamus),
subcortical telencephalon (hippocampus, head of the
caudate, and anterior putamen), and cortical telen-
cephalon (occipital cortex areas 17-18, parietal cor-
tex area 7, inferior temporal cortex area 20, entorhi-
nal cortex, frontal cortex area 8, and cingulate gyrus
area 24), in healthy individuals without co-morbidi-
ties ranging from 40 to 80 years old. The brain areas
were selected on the basis of their selective vulner-
ability to neurodegenerative diseases in aging. Our
results show selective brain regional changes in lipid
profile with human healthy aging.

Material and methods
Chemicals

Unless otherwise specified, all reagents were from
Sigma-Aldrich and were of the highest purity
available.

Human samples

Brain samples were obtained from the Institute of
Neuropathology Brain Bank, a branch of the HUB-
ICO-IDIBELL Biobank, following the guidelines of
Spanish legislation (Real Decreto 1716/2011) and the
approval of the local ethics committee (CEIC/1981).
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At autopsy, one hemisphere was fixed in 4% buff-
ered formalin for about 3 weeks while the other
hemisphere was cut in coronal Sects. 0.5-cm thick;
selected areas of the brain were dissected, immedi-
ately frozen on metal plates over dry ice, placed in
labelled plastic bags, and stored at — 80 °C until use.
Procedures were designed to preserve post-mortem
material under optimal conditions for morphological
and biochemical studies [11]. The post-mortem delay
ranged from 2 to 14 h 40 min (see Table 1).

The neuropathological study, to discriminate
healthy brains, was carried out in every case as pre-
viously described [11]. Briefly, the neuropathologi-
cal study was carried out on formalin-fixed, paraffin-
embedded samples of 26 brain regions. De-waxed
sections, 4-um thick, were stained with hematoxy-
lin and eosin, and Kliiver Barrera, or processed for
immunohistochemistry to f-amyloid, phosphorylated
tau (including clone ATS), a-synuclein, ubiquitin,
p62, TDP43, glial fibrillary protein, and microglia
markers.

Adult and middle-aged individuals (<60 years)
had no clinical or neuropathological alterations,
whereas old-aged individuals (>60 years) had no
clinical symptoms and neuropathological alteration
restricted to stage I of neurofibrillary degeneration.
Since the majority of human beings aged 65 years
have stages I-II of neurofibrillary tangle pathology

[12, 13], the old-aged group was considered repre-
sentative of normal brain aging. -Amyloid deposi-
tion was absent in every case. All cases included in
this study were without co-morbidities. Samples were
from individuals with no neurological symptoms
and without systemic and focal infectious or inflam-
matory and autoimmune diseases. Cases with dis-
seminated malignant diseases, metabolic syndrome,
or drug abuse (for instance, excessive ethanol con-
sumption) were not included. Special care was also
taken to not include cases with prolonged agonal
state (patients subjected to intensive care or experi-
encing hypoxia). After neuropathological examina-
tion, cases with both neurodegenerative and vascular
diseases were excluded excepting those with stages
I-II of neurofibrillary tangle pathology. Finally, cases
with associated neurodegenerative processes (i.e.,
TDP-43 proteinopathy, argyrophilic grain pathology,
a-synucleinopathy, and other tauopathies) were also
excluded.

Following initial screening, the present series
included 17 cases: 12 males and 5 females, with age
ranging from 40 to 80 years. Table 1 summarizes
cases examined in the present series. The gray mat-
ter from cerebral cortex (frontal area 8, parietal area
7, inferior temporal area 20, occipital areas 17-18,
cingulate gyrus area 24, entorhinal cortex, and hip-
pocampus), striatum (head of the caudate and anterior

Table 1 Summary of cases

- Case Gender Age (years) Post-mortem delay Neuropathology Cause of death

examined

1 Male 40 5h 10 min NL CA

2 Female 40 8 h 45 min NL PNEU

3 Male 44 6 h 40 min NL THR-EMB

4 Male 45 4h'5min CRIB C-INF

5 Female 46 7h 15 min CRIB MYO

6 Female 48 4 h 5 min NL CA

7 Male 52 9 h 30 min NL PNEU

8 Male 52 4h 40 min NL C-INF
NL, no lesions; CRIB, 9 Male 57 5h 20 min NL PNEU
fltea;‘rl; ffgfl‘l’;fyst; nlé " 10 Male 61 4 30 min LI CA
pathology stages I_IT 11 Male 66 6 h 25 min -1 THR-EMB
of Braak and Braak; 12 Male 67 14 h 40 min I-1II CA
CA, carcinoma; PNEU, 13 Male 70 2h 00 min I-II CA
‘frf‘ler‘flﬁ‘(’;l;a}%\;z;‘rd‘ac 14 Female 75 6 h 10 min I+ CRIB C-INF
pulmonary thrombosis- 15 Male 76 6 h 30 min LI PNEU
embolism; MYO, 16 Male 77 6 h 55 min I-II+ CRIB C-INF
myocardiopathy; INT-INF, 17 Female 79 6 h 25 min [-I+CRIB INT-INF

intestinal infarction
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putamen), thalamus, substantia nigra, upper vermis,
and olive were dissected and used for biochemical
studies.

