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Abstract

Ultraviolet-visible (UV-Vis) absorption spectra are routinely collected as part of high-performance 

liquid chromatography (HPLC) analysis systems and can be used to identify chemical reaction 

products by comparison to reference spectra. Here, we present UV-adVISor as a new 

computational tool for predicting UV-Vis spectra from a molecule’s structure alone. UV-Vis 

prediction was approached as a sequence-to-sequence problem. We utilized Long-Short Term 

Memory and attention-based neural networks with Extended Connectivity Fingerprint diameter 

6 or molecule SMILES to generate predictive models for UV-spectra. We have produced two 

spectrum datasets (Dataset I, N = 949 and Dataset II, N = 2222) using different compound 

collections and spectrum acquisition methods to train, validate, and test our models. We evaluated 

the prediction accuracy of the complete spectra by the correspondence of wavelengths of 

absorbance maxima and with a series of statistical measures (the best test set median model 

parameters are in parentheses for Model II), including RMSE (0.064), R2 (0.71), and dynamic 

time warping (DTW, 0.194) of the entire spectrum curve. Scrambling molecule structures with 

experimental spectra during training resulted in a degraded R2, confirming the utility of the 
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approaches for prediction. UV-adVISor is able to provide fast and accurate predictions for libraries 

of compounds.
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INTRODUCTION

Molecules absorb ultraviolet (UV) and visible (Vis) light with excitation of their electrons 

to higher energy molecular orbitals. The intensity of absorption varies as a function of 

wavelength, with greatest absorption corresponding to wavelengths having the energies of 

allowed electronic transitions. This variation, the absorption spectrum,1 underpins UV-Vis 

spectroscopy, a commonly used technique to characterize and quantify a variety of analytes, 

including solutions of macromolecules, conjugated organic compounds, and transition metal 

ions2.

Because the UV-Vis spectrum of a compound is sensitive to its structure, UV-Vis 

spectroscopy can be used to identify molecules with reliability comparable to that of 

low-resolution MS-MS4. Thus, UV-Vis spectroscopy is useful as a rapid, inexpensive, and 

non-destructive confirmatory tool in chemical synthesis and purification and natural product 

isolation. Routine analysis of compounds by high-performance liquid chromatography 

(HPLC) often involves a photodiode array (PDA) detector that measures UV-Vis spectra 

continuously during a chromatographic separation. UV-Vis spectroscopy is also used to 

monitor chemical reactions in situ, such as in flow reactors3. However, identification of a 

compound from its UV-Vis spectrum requires comparison to an experimental or predicted 

reference spectrum.

Development of dyes for biotechnology, genomics, immunoassays, and drug discovery 

utilizes different chromophores and makes frequent use of the UV-Vis absorbance spectra of 
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molecules. A predicted spectrum for novel dyes would accelerate this process with value in 

automated molecular design and synthesis and analytical research.

The UV spectrum of a compound is also valuable for predicting other important optical 

and chemical properties, such as phototoxicity, which must be evaluated for potential drugs 

prior to Phase III clinical trials4. The ability to accurately predict UV spectra at the earliest 

stages of drug discovery, before compound synthesis, would be highly beneficial and cost-

effective, versus embarking on a compound that might later be identified with this toxicity 

liability. Recent efforts have compiled data on compounds known to be phototoxic in in vitro 
assays, used for machine learning with quantum chemical descriptors producing accuracies 

between 83–85%4. Predicting the UV-Vis spectrum of a compound before synthesis and 

experimental testing also offers advantages in terms of avoiding molecules that interfere 

with high throughput assays5 and benefits in terms of cost of manufacture and speed.

Ab initio time dependent-density functional theory (TD-DFT) calculations are often used to 

predict electronic absorption spectra1 or the wavelengths of maximum absorbance (λmax) 

for compounds to aid in numerous applications4, 6–13. Such quantum chemistry approaches 

have been developed for decades with only modest success in spectrum prediction (Table 

S1). Hence, efficient and accurate UV spectrum prediction is still an unsolved problem. 

Alternative approaches to predicting a UV-Vis spectrum from molecular structure alone 

without resorting to quantum mechanical calculations would offer a quicker, and potentially 

more informative route for large collections of molecules. Recently, course-grained models 

have been developed for predicting absorption spectra for optoelectronic polymers using 

recurrent neural networks14. However, machine learning approaches to predicting the UV-

Vis spectra for small molecules has not been described.

