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Abstract

Cardiac Cine Magnetic Resonance (CMR) Imaging has made a significant paradigm shift in 

medical imaging technology, thanks to its capability of acquiring high spatial and temporal 

resolution images of different structures within the heart that can be used for reconstructing 

patient-specific ventricular computational models. In this work, we describe the development 

of dynamic patient-specific right ventricle (RV) models associated with normal subjects and 

abnormal RV patients to be subsequently used to assess RV function based on motion 

and kinematic analysis. We first constructed static RV models using segmentation masks of 

cardiac chambers generated from our accurate, memory-efficient deep neural architecture – 

CondenseUNet – featuring both a learned group structure and a regularized weight-pruner to 

estimate the motion of the right ventricle. In our study, we use a deep learning-based deformable 

network that takes 3D input volumes and outputs a motion field which is then used to generate 

isosurface meshes of the cardiac geometry at all cardiac frames by propagating the end-diastole 

(ED) isosurface mesh using the reconstructed motion field. The proposed model was trained 

and tested on the Automated Cardiac Diagnosis Challenge (ACDC) dataset featuring 150 cine 

cardiac MRI patient datasets. The isosurface meshes generated using the proposed pipeline were 

compared to those obtained using motion propagation via traditional non-rigid registration based 

on several performance metrics, including Dice score and mean absolute distance (MAD).
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Index Terms—

Condensation-optimization network; right ventricle segmentation and propagation; image 
registration; displacement field reconstruction; patient-specific modeling

I. INTRODUCTION

According to the recent report from the American Heart Association, one-third of all 

deaths in the U.S. are caused by cardiovascular diseases (CVDs), some associated with 

compromised function of the right ventricle [1]. Important examples of such heart diseases 

include right ventricle (RV) ischemia and hypertrophy which may lead to abnormal RV 

motion. An efficient method that can accurately estimate the motion of the RV from cardiac 

images with the overall goal to study the RV kinematics could be used as a viable indicator 

of the progression of the disease and evaluation of cardiac function at an early stage.

The goal of cardiac motion estimation is to compute the optical flow representing the 

displacement vectors between consecutive 3D frames of a 4D cine CMR dataset, an image 

registration problem. To date, a number of approaches for motion estimation from cine MRI 

have been studied, including optical flow-based registration methods [2] and techniques 

based on feature tracking [3]. Metaxas et al. [4] proposed a physics-based framework for 

reconstructing the motion of the LV and RV from MRI-SPAMM (Spatial Modulation of 

Magnetization) data. Here, the authors deform the computed dynamic models with forces 

computed from the automatically segmented boundary data-points. Similarly, Park et al. 
[5] presented the use of finite element methods (FEM) to recover the right ventricle (RV) 

motion using parameter functions.

Recent approaches involve integrating anatomical data into a consistent framework to 

build patient-specific models. Hoogendoorn et al. [6] proposed a bilinear model for the 

extrapolation of cardiac motion assuming that the motion of the heart is independent of its 

shape. Xi et al. [7] proposed a bi-ventricular computational model to analyze ventricular 

mechanics in a pulmonary arterial hypertension patient from cine cardiac MRI images.

Although cardiac cine MRI has provided a non-invasive method for studying global and 

regional function of the heart, most of these studies have been centered on the LV. In light 

of the thin wall structure of the RV and its asymmetric geometry, there have only been 

very few research endeavors exploring the kinematics of RV, including the extraction of 

the RV motion and generation of patient-specific RV anatomical models. The goal of this 

work is to develop an approach for extracting the RV motion from cine cardiac MR image 

sequences and generate deformable endocardial RV models that can be later used to study 

RV kinematics as a biomarker for studying RV-related cardiac disease.

In this work, we propose a deep learning-based approach for extracting the frame-to-frame 

RV motion from cine cardiac images, and using this motion, along with segmented 

isosurface meshes at ED, to generate dynamic, deformable models of the RV. Here, we 

illustrate the potential of the CNN-based 4D deformable registration technique to build 

dynamic patient-specific RV models across subjects with normal and abnormal RVs. We 
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used the segmented mask of the RV endocardium at all cardiac frames generated via our 

previously proposed CondenseUNet [8], which substitutes the concept of both standard 

convolution and group convolution (G-Conv) with learned group-convolution (LG-Conv). 