Fatty acid profile

Fatty acyl groups of total lipids from gray matter
of 13 human brain regions were analyzed as methyl
ester derivatives (FAMEs) by gas chromatography
(GC) as previously described [10, 14]. Firstly, 50 mg
of tissue samples was homogenized in a buffer con-
taining 180 mM KCI, 5 mM MOPS, 2 mM EDTA,
1 mM diethylenetriaminepentaacetic acid, and 1 pM
butylated hydroxytoluene. Tissue samples were ran-
domized prior to lipid extraction. Quality control
samples were included at a ratio of 1:10. Then, total
lipids from human brain homogenates were extracted
with chloroform:methanol 2:1 (v/v). The chloroform
phase was separated and evaporated under N,, and the
fatty acyl groups were transesterified by incubation
in 2.5 ml of 5% methanolic HCI at 75 °C for 90 min.
The resulting fatty acid methyl esters were extracted
by adding 1 ml of saturated NaCl solution and 2.5 ml
of n-pentane. Finally, the n-pentane phase was sepa-
rated, evaporated under N,, and redissolved in 75 pl
of carbon disulfide. Two microliters was used for GC
analysis.

Separation was performed with a DBWAX capil-
lary column (30 mx0.25 mmXx0.25 pm) in a GC
System 7890A with a Series Injector 7683B and a
FID detector (Agilent Technologies, Barcelona,
Spain). Sample injection was in the splitless mode.
The injection port was maintained at 250 °C, and
the detector at 250 °C. The temperature program
was 5 min at 145 °C, then 2 °C/min to 245 °C, and
finally hold at 245 °C for 10 min, with a post-run at
250 °C for 10 min. So, total run time was 65 min,
with a post-run time of 10 min. Identification of
fatty acid methyl esters was made by comparison
with authentic standards (Larodan Fine Chemi-
cals, Malmo, Sweden) using a specific software
of data analysis for GC from Agilent (OpenLAB
CDS ChemStation v. C.01.10; Agilent Technolo-
gies, Barcelona, Spain) and subsequent revision and
confirmation by an expert. Results are expressed as
mol%.

The following fatty acyl indices were also calcu-
lated: saturated fatty acids (SFA); unsaturated fatty acids
(UFA); ratio SFA/UFA; monounsaturated fatty acids

@ Springer

(MUFA); polyunsaturated fatty acids (PUFA) from
n-3 and n-6 series (PUFAn-3 and PUFAn-6); and aver-
age chain length (ACL)=[Z% Totalldx14)+(Z%
Total16x 16)+ (X% Total18x 18)+ (X% Total20x20)+(Z%
Total22 x22)+ (X% Total24x24))/100. The density of dou-
ble bonds in the membrane was calculated with the double
bond index, DBI=[(1xXmol% monoenoic)+(2XXZmol%
dienoic)+(3xXXmol% trienoic)+(4 X Zmol% tetrae-
noic)+(5xXmol% pentaenoic)+(6xXXmol% hexaenoic)].
Membrane susceptibility to peroxidation was calculated
with the peroxidizability index, PI=[(0.025XZmol%
monoenoic)+(1xXmol%  dienoic)+(2XXmol% trie-
noic)+(4xXmol% tetraenoic)+(6XXmol%  pentae-
noic)+(8 X Xmol% hexaenoic)].

Elongase and desaturase activity was estimated
from specific product/substrate ratios. For desatu-
rase activity: D9D (n-7)=16:1n-7/16:0; D9D
(n-9)=18:1n-9/18:0; D5D (n-6)=20:4n-6/20:3n-6;
D6D (n-3) (a)=18:4n-3/18:3n-3; D6D (n-3)
(b)=24:6n-3/24:5n-3. For elongase activ-
ity: Elovl3 (n-9) (a)=20:1n-9/18:1n-9; Elovl3
(n-9) (b)=22:1n-9/20:1n-9; Elovl3 (n-9)
(c)=24:1n-9/22:1n-9;Elovl6 = 18:0/16:0; Elovl1-3-7
(a)=20:0/18:0; Elovl1-3-7 (b)=22:0/20:0; Elovll-
3-7 (c)=24:0/22:0; Elovl 5(n-6)=20:2n-6/18:2n-6;
Elovl2-5 (n-6) =22:4n-6/20:4n-6; Elovl
2-5(n-3)=22:5n-3/20:5n-3, and  Elovl 2(n-
3)=24:5n-3/22:5n-3. Finally, peroxisomal
B-oxidation (PPOx) was estimated according to the
ratio 22:6n-3/24:6n-3.