A challenge in the application of machine learning to prediction of UV-Vis absorption 

spectra is the paucity of available training data. There are few open-source databases of 

UV-Vis absorption spectra, and most focus only on λmax rather than the full spectrum 

within a useful wavelength range. The currently available databases with UV-Vis spectra 

include the Max Weaver dye library15, NIST Chemistry Webbook16, PhotochemCAD17, 

UV/Vis+ photochemistry database18 and the DSSC Database19 ranging from hundreds 

to several thousand molecules20. Few of these databases provide full spectra for use in 

machine learning, and most are biased toward specific classes of molecular structures, 

particularly dyes. PhotochemCAD provides spectra of ~339 entries for download; however, 

the wavelength range over which the spectra are measured varies, making compilation 

for machine learning purposes difficult17. Commercial UV-Vis spectral databases are also 

available including the KnowItAll UV-Vis spectral database collection from Wiley including 

over 30,000 spectra, with over 60% of them covering a narrow range 200–350 nm21.

These technical needs motivated us to develop our own datasets of spectra for a diverse 

collection of small molecules (Figure 1A, Supporting Information datasets I and II). We 

have now used these data with multiple machine learning approaches to reliably predict 

spectra for new molecules (UV-adVISor). We have used multiple measures to compare 

predicted to experimental spectra, including root mean square error (RMSE), R2, mean 

absolute error (MAE), RMSE of derivative spectra, and dynamic time warping (DTW), 
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which is a distance measure technique that allows a non-linear mapping between two signals 

by minimizing the distance between them22. Altogether, our approach does not require 

time-intensive quantum chemistry calculations and provides accurate, multiple-wavelength 

spectrum predictions (across a complete spectrum rather than just the λmax), comparable to 

or better than currently used models.

EXPERIMENTAL

Compound libraries.

Absorbance spectra were acquired for a diverse set of compounds from SRI’s internal 

collection (393 compounds) and a collection of compounds purchased from OTAVA 

Chemicals (MMP2 Targeted Library, 596 compounds). Compounds were diluted to 200 μM 

with methanol or DMSO and arrayed in 96-well plates for analysis by HPLC with spectrum 

acquisition. The MicroSource Spectrum screening compound library of 2222 compounds 

(MicroSource Discovery Systems, Inc., Gaylordsville, CT, USA) was a generous gift from 

Dr. Ethan Perlstein, (Perlara).

UV-Vis Spectrum Acquisition.

Compounds for Dataset I were analyzed by HPLC using a Thermo Dionex Ultimate U3000 

UPLC system equipped with a Thermo LCQ Fleet ion trap MS, a DAD-3000RS diode array 

detector (DAD), and a C18 column. The mobile phase was water-acetonitrile-0.1% formic 

acid, with an acetonitrile gradient.

The retention time for the compound of interest in each chromatographic run was 

determined from the extracted ion chromatogram (XIC). The XIC was scanned for the 

largest peak at the expected mass. When found, the peak was fit with a Gaussian and 

was accepted if it met constraints for lineshape (Gaussian FWHM < 0.1) and elution time 

greater than the void volume of 1.2 min. This process eliminated compounds that had no 

mass response or potential co-elution with sample impurities. It resulted in inclusion of 

spectra for 949 compounds from the starting set of 989. For each accepted chromatogram, an 

empirically determined time-offset was applied to extract the UV-Vis spectrum (200 nm to 

800 nm) for that compound from the DAD data.

Background due to HPLC mobile phase absorption was subtracted from each spectrum. 

Due to the gradient in acetonitrile concentration, the background spectrum depended on the 

elution time of the analyzed compound. To assess the background at the relevant elution 

time for each compound, the minimum signal at each wavelength was extracted from 

the set of all spectra collected at that elution time for a given plate of compounds. The 

minimum signal from the set was taken to be the background without contribution from 

analytes or compound-specific impurities. The resulting inferred background spectrum for 

the relevant elution time was subtracted from the measured spectrum of each compound. 

The background-subtracted spectra were truncated (220 nm to 400 nm) and scaled by setting 

the minimum absorbance to zero and normalizing to a maximum absorbance of 1.0.

Compounds for Dataset II were obtained as 10 mM solutions in 100% DMSO. Each 

compound was diluted 50-fold (to 200 mM and 2% DMSO) with water and transferred to 
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black, clear-bottom Greiner UV-STAR microplates. The UV absorption of each compound 

was read in a SpectraMax iD5 Multi-Mode Microplate spectrophotometer from 230nm to 

400nm in 1 nm increments. The resulting spectra were scaled by setting the minimum 

absorbance to zero and normalizing to a maximum absorbance of 1.0.