Following segmentation of the ED cardiac frame, we generate isosurface meshes, which 

we then propagate through the cardiac cycle using the CNN-based registration fields. 

Lastly, we compare these propagated isosurface meshes to those generated directly from 

the segmentation masks obtained from CondenseUNet [8].

II. Methodology

A. Imaging Data

For this study, we used the Automated Cardiac Diagnosis Challenge (ACDC) dataset1, 

consisting of short-axis cardiac cine-MR images acquired for 150 patients divided into 5 

subgroups: normal (NOR), myocardial infarction (MINF), dilated cardiomyopathy (DCM), 

hypertrophic cardiomyopathy (HCM), and abnormal right ventricle (ARV), available 

through the 2017 MICCAI ACDC challenge [9]. The MRI images were acquired using 

two different MRI scanners of 1.5 T and 3.0 T magnetic strength. The series of short axis 

slices cover the LV from base to apex such that one image is captured every 5 mm to 10 mm 

with a spatial resolution of 1.37 mm2/pixel to 1.68 mm2/pixel. The image intensity values 

are normalized such that the pixel values lie in between 0 and 1.

B. Segmentation

The segmentation of the MR images is the first step towards extracting anatomical 

information for incorporation into geometric models. In this study, we used our previously 

proposed CondenseUNet [8] framework, which substitutes the concept of both standard 

convolution and group convolution (G-Conv) with learned group convolution (LG-Conv). 

Our network learns the group convolution automatically during training through a 

multi-stage scheme. The capability of our network to learn the group structure allows 

multiple groups to re-use the same features via condensed connectivity. Moreover, the 

efficient weight-pruning methods lead to high computational savings without compromising 

segmentation accuracy [10].

C. Slice Misalignment Correction

One of the main challenges with cardiac image acquisition is to account for cardiac motion 

due to respiration, which can lead to severe artifacts that manifest themselves by an overall 

misalignment of the 2D image slices. Numerous techniques for motion compensation have 

been proposed for preprocessing as well as post-processing the cardiac images. We leverage 

the slice misalignment correction method proposed by Dangi et al. [11] where we train a 

modified version of the U-Net model [12] to segment the cardiac chambers, namely the – LV 

blood-pool, LV myocardium and RV blood-pool, from 2D cardiac MRI images. We identify 

the LV blood-pool center, i.e., the centroid of the predicted segmentation mask, and stack 

the 2D cardiac MRI slices such that the LV blood-pool centers from each slice are collinear, 

hence correcting for any slice misalignment. This technique results in a set of correctly 

1 https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html 

Upendra et al. Page 3

Annu Int Conf IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2022 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html


aligned image slice stack that faithfully represents the cardiac geometry and reduces the 

presence of stair-step artifacts that appear at the edges of the segmented features.

D. Deformable Registration Framework

Here we use a deep learning registration approach that employs the VoxelMorph [13] 

framework, as illustrated in Fig. 1. We focus on the deformable registration of 3D cardiac 

images after slice misalignment correction, as described in Section II-C. We follow the 

approach as described in [14], [15] and a convolutional neural network (CNN), G(f, m) 

with parameters θ is used to map the fixed and moving images to the parameters of the 

transformation.

During training, a sequence of cardiac 3D MR image pairs mED, mED+t, …, mED+NT 1, 

where NT is the total number of frames, and mED is the end-diastole image frame, are 

passed to the CNN to generate the deformation field ϕ. The moving ED frame mED is then 

warped using the deformation field ϕ to obtain the transformed 3D image mED ◦ ϕ, which 

is then used to compute the similarity loss ℒsim f, mED ∘ ϕ , with f being the fixed / target 

image. We iterate over pairs of fixed-moving images in a training dataset to find the network 

parameters that minimize the similarity loss ℒSim, which is additionally constrained with a 

smoothing loss ℒsmootℎ. Formally the overall objective function is written as:

ℒ f, mED ∘ ϕ = ℒsim f, mED ∘