Statistics

Data were expressed as mean values + SEM. Student’s
t-test was used to evaluate differences between age
groups. Spearman’s rank correlation was employed
to assess possible relations for variables with age.
Statistical significance was adjusted for multiple test-
ing by controlling the false discovery rate according
to the Benjamini—-Hochberg method using a maxi-
mum discovery rate of 10%. Graphs were made and
t-tests performed using GraphPad prism 8.0.1. Spear-
man correlation was made using IBM SPSS Statis-
tics (v24.0.0.0). Spearman correlation matrix was
constructed using RStudio (v1.3.1073). Functions
used were included in the packages corrplot [15] and
Hmisc [16]. p values inferior to 0.05 were considered
statistically significant.
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Results
General traits shared by human brain regions

The changes in brain fatty acid profile along the aging
process were assessed by analyzing 25 different fatty
acid species across 13 different brain regions, includ-
ing the olive (medulla oblongata) and vermis (cer-
ebellum) (hindbrain); substantia nigra (midbrain);
thalamus (diencephalon); hippocampus, caudate, and
putamen (subcortical telencephalon); and occipital,
parietal, temporal, entorhinal, frontal, and cingulate
cortex (cortical telencephalon). Results revealed that
16:0, 18:0, and 18:1n-9 are the most abundant fatty
acids in human healthy brain, in both the middle-aged
and the elderly, accounting for approximately 60% of
global fatty acid composition (Table 2). In addition,
specific enrichment of 20:4n-6 and 22:6n-3 is found
in all regions. As a result, the average chain length
(ACL) is maintained at around 18 carbon atoms, with
a predominant presence of monounsaturated fatty
acids (MUFA), followed by polyunsaturated fatty
acids (PUFA), showing a higher relative abundance
of PUFAn-6 with respect to PUFAn-3.

Brain regional changes in fatty acid profile:
comparison of middle-aged and elderly groups

Comparison of middle-aged and elderly groups
throughout the different brain regions analyzed veri-
fied the existence of minor changes (Table 2). Thus,
in hindbrain, olive showed a decrease in 14:0 (30%,
p<0.05) and increase in 22:5n-3 (30%, p <0.05) and
24:6n-3 (25%, p <0.05), fatty acids with a very low
abundance, and no involvement in general indexes in
the elderly group compared to the middle-aged group,
whilst vermis only showed an increase in 20:0 (22%,
p<0.01) in the elderly group, without any additional
change. In the midbrain, and in a similar way to
hindbrain, substantia nigra only showed an increase
in 16:1n-7 (10%, p<0.05), and the very minor fatty
acids 18:4n-3 (100%, p<0.05) and 24:0 (280%,
p<0.01), as well as SFA content (3%, p<0.05), and
a decrease in ACL (0.5%, p<0.01) and UFA (3%,
p<0.05).

In diencephalon, thalamus showed a decrease
in 22:4n-6 (17%, p<0.05) content and ACL
(0.5%, p<0.05), and an increase in 24:5n-3 (40%,
p<0.05) content in the elderly group compared to

the middle-aged group. In subcortical telencepha-
lon, the three analyzed regions, hippocampus, cau-
date, and putamen, also showed minor changes in
the elderly group. Thus, in hippocampus, we only
found a decrease in the relative abundance of fatty
acids 22:1n-9 (35%, p<0.05) and 22:4n-6 (7%,
p<0.05); in caudate nucleus a decrease in 18:3n-3
(30%, p<0.05), 24:0 (47%, p<0.05), and 24:6n-3
(36%, p<0.05), and an increase in the content of 20:0
(17%, p<0.01) and 20:4n-6 (13%, p<0.05); and in
the putamen nucleus, a decrease in 22:4n-6 (13%,
p<0.01), 22:5n-6 (30%, p <0.05), and PUFAn-6 (6%,
p<0.01) contents, as well as ACL (0.5%, p<0.01).

Finally, six regions from human cerebral cortex
(cortical telencephalon) were analyzed, again show-
ing minor changes in the elderly group. Thus, in
occipital cortex (areas 17-18), fatty acid composi-
tion analysis revealed a slight increase in the ACL
(0.3%, p<0.05) in the elderly group compared to
the middle-aged group; in parietal cortex (area 7), a
decrease in 14:0 (17%, p <0.05) content, and increase
in PUFAn-3 (15%, p<0.05) and DBI (6%, p<0.05)
was observed; in temporal cortex (inferior tempo-
ral area 20), a decrease in 22:4n-6 (9%, p<0.05),
22:5n-6 (31%, p<0.05), 24:5n-3 (33%, p<0.05),
24:6n-3 (53%, p<0.01), and PUFAn-6 (9%, p <0.05),
and an increase in 20:0 (12%, p<0.05) and estima-
tion of the peroxisomal B-oxidation activity (123%,
p <0.001) was detected; in entorhinal cortex, the only
observed change was a decrease in PUFAn-6 content
(7%, p<0.05); in frontal cortex (area 8), no change
was verified; and finally, in cingulate cortex (area
24), only a slight increase in 20:0 (15%, p <0.01) was
revealed.