Dataset preparation.

SMILES for the Dataset I compounds were exported from a CDD vault. Molecules were 

prepared as follows: Salts were removed and molecules were neutralized if possible. 

Molecules were converted into their canonical SMILES format using RDKit. Duplicates 

were then removed from the dataset.

Machine learning methods.

Spectrum prediction makes use of a Deep Learning Machine Learning algorithm called 

LSTM (Long-Short Term Memory) model23 (Figure 1). We use wavelength windows from 

220 to 400nm for the spectra from Dataset I and 230 to 400nm for spectra from Dataset 

II (due to the wavelength limitations of the spectrophotometer). For input, we considered 

four different data representations: 1024-bit or 2048 bit ECFP6 fingerprint, a compressed 

fingerprint, and the tokenized SMILES string as parameters along with the full wavelength 

values for each molecule to build a model. Further details on the machine learning methods, 

server details, t-SNE visualization, clustering of spectra and spectrum comparison measures 

and can be found in the Supporting information Methods.

RESULTS

Overview of UV-adVISor.

UV-adVISor is a new tool to enable a scientist to obtain predicted UV-Vis absorption 

spectra for input molecules using standard structure representations such as SDF24 and 

SMILES.25 Initially we tested several feed forward machine leaning models, however they 

all failed to converge (Figure S1). machine learning algorithm built from a Long Short-Term 

Memory (LSTM) network architecture to predict relative absorbance at wavelengths within 

a trained range (Figure 1) performed the best. To cover a wider range of applicability, 

we have trained two models, each with a different dataset which covers different chemical 

property space (Figure 1B). Dataset I was generated from a compound collection combining 

an internal chemical inventory and a commercial compound library. Spectra for these 

compounds were obtained with a PDA detector interfaced with a HPLC, elution time of each 

sample compound being judged by its initial detection with an in-line mass spectrometer. 

Dataset II was generated from a commercially obtained (MicroSource Spectrum) collection 

of drugs. Spectra for these compounds were obtained with a spectrophotometer using a 

multi-well plate format. Generating two datasets using two distinct methods allowed us to 

demonstrate the wider applicability of UV-Vis based models, as UV-Vis spectra can often 

be distinct based on conditions such as the solvent composition and the pH. The spectra 

in both data sets were baseline corrected (minimum value in wavelength range offset to 

0) and normalized (maximum value in wavelength range set to 1). For each model, we 

used 70% of the compounds for training, 15% for validation, and 15% for testing. Our 

first set of models used LSTM layers to read SMILES sequences or an ECFP6 fingerprint 

Urbina et al. Page 5

Anal Chem. Author manuscript; available in PMC 2022 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Figure 1C, left). We also used a second model architecture, taking advantage of recent 

advancements in using encoder-decoder architectures26, 27 with an attention mechanism 

for language translation (Figure 1C, right). This second network architecture is motivated 

by approaching spectrum prediction as a sequence to sequence (Seq2Seq) translation 

problem between a chemical structure (represented by SMILES string) and a wavelength 

sequence output. The final models are readily accessible through a web interface (https://

www.collaborationspharma.com/uvadvisor), where the user can input a structure in 2D or 

SMILES format, and UV-AdVISor outputs the predicted spectrum as a graph or in .csv 

format.

UV-adVISor Enables Accurate Spectrum Predictions.

Models generated using Extended Connectivity Fingerprint Diameter 6 (ECFP6)28, 29 

molecular representations as inputs to the LSTM network produced hiqh-quality predictions 

of spectra for test compounds. Representative examples from the model using Dataset I 

are shown in Figure 2. The full data set is available in Supporting Information data File 

1. Many of the predictions accurately render absorption maxima, minima, and shoulders 

and good approximations of relative absorption across the wavelength range of the spectra. 

The best predicted spectrum had a RMSE of predicted versus measured spectra of 0.005 

(SRI-1053215). Qualitatively, we assess RMSE values of less than 0.10 as “excellent”, 

values less than 0.20 as “good”, and anything at or above 0.25 as a “poor” prediction 

(Figure 2B). We obtained comparable prediction accuracy, as judged by RMSE (Table 

S2), with a model that used 2048 bit or 1024 bit ECFP6 descriptors (see Methods). The 

median RMSE for both sets of predictions is ~0.17. However, further compression of the 

fingerprint resulted in substantial degradation of the prediction quality (median RMSE = 

0.21). Using tokenized SMILES as the molecular representation produced predictions of 

quality comparable to those produced with the uncompressed ECFP6 (median RMSE = 

0.17). Using a Seq2Seq model resulted in the best predictive model (as judged by median 

RMSE = 0.15). Training the model with scrambled data, in which the compounds are 

paired randomly with spectra from the dataset, resulted in poor predictions as one would 

expect. The average median RMSE for predictions made with LSTM models trained with 

three randomly scrambled sets using 2048 bit ECFP6 was degraded to 0.25. Comparison 

of this performance metric with the that of the trained model with the correctly paired 

spectra and compounds confirms that the model has successfully learned structure-spectrum 

relationships. Certainly, there are other performance metrics which could be considered, for 

example peak-wavelength predictions.