Because of the large number of tests, adjustment
for multiple comparisons was assessed using the Ben-
jamini—Hochberg false discovery rate (FDR) analysis.
p values when comparing the two groups of cases is
shown in Table 2. As a result, only 24:0 and ACL
in substantia nigra, and 24:6n-3 and peroxisomal
B-oxidation in the temporal cortex were sustained fol-
lowing multiple comparison adjustment.

Brain regional changes in estimated desaturase and
elongase activity: general traits

Since some of the observed changes in the elderly

group may be due to alterations in the activity of
the enzymes involved in the fatty acid biosynthesis,

@ Springer
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elongase and desaturase activity was estimated from
specific product/substrate ratios. The outcomes con-
firm the existence of minor changes induced by aging
across the different brain regions (Supplementary
Table S1). Overall, the higher estimated desaturase

ST s I T T T e s T activity corresponds first to delta-5-desaturase (D5D,
3333333333333 23 120:4n-6/20:3n-6), and then to delta-6-desaturase
e e e e e 6 wom S (b) (D6D (b), r24:6n-3/24:5n-3), with D5D being
% % % % % % §| [é;' §, i, i, 3‘ % i‘ systematically higher than D6D in all brain regions
82 £ i3 E22S5%¢8 % g with the only exception of olive (medulla oblongata),
where D6D is higher than D5D. For elongases, the
o e o oo om . 9 = 2 higher activity corresponds to Elovl2-5 (n-3) (122:5n-
% % 53; §| i i 3 § % § g} ;{} % E' 3/20:5n-3) followed by Elovl3 (n-9) (c) (r24:1n-
E2 23258yt ase i3 9/22:1n-9) and Elovl6 (r18:0/16:0); this observation
is maintained in all brain regions.
Brain regional changes in estimated desaturase and
T EEEEEEEEE elongase activity: comparison of middle-aged and
22 322232222222 elder]ygroups
e e - w2 a g The changes observed on the elderly compared with
% % % §, §, §, % % % i, g El % ;' the middle-aged group were region-dependent. Spe-
2353 Z S e s 2adzg 38 cifically, in the hindbrain, a reduced Elovll-3-7
(a) (p<0.01) and (b) (p<0.05) estimated activity
in vermis was observed. In the midbrain, substan-
e w288 S 25 o9n R LR tia nigra showed an increased estimated D6D (a)
SSSITIIIIIN LSS (p<0.05), Elovll-3-7 (c) (p<0.001), and Elovi2
282 28 dge 83 g d 2 activity (p<0.05), and decrease in D6D (b) activity
(»<0.05). In the diencephalon, thalamus D6D (b)
§ § § § E § § é E § § g g § and Elovl2-5 (n-6) estimated activity was decreased
(»<0.05 and p<0.05, respectively). In the sub-
cortical telencephalon, a reduced estimated activ-
ity of Elovl1-3-7 (b) and (c) (»p<0.01 and p<0.05,
s s 3 E 5818 ,88% ¢ respectively), Elovl3 (a) (p <0.05), and ElovI2-5(n-6)
33 S I S &2 s i (p<0.05), and very slight increase of Elovll-3-7
88 s dFagssEEEog (a) (p<0.05) activity were found in the caudate
nucleus, whereas in the putamen nucleus Elovl1-3-7
(b) activity was decreased (p<0.05) along with an
e a e 2 = 2 enhanced Elovll-3-7 (c) and ElovI2 activity (both
O;; % % 5 5 % E’ % % % ‘g ;{' % "jl p <0.05). Finally, in the six regions of the human cer-
- S - T T =R - ebral cortex (cortical telencephalon), little changes
ccefo e mmm T were observed and included a very small increase
in Elovl1-3-7 (a) activity (p<0.05) in the occipi-
=) tal cortex, reduced D6D (b) (p<0.05) and Elovl2

g (»<0.05) along with an enhanced Elovl6 (p <0.05)

§ and Elovl1-3-7 (a) (p <0.05) estimated activity in the

: . temporal cortex, and a slight increase of Elovll-3-7

% 298 .. <E ¢ E E B E 5 (a).(p<0.05) in cii?gulat.e .cortex. No changgs in the

Elis 25528555 8%¢2 estimated enzymatic activity were detected in olive
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(hindbrain), hippocampus (subcortical telencepha-
lon), and parietal, entorhinal, and frontal cortex (cor-
tical telencephalon). These results suggest a global
increase of the Elovl1-3-7 (a) along with a reduced
Elovl1-3-7 (b) and D6D (b) estimated activities in the
elderly.

Because of the large number of tests, adjustment
for multiple comparisons was assessed using the Ben-
jamini—Hochberg false discovery rate (FDR) analysis.
p values when comparing the two groups of cases are
shown in Table S1. As a result, only elovl3-7 (b) and
(c) and elovl2 in putamen were sustained following
multiple comparison adjustment.

Brain regional changes in lipid composition as a
function of age

An additional approach was used to learn about the
lipid composition changes as a function of age, as a
continuous variable instead of dichotomizing the data
into a middle-aged and an elderly cohort. To this end,
the existence of correlations between fatty acid com-
position and age was evaluated by applying a Spear-
man correlation test. Results are presented in Sup-
plementary Table S2 and Figs. 1, 2, 3, 4, 5, 6, and
7. Remarkably, in addition to previously observed
changes in fatty acid composition with age comparing
middle-aged vs elderly groups (also confirmed by the
correlation analysis), new relationships appeared as
a continuum with the correlation analysis in diverse
brain regions. Reinforcing our findings, potential
interference of the variables of gender and post-mor-
tem time (PMT) in the age-based trajectories of the
different fatty acids and indexes was ruled out after
applying the corresponding statistical analysis (data
not shown).

More specifically, in the hindbrain, the correla-
tion analysis did not provide additional changes with
age in olive and vermis (Fig. 1). In the midbrain, in
substantia nigra, an additional negative correlation
was detected in PUFA (p=0.025) content and DBI
(»=0.023) with age (Fig. 1). In the diencephalon,
in thalamus, an increase in the content of 22:5n-3
(»=0.023) was added (Fig. 2). In the subcorti-
cal telencephalon, in the hippocampus, an increase
in PUFAn-3 (p=0.034), and in the putamen, an
increase with age in the content of 16: 0 (p=0.022)
and 24:5n-3 (p=0.006) was additionally observed
(Fig. 2). Especially noteworthy is the amplitude of

the additional change detected in the caudate, with
a decrease in the content of the fatty acids 20:1n-9
(p=0.03), 22:4n-6 (p=0.007), 22:5n-6 (p=0.049),
and 24:1n-9 (p=0.033) (Fig. 2). At the cortical telen-
cephalon level, the following new correlations should
be highlighted: in occipital cortex, decrease in con-
tent of 18:0 (p=0.012); in parietal cortex, decrease
in content of 14:0 (p=0.027), and increase in con-
tent of 22:6n-3 (p=0.007) and, concomitantly, ACL
(»p=0.006), PUFA (p=0.015), and PI (»p=0.019); in
entorhinal cortex, the increase in 20:0 (p=0.017);
and in frontal cortex, the increase in 20:0 (p =0.023),
and the decrease in 22:5n-6 (p=0.018) (Fig. 3). Cin-
gulate cortex and temporal cortex require special
mention.

Cingulate cortex, which is located in the medial
region of the cortical telencephalon, appears to
be the region most affected by the aging process
out of the thirteen included in the present study
(Tables 2, S1 and S2, and Fig. 4). Thus, in addi-
tion to the increased content of 20:0 (p<0.01)
detected in the comparison between middle-age
vs elderly individuals, the following new correla-
tions should be added: decreased content with age
of 16:0 (p=0.008), 20:4n-6 (p=0.025), 22:5n-6
(»=0.018), SFA (p=0.008), PUFAn-6 (p =0.003),
and ratio SFA/UFA (p=0.008); and increased
content with age of 16:1n-7 (p=0.024), 18:1n-9
(»=0.026), 20:1n-9 (p=0.04), 22:0 (p=0.023),
24:0 (p=0.021), 24:1n-9 (p=0.018), 24:6n-3
(»=0.019), ACL (p=0.009), UFA (p=0.008), and
MUFA (p=0.027). Globally, these changes may
be attributed to enhanced metabolic activity of the
elongases and desaturases involved in the biosyn-
thesis of SFA and MUFA from 16:0 (Table S2 and
Fig. 5A).