UV-adVISor trained on different data sources.

Dataset I was produced on an HPLC-PDA system, modeling the type of analytical 

system used in a typical organic chemistry lab. Dataset II was directly read on a UV-

Vis spectrophotometer, representing a faster data collection methodology, but without the 

chromatographic separation afforded by the HPLC-PDA system. Machine learning models 

trained using Dataset II were also found to provide accurate predictions (Supporting 

Information dataset 2), suggesting UV-adVISor is widely applicable to a variety of different 

detection methods. As with Dataset I, the median RMSE was comparable using the 2048 bit 

ECFP6 descriptor or the 1024 bit ECFP descriptor (Table S3). Using either descriptor, the 
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median RMSE of the predictions was substantially lower than predictions using the model 

trained with Dataset I, (0.06–0.08 vs 0.17). The average median RMSE for predictions 

made with models trained with three randomly scrambled sets from Dataset II was 0.1, also 

substantially lower than the scrambled RMSE for Dataset I, which was 0.25.

Inspection of the datasets reveals that Dataset II, while derived from a diverse set of 

compounds, appeared to have a relatively low diversity of spectrum profiles in the training 

and test sets, with a large number of spectra having few or no features above ~240 nm. 

(Figure S2). To quantify this difference in diversity, we measured the average of the standard 

deviation of each wavelength value for both datasets. Dataset I had an average standard 

deviation of 0.23, while Dataset II had an average standard deviation of 0.08, indicating 

a lower diversity of spectra. Second, we used shape-based distance to divide the spectra 

into 25 distinct clusters. Dataset I exhibits a higher inter-cluster diversity compared to 

Dataset II (Figure S2A). Using the silhouette method30 (see Methods) to determine the 

optimal number of clusters, Dataset I is determined to have 4 major clusters, and Dataset 

II has 3 major spectrum clusters, consistent with the lower spectral diversity of Dataset II 

(Figure S2B). Because of this lower spectra diversity, the model trained and tested with 

Dataset II has a greater statistical probability of predicting the shape of the spectrum when 

trained with the actual data or the scrambled data (Table S3). This analysis again shows 

the importance of evaluating the model relative to a scrambled dataset, which captures the 

overall spectrum diversity for a given dataset. It also confirms that the model is able to learn 

structure-spectrum relationships for Dataset II. (Table S3).

Comparison of Measures of Prediction Accuracy.

To our knowledge no single measure of the difference between predicted and actual UV-Vis 

spectra has been previously adopted as an ideal metric for comparisons. Most comparisons 

of predicted spectra to measured spectra only consider λmax
31, whereas our models predict 

the entire spectrum over a wavelength range. Therefore, we have applied a series of quality 

metrics to evaluate the predictions of UV-adVISor. In addition to RMSE, other commonly 

applied metrics are R2 and Mean Absolute Error (MAE). Applied to Dataset I, Median R2 

was similar for 1024 bit ECFP6 and SMILES representations (~0.63) and lowest for the 

scrambled average (0.12). Median MAE was lowest for SMILES (0.10) and increased to 

0.17 for the scrambled average for Dataset I (Table S2). A similar trend was observed using 

Dataset II, with stronger measures of concordance for both authentic and scrambled data 

(Table S3).

In addition, we have applied novel metrics aimed at emphasizing correct prediction of key 

features of a spectrum. DTW is an approach for comparing data series by finding the optimal 

match between the series. Applied to spectra, it allows comparison of spectrum shapes when 

features of the compared spectra are shifted in wavelength22. Thus, in principle, DTW is 

more robust than measures such as RMSE for comparing spectrum shapes and could also 

be used for shape-based classification32. We have generated DTW for the test spectra in 

each dataset and found it correlated with RMSE (R2 > 0.6, Figure S3). DTW therefore 

provides an interpretable method to compare predicted and observed spectra to assess 

machine learning prediction quality. For Dataset I, the median DTW showed considerable 
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variability between 1024 bit, 2048 bit ECFP6 and SMILES representations (0.71–1.03, 

Table S2). Similarly, for Dataset II the median DTW shows a similar spread (0.194–0.232, 

Table S3) on a narrower scale, suggesting the error is generalizable, and therefore the 1024 

bit ECFP6 was selected as the more favorable model in the latter case.