Fatty acid composition of an additional region
located in the cortical telencephalon, the inferior tem-
poral cortex, is also profoundly affected by the aging
process (Tables 2, S1 and S2, and Fig. 6). Thus, aside
from the changes detected in the comparison between
middle-age and elderly individuals, the correlation
analysis did provide additional changes with age.
Thus, a decrease in the content of 20:4n-6 (p =0.034),
22:4n-6 (p=0.002), 22:5n-6 (p=0.006), 24:5n-3
(»=0.024), 24:6n-3 (p=0.011), ACL (p=0.04),
PUFA (p=0.022), PUFAn-6 (p=0.001), DBI
(»=0.033), and PI (p=0.047) was observed with
age; while 18:1n-9 (p=0.001), MUFA (p=0.02), and

@ Springer



774

GeroScience (2022) 44:763-783

4 & =-0.80 04
p<0.001

0.016:

0.014;

0.012:

0.010: .

Elovi1-3-7 (a)

Eu- . Eus- .- e,
5 234 - Q 1404
o 2 .
)] o=-056 .
p=0025
0——T———————
20 40 60 80 100
Age
0.4
—~ | o=063 .
©03{p=0009 o, ° =
£ - 3 =
o o2 &0 a
> ‘e @
2 0.1 n
w

\ Age

4 0.8
=072 =054 *

o 3p=0002 - _06{ p=0.031
= . & .
> 0 04 A
°
i ' TR 8 02 .

o S : O

Fig. 1 Scatterplots by region based on significant correlations between fatty acids and calculated indexes and age in hindbrain and

midbrain: olive, vermis, and substantia nigra

peroxisomal p-oxidation activity (p=0.001) showed
an increase with age. All these changes are suggestive
of alterations with age in the PUFAn-6 biosynthesis
pathway, as well as at the peroxisomal level (Fig. 5B).

Adjustment for multiple correlations was assessed
using the Benjamini—-Hochberg false discovery rate

@ Springer

(FDR) analysis. p values at FDR 10% are shown in
Table 3 and Table S2. After correction, fatty acid
content and derived indexes in substantia nigra, hip-
pocampus, caudate, occipital cortex, parietal cor-
tex, entorhinal cortex, frontal cortex, and age as a
continuum were no longer significant. Significant
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Fig. 2 Scatterplots by region based on significant correlations between fatty acids and calculated indexes and age in diencephalon
and subcortical telencephalon: thalamus, anterior putamen, head of the caudate, and hippocampus

correlations were maintained in olive for 14:0
(p=0.001); in vermis for 20:0 (p=0.035); in thala-
mus for 22:4n-6 (p=0.001) and ACL (p=0.001); in
putamen for 22:4n-6 (p=0.001) and ACL (p=0.001);
in temporal inferior cortex for 18:1n-9 (p=0.018),
22:4n-6 (p=0.023) and PUFAn-6 (p=0.018), and in
cingulate cortex for 16:0 (p=0.045), 20:0 (p =0.045),

ACL (p=0.045), SFA (p=0.045), UFA (p=0.045),
PUFAnN-6 (p=0.045), and ratio SFA/UFA (p=0.045).

Finally, we have developed a series of correlation
matrixes for integrative indexes in order to evalu-
ate the existence of regional relationships (Fig. 7).
The results show that the regional relationships are
very restricted without apparent general patterns.
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«Fig. 3 Scatterplots by region based on significant correlations
between fatty acids and calculated indexes and age in corti-
cal telencephalon: frontal cortex area 8, parietal cortex area 7,
occipital cortex areas 17-18, and entorhinal cortex

The index with the greatest regional relationships is
PUFAn-6.

Discussion

The human brain aging process induces changes at
all levels of biological organization, although with a
heterogeneous interregional impact, which demands
adaptive responses in order to preserve the compo-
sition and function within physiological limits. The
lipid bilayer that composes neuronal and glial cell

membranes is not on the sidelines; consequently,
the longer the optimal membrane lipid profile is sus-
tained, the better neural cell function and survival.
The first evidence of changes in the lipid profile
in the human brain during aging revealed, analyzing
the whole brain, that there is a slow and progressive
decrease with age in the total lipid content from the
second-third decade of life [17-19]. Later on, differ-
ent studies analyzing specific lipid classes (mostly
glycerophospholipids) in diverse regions of human
brain confirmed the occurrence of age-related lipid
changes in terms of a decreased phospholipid content
which is again very slow and progressive throughout
the adult lifespan and varying in a region-dependent
way [20, 21], but is accelerated at advanced age (over
80 years old) [21-24]. Furthermore, human brain cho-
lesterol content also showed a very similar behavior
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Fig. 4 Scatterplots by region based on significant correlations between fatty acids and calculated indexes and age in cingulate gyrus
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Fig. 5 Cingulate cortex (A) and temporal cortex (B) changes
in fatty acid composition associated with the aging process.
Figure is based on data presented in Tables 1 and 2 and Figs. 4
and 6. Green boxes and rows represent increased content of
individual FA or enhanced estimated activity in aged individu-
als compared to the middle-aged. Orange boxes and rows rep-

with age [21, 24]. More recent studies analyzing the
microsomal and mitochondrial lipidome, particularly
the main phospholipid classes, of entorhinal cortex,
frontal cortex, and hippocampus of subjects from 20
to 100 years old, found that minor fractions of phos-
pholipids specifically containing PUFAn-6 slightly
decrease during adult life, while phospholipid species
containing PUFAn-3 increase during the same period
[25-27]. In this line of minor changes with age, and
even compositional stability during adult life, no
significant changes were observed in the different
classes of lipids and composition in fatty acids of
human frontal cortex membrane microdomains (lipid
rafts) in subjects with an age range between 24 and
85 years [28].

The fatty acid profile and its changes with aging
have also been the subject of study in various works.
In these studies, different regions of the human cer-
ebral cortex such as frontal cortex (area 8) [29, 30],
prefrontal cortex [26], orbitofrontal cortex (area 10)
[31], entorhinal cortex [27], and hippocampus [25] of
healthy adults with an age ranging from 20 to 80 years
were analyzed. Globally, the outcomes of these stud-
ies suggest a general preservation of the fatty acid

@ Springer

resent reduced content of individual FA or decreased estimated
activity in aged individuals compared to the middle-aged. Gray
text and rows represent unchanged content of individual FA or
estimated activity in aged individuals compared to the middle-
aged

composition during adult life with minor changes,
if at all, preferentially expressed as a decrease in
PUFAn-6 content, and maintenance or slight increase
in PUFAn-3 content, with and eventual fall at more
advanced ages. Our findings reinforce these previous
observations in frontal cortex, entorhinal cortex, and
hippocampus, and extend this relative preservation
of the fatty acid profile to other human brain regions
such as olive (medulla oblongata), upper vermis (cer-
ebellum), substantia nigra, thalamus, head of the cau-
date nucleus, anterior putamen, occipital (visual) cor-
tex, and parietal cortex. In contrast, cingulate gyrus
and inferior temporal cortex showed an entirely dif-
ferent tendency, with broad involvement of their fatty
acid profiles.

Inferior temporal cortex area 20 and cingulate
gyrus area 24 are the two brain regions most affected
by aging, showing the most extensive changes in fatty
acid profiles. Notably, the two regions share some
changes, while others are region specific, highlight-
ing the increased content in MUFAs, ascribed to the
18:1n-9 acyl chain, and decreased content of PUFAn-
6, basically due to a decreased content of 20:4n-6
and 22:5n-6. While the 18:1n-9 increase could be
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Fig. 6 Scatterplots by region based on significant correlations between fatty acids and calculated indexes and age in inferior tempo-
ral cortex (area 20)

attributed to an increase in D9D activity, the 20:4n-6
and 22:5n-6 decreases do not appear to depend on
changes in the desaturase and elongase activity of
their biosynthesis pathway, so the alteration in their
content should be attributed to potential increases in
its consumption [32], since they are fatty acids that
act as substrates for the biosynthesis of eicosanoids
and resolvins, respectively [9]. The consequences of
these specific fatty acid profile changes are multiple.
Thus, the changes in MUFAs and PUFAn-6 abun-
dance can have repercussions at two levels: the first

of them with implications in the geometric proper-
ties of lipids that can negatively affect functions such
as exocytosis and formation of membrane microdo-
mains [4]; and as to the second, the roles of affected
PUFAn-6 are key in the generation of lipid mediators
and, in particular, the synthesis of bioactive lipids
with anti-inflammatory and neuroprotective proper-
ties that ensure cell survival and normal functioning
during normal aging [9, 33]. Therefore, we hypoth-
esize that the changes at the molecular and cellular
levels described during human aging in the inferior
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Fig. 7 Correlation matrix for integrative indexes calcu-
lated from fatty acid composition to evaluate the existence

series n-3 (PUFAn3); G double bond index (DBI); H peroxi-
dizability index (PI). Brain regions: CG, cingulate gyrus; CN,

of regional relationships. A Average chain length (ACL); B
saturated fatty acids (SFA); C Unsaturated fatty acids (UFA);
D monounsaturated fatty acids (MUFA); E polyunsaturated
fatty acids n-6 series (PUFAnG6), F polyunsaturated fatty acids

caudate nucleus; EC, entorhinal cortex; FC, frontal cortex; H,
hippocampus; O, olive; P, putamen; PC, parietal cortex; SN,
substantia nigra; T, thalamus; TC, temporal cortex; V, vermis;
VC, visual (occipital) cortex