We have also applied the RMSE between the derivatives of the predicted and actual 

spectra to emphasize correct prediction of absorption maxima and minima (Table S3). The 

derivative is obtained using a forward finite-difference approximation applied to wave value 

at each wavelength:

ẋi =
xt − xt − 1

δt

where xt is value of the current wavelength, xt−1 is the value of the next nm wavelength 

measured, and δt is the difference between the two wavelengths (in our case, 1 nm for all 

spectra wavelength increments).

This measure was the lowest for the 1024 bit ECFP6 and highest for SMILES in Dataset I 

while being intermediate for the scrambled data. In contrast, SMILES and 2048 bit ECFP6 

showed comparable RMSE. SMILES is an end-to-end model; using the encoded SMILES 

string as an input, whereas ECFP6 are features calculated from the molecule. It is possible 

that the end-to-end learning of SMILES, while requiring more data, is capable of learning a 

similar feature representation as fingerprints given a large enough dataset.

Based on the assessment of chemists in our group, none of these statistical measures 

adequately evaluates the utility of a predicted spectrum to the chemist’s task of identifying a 

compound or distinguishing a compound from others. We have therefore applied functional 

tests to the quality of spectra predicted with UV-adVISor based on the correspondence of 

peaks, i.e., wavelengths of local absorption maxima, with actual spectra. In one such test, 

the predicted spectrum is judged “useful” if 1) it has an equal number of local absorbance 

maxima within a defined wavelength range as the actual spectrum and 2) each of the peaks is 

within 15 nm of a corresponding peak in the actual spectrum (Table S4).

For the LSTM model trained with Dataset I (2048-bit ECFP6), 58 of 150 predictions (39%) 

meet these criteria. For the Seq2Seq model trained with Dataset I, 47 of 150 predictions 

(31%) meet these criteria. In contrast, spectra calculated using models trained with three 

random scrambles of Dataset I afford only 11, 15, and 17 of 150 predictions (7%, 10%, 

and 11%, respectively) that meet these criteria. For the model trained with Dataset II 

(2048-bit ECFP6), 235 of 330 predictions (71%) meet these criteria. Spectra calculated 

using models trained with three random scrambles of Dataset II afford 175, 181, and 184 of 

330 predictions (53%, 55%, and 56%, respectively) that meet these criteria. As can be seen 

from these examples, the fraction of calculated spectra meeting this functional standard is 

roughly correlated with the median RMSE for the calculated spectra. However, at the level 

of individual spectra, this correlation is weak, because the functional criteria do not penalize 

a predicted spectrum for large deviations of absorption intensity from the actual spectrum; 

whereas, RMSE does penalize such deviations.
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Spectrum Predictions for Additional Compounds.

After all model test sets were used for evaluation, a prediction was performed on a 17-

compound external test set (Dataset III, Supporting information). Though there was no 

overlap of these compounds with Dataset I, 8 of the 17 were found in Dataset II. Therefore, 

we only made predictions using the model built with Dataset I. Similar to the test set, 

both the LSTM model trained with ECFP6 (1024) and the Seq2Seq model had comparable 

median RMSE (Table S5) for Dataset III (Supporting Information Data 3). Both models had 

a higher RMSE and lower Median R2 than the test or Dataset III which might be explained 

by the 17 compounds containing a variety of spectral shapes in comparison to the training, 

test, and validation sets, which had a number of similar spectrum peaks.

UV-adVISor predictions and molecule similarity to training set.

Chemical space is infinite33. Therefore, it would be unexpected for machine learning models 

trained with hundreds to thousands of molecules to correctly predict a UV-Vis spectrum 

for all possible new molecules. We discovered that UV-adVISor was capable of predicting 

near-identical spectral curves for some compounds but missed important features for others 

(Figure 2).The t-distributed stochastic neighbor embedding (t-SNE) plots34 (See Supporting 

Information Experimental) of structural similarity (based on ECFP6 fingerprints) suggests 

that predictive power is determined by training and test set overlap. Where the density of 

training examples is sparse in relation to the density of the test examples, the MAE of 

predictions is generally higher (Figure S4). This observation suggests that the reliability of 

predictions can be improved with sufficient representation in the training set of the model. 