Table 3 Statistics of the FDR adjustment for multiple correlations

Brain region Variable rho P value (original) P value at
FDR 10%
Hindbrain Olive 14:0 —0.801 0.001 0.001
Vermis 20:0 0.745 0.001 0.035
Diencephalon Thalamus 22:4n6 —-0.862 0.001 0.001
ACL -0.823 0.001 0.001
Subcortical telencephalon Putamen 22:4n6 —-0.810 0.001 0.001
ACL -0.812 0.001 0.001
Cortical telencephalon Temporal cortex 18:1n9 0.709 0.001 0.018
22:4n6 —0.685 0.006 0.023
PUFAn6 —0.708 0.001 0.018
Cingulate cortex 16:0 —-0.630 0.008 0.045
20:0 0.700 0.003 0.045
ACL 0.630 0.009 0.045
SFA —0.640 0.008 0.045
UFA 0.640 0.008 0.045
PUFAn6 —0.690 0.003 0.045
SFA/UFA —0.640 0.008 0.045

p value threshold at FDR 10%. ACL, average chain length; SFA, saturated fatty acids; UFA, unsaturated fatty acids; PUFAn6, polyun-
saturated fatty acids series n6. Only significant differences are indicated. For more information, see Table S2
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frontal cortex [34, 35] and cingulate cortex [36]—
which can give rise to functional losses in high-level
visual processing and recognition memory, as well as
emotional regulation, attention, and the integration
of emotional and cognitive processes, respectively—
may have as a substrate, at least in part, the alterations
of the lipid profile described in this study. However,
the underlying molecular mechanisms that determine
the high susceptibility of these brain areas to the
aging process instead of other regions is a question
that remains unknown and more studies are needed to
clarify this finding.

In contrast to the compositional sustainability with
aging that characterizes most brain areas, in patho-
logical conditions such as Alzheimer’s disease (AD) a
marked change in temporal trajectory of the lipid pro-
file is observed. Effectively, the involvement of lipid
alterations in AD brains has been well-established in
the last years, in particular with reference to PUFA
and cholesterol contents (reviewed in [37-39]).
Alterations of lipid profile affecting both gross brain
lipids and lipid rafts were described in different brain
regions affected by AD such as entorhinal cortex,
hippocampus, and frontal cortex. In particular, it has
been reported abnormally low levels of PUFAn-3
(mainly 22:6n-3) and monoenes, along with lower
20:4n-6 and cholesterol contents, among other lipid-
omic alterations [39, 40]. Importantly, these changes
were exhibited at advanced stage of AD, but also in
very early stages of the disease, suggesting that lipid
alterations are early events in the pathogenesis of
AD. Concomitantly, an increased level of lipoxida-
tive damage specifically targeted to proteins involved
in energy metabolism, cytoskeleton, neurotransmis-
sion, proteostasis, and oxygen metabolism has been
described in AD [39]. Interestingly, these affected
biological processes play a central role in the neu-
ronal lost and subsequent functional decline associ-
ated with AD [39]. Thus, it can be hypothesized that
a combination of increased oxidative stress, deficits in
mitochondrial bioenergetics, and disruption of lipid
homeostasis overcomes the ability to maintain lipid
membrane composition, becoming a seminal condi-
tion during the development of the disease, in con-
trast to what occurs during normal brain aging.

Another interesting observation of the present
study is that some of the observed changes in fatty
acid profile with age showed a breakpoint after the
age of 50. This finding is in line with additional

changes such as transcriptional defects related to
mitochondrial electron transport chain and signaling
pathways involved in neuronal survival, decreased
concentration of the main lipid classes, and increased
oxidation-derived protein damage that also take place
at this age [38, 41-43]. In this context, it is plausible
to postulate that these adaptive changes might repre-
sent, when they reach a threshold value, the molecu-
lar substrate determining a bifurcation of the normal
temporal trajectory toward the onset of AD pathology.

Globally, age-associated changes in terms of indi-
vidual fatty acid content in the brain are heterogene-
ous. Thus, forebrain appears to be the region most
affected by the aging process. Few changes were
found in substantia nigra in the midbrain, whereas
hindbrain global fatty acid composition appeared
to be unaffected by the aging process. Our find-
ings also suggest that major adult human brain fatty
acids undergo slight but progressive and significant
changes in their abundance during the aging pro-
cess, with some changes showing a breakpoint after
the age of 50. However, the individual contribution
of these fatty acid patterns to the aging process is
as yet unknown. Therefore, goals of future research
are to define which types of lipid molecular species
change with age in the different human brain regions,
to extend the lipidomics analysis to additional brain
regions not studied, to analyze lipid patterns accord-
ing to neural cell-type specificity, and how they relate
both to the function of the area and to the dysfunction
leading to neuropathology. Indeed, it is not yet known
whether the changes in fatty acids represent neutral
changes with age, changes causing physiological
aspects of aging, or adaptative responses to damaging
agents. In any case, the findings described here sug-
gest that fatty acids and their metabolism are closely
linked to human brain aging.
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