The additional compounds (Dataset III) were also well distributed in the t-SNE plot for the 

Dataset I (Figure S5) suggesting they were likely within the applicability domain of this 

model.

Evaluating chemical-substructure contributions to spectrum prediction by exploiting 
model attention weights.

One of the advantages of using a Seq2Seq model with attention is the ability to visualize 

the attention mechanism27. In our Seq2Seq model, compounds are represented as tokenized 

SMILES strings. Upon generation of each wavelength value, a corresponding vector of 

weights over each character in the input is generated (Figure 3A). This vector of weights 

describes what parts of the input the model is “paying attention to” at each prediction step. 

Although caution must be used to not make direct inference from attention alone, we can 

exploit this mechanism to observe what part the compound structure the model is paying 

attention to and derive substructure importance from UV-Vis spectra. We chose a spectrum 

that was predicted with reasonable accuracy for example (Figure 3B). Here, we chose two 

“low points” and two “high points” and observed the attention weights for each. At the 

lowest wavelengths, the model’s attention is not focused on any part of the input (Figure 

3C, top-left). During the first peak, however, the model is focused on the amide group. 

The second low point on the spectrum shows a focus on the thiophene ring, and the λmax 

indicates attention focus on the nitro group. This type of structure-spectrum analysis may 

also inform efforts to develop rules to calculate the λmax based on substructure features35, 36.
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DISCUSSION

In practice, UV-Vis spectra are most commonly used in reference to specific qualified 

standards or spectral libraries. The theoretical prediction of spectra has not achieved 

sufficient accuracy for routine use in chemistry labs, particularly for chemists analyzing 

mixtures of crude reaction products or extractions. In contrast, predictive tools for NMR and 

FT-IR spectra are used by almost all synthetic chemists in identification, characterization 

and structural elucidation of novel compounds (e.g. NMR predictor software, ACDlabs)37. 

Given that chemists routinely collect UV-Vis spectral data as part of standard HPLC analysis 

workflows, these data are essentially “free” and underutilized by them. The ability to 

accurately predict UV-vis spectra de novo would enable chemists to more easily identify 

compounds of interest without the need for qualified reference standards.

The most commonly used method to date for UV-Vis spectrum prediction is TD-DFT (Table 

S1) using CAM-B3LYP functionals.1 This approach requires quantum chemistry software, 

significant computing resources, and expertise in their use and interpretation. Nevertheless, 

it has been used in hundreds of publications for diverse range of compounds. Most of 

these publications report studies of individual compounds or at most a few analogs, and 

the experimental data for the various studies have been generated in a variety of solvents, 

limiting their value as a spectrum database. Most measure agreement between prediction and 

experiment only at λmax, providing at best, a qualitative assessment of agreement for other 

spectral features. In many cases, the predicted values of λmax are significantly different than 

those observed.

Though the limitations of purely theoretical approaches to predicting UV-Vis spectra hinder 

the application of these approaches to compound identification and characterization in 

organic chemistry, chemists routinely use empirical rules to make qualitative or partial 

predictions of compounds’ UV-Vis absorbance behavior. The utility of such methods 

suggests the potential for data-driven approaches such as machine learning to prediction 

of UV-Vis spectra. Key issues that we have addressed to realize this objective are the 

availability of sufficient data for training, validating, and testing ML algorithms; the 

relationship between the content of training data and the reliability of predictions; machine 

readable (i.e., vector) representations of molecular structure that capture sufficient detail 

to generalize structure-spectrum relationships; network architectures that output predicted 

spectra that are continuous across a wavelength range; and useful metrics for assessing the 

predictive power of ML models.

Despite the routine nature of UV-Vis spectrum acquisition, assembly of a sizeable dataset 

from publicly available sources that meets the needs of training and testing for spectrum 

prediction was not possible. Existing publicly available datasets are inadequate because they 

lack full spectra across a consistent wavelength range (rather than λmax only or varying 

wavelength ranges), absorption values across the wavelength range (rather than plotted 

spectra only), consistent solvent environments (solvent composition and pH), or a diversity 

of molecular structures (e.g. the compound sets often being focused on an analogous series 

of compounds such as dyes). Data harvested piecewise from the literature suffered similar 

deficits. We sought to avoid these limitations in the construction of our own datasets.
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The library of compounds we used to construct Dataset I comprised an internal collection 

aggregated from a variety of projects with a range of objectives undertaken at SRI. In 

addition to emulating the type of analytical system used in a typical organic chemistry lab, 

the HPLC methodology that we used for collection of Dataset I ensured that the spectra we 

analyzed were of pure compounds. The larger library of compounds in Dataset II from a 

commercial vendor comprised a wide range of drugs and natural products. By using these 

two datasets, we have created machine learning models that relate to a broader range of 

compound classes than literature datasets created primarily using dyes.

At the outset, it was unknown how much data would be required for machine learning 

models to learn structure-UV-VIS spectrum relationships to generalize to new molecules. 

We found that surprisingly small datasets can result in accurate predictions for new 

molecules. With less than 1000 molecules, we can obtain good levels of accuracy of 

prediction as judged by median statistics. Not surprisingly, it appears that the quality of 

spectrum prediction depends on the overlap between the chemical space of the training data 

and the compounds for which predictions are made (Figure 3). Similarly, we find that the 

accuracy of predictions depends on the similarity of spectral profiles between the training 

compounds and the compounds for prediction. Future work will expand our datasets to 

cover more chemical space, which we anticipate will improve the reliability of predictions. 

Understanding whether models for different solvent conditions are required or whether 

we can reliably extend datasets to create “generic UV-Vis spectrum models” will also be 

important to assess.

The LSTM network architectures we have employed are well-suited to the modeling of 

UV-Vis spectra. The recurrent structure of the LSTM architecture facilitates the modeling 

of spectra as continuous data series. Such models are particularly apt for UV-Vis spectra, 

which are typically smooth functions with broad features. The LSTM models described can 

be generated in minutes, and molecule predictions are processed in seconds. The Seq2Seq 

model with attention provided predictive accuracy comparable to the LSTM model that we 

tested and represents a novel method for visualizing what parts of the chemical substructure 

are most relevant to the prediction at hand. To our knowledge this is also the first use 

of an attention mechanism for probing substructure-UV-Vis prediction relevance. While 

interpretation of the attention weights must be done with care (we cannot, for example 

infer what atom centers contribute directly to what wavelengths), attention placed on certain 

substructures that appear repeatedly for specific wavelength peaks may indicate a chemical 

feature to investigate further and could the focus of further research. We can reasonably 

interpret the attention placed on each atom as importance to the predictive ability and use 

this information to refine the model by altering the training set.

We have demonstrated that UV-Vis spectra can be predicted from molecular structure alone 

(i.e., without additional physics-based information) represented by either ECFP6 descriptors 

or SMILES. We have previously demonstrated how compression of 1024 bit fingerprints 

to 8 bits of information could facilitate the use of machine learning approaches on a 

quantum computer38 and we reasoned this same approach could be used to assess how 

much structural information needed to be retained for accurate model spectra prediction. The 

reduction to 1024 bit fingerprints did not result in any significant information loss versus 
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the 2048 bit fingerprints, while ECFP6 8 bit compression showed a dramatic loss based on 

degradation of statistical measures such as RMSE (Table S2).

Development of models to predict UV-Vis spectra requires metrics to evaluate the quality 

of predictions. Statistical measures such as RMSE, R2, and MAE are commonly used 

metrics of agreement between predicted and actual values, and we have applied them to 

evaluate our models, to test different input formats, and to test the effect of scrambling the 

structure-spectrum relationship during training. We have also used MAE as the metric of 

loss during training of our models. We find that these measures are generally in concurrence. 

To the extent they differ, RMSE agrees best with our qualitative assessment of prediction 

quality.

Many test set predictions were remarkably close to the observed spectra (e.g., spectra 

in Figure 2 and Figure S6), an agreement reflected in values for RMSE, R2, and MAE. 

However, other spectrum predictions of our models capture important and useful features 

of the observed spectra in ways that are not well-reflected in these common statistical 

measures. For example, a small shift in wavelength of a large absorption peak results in a 

large contribution to RMSE but will often have a small impact on the utility of the prediction 

for distinguishing between two compounds. Similarly, a discrepancy in the relative height 

of a peak in a predicted spectrum from an actual spectrum will degrade the RMSE but 

have a small impact on interpretation. To address this shortcoming of standard statistical 

measures we have applied additional measures of prediction quality to our models, DTW 

and derivative spectrum RMSE.

DTW is a distance measure technique that allows a non-linear mapping between two signals 

by minimizing the distance between them39. This method is flexible, allowing two data 

series that are similar but locally out of phase to align non-linearly. It is a well-known 

solution for time-series alignment 46. To our knowledge, it has not been used previously for 

comparisons of spectra. As a measure of agreement between predicted and actual spectra, 

it accommodates small shifts in wavelength between spectra of similar shape. DTW is 

correlated with RMSE for the predictions made with our test sets (Figure S3). Median DTW 

is also correlated with median RMSE (Tables S2 and S3).

Comparison of derivatives of predicted and observed spectra also allows comparison of 

the overall shapes of spectra, emphasizing agreement in the wavelength positions of peaks 

and valleys, where the value of the derivative is zero irrespective of the magnitude of the 

absorption at those wavelengths. Derivative spectroscopy is frequently used to visualize 

poorly resolved spectral features and to differentiate similar spectra40. We are not aware of 

its use in quantitative comparison of predicted and experimental spectra. As with DTW, the 

trend in median values for this measure mirrors that of median RMSE.

Functional tests for assessing the quality of spectrum predictions provide a practical and 

intuitive measure of predictive success. The test we have described, correspondence of peak 

wavelengths between predicted and experimental spectra, emphasizes the peak positions 

over other spectrum features. Though this approach is similar to the typical analysis of 

results of TD-DFT predictions, which judges success by prediction of λmax values only, the 
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measure we have applied adds the rigor of requiring that no peaks are predicted that are not 

in the actual spectrum.

CONCLUSION

The machine learning technique embodied in UV-AdVISor allows very large compound 

libraries to be scored more quickly than previous methods. Thus, it will enable chemists to 

more rapidly and reliably identify compounds with desirable UV-Vis spectra. It could have 

applications for new compound discovery (e.g. prediction of dye colors), organic chemistry 

reaction monitoring, phototoxicity prediction, and numerous other important chemistry 

applications6–13. We have also shown that alternative spectrum comparison measures such 

as DTW may help in assessment of observed and predicted spectra. These scores may be 

used in the future as elements of machine learning algorithm cost functions. Future work 

will include comparison of 2D and 3 descriptors, evaluation and optimization of additional 

machine learning algorithms41–43 as well as applying additional algorithms for selection 

of training and test sets. The algorithms used herein are also likely applicable to NMR 

and MS spectrum prediction. Generation of spectra for significantly larger training sets 

(tens to hundreds of thousands of molecules) will assist in broadening the scope of these 

computational models and be useful in training recurrent neural network models to assist 

in the de novo design of molecules44, 45 with a particular spectrum of interest for specific 

applications requiring ideal physicochemical or UV-Vis properties.
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Figure 1. 
A. Overview of the experimental workflows for generating data with PDA or plate reader. 

B. t-distributed stochastic neighbor embedding (t-SNE) plot of chemical structure overlap 

between compounds generated by HPLC and spectrophotometer. Compounds that are 

structurally similar are close together in 2D space. No compounds are duplicated between 

the two datasets. C. Two LSTM architectures used for spectrum prediction. Left: LSTM 

model composed of LSTM layers followed by dense layers for the output, which takes in a 

SMILES string or ECFP6 as input. Right: Architecture of our Seq2Seq model with attention, 

which uses bi-directional LSTMs for the encoder and Luong attention and takes in SMILES 

strings.
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Figure 2. 
A. Comparison of different molecular descriptors to predict UV spectra for different 

representative molecules from Dataset I. B. Illustration of structures and spectra with 

varying qualities of prediction judged by RMSE.
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Figure 3: 
Exploration of the Seq2Seq model’s attention weights. A. Graphic showing the encoder side 

of Seq2Seq and the generation of an attention weight vector for each tokenized SMILES 

input. B. Example spectra and selected wavelengths at which the attention weights are 

visualized. C. Attention weights for each token SMILES input for each of the four chose 

wavelengths. At each prediction step, the attention weights focus on the most relevant 

SMILES input token as represented by the weight value.

Urbina et al. Page 19

Anal Chem. Author manuscript; available in PMC 2022 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	INTRODUCTION
	EXPERIMENTAL
	Compound libraries.
	UV-Vis Spectrum Acquisition.
	Dataset preparation.
	Machine learning methods.

	RESULTS
	Overview of UV-adVISor.
	UV-adVISor Enables Accurate Spectrum Predictions.
	UV-adVISor trained on different data sources.
	Comparison of Measures of Prediction Accuracy.
	Spectrum Predictions for Additional Compounds.
	UV-adVISor predictions and molecule similarity to training set.
	Evaluating chemical-substructure contributions to spectrum prediction by exploiting model attention weights.

	DISCUSSION
	CONCLUSION
	References
	Figure 1.
	Figure 2.
	Figure 3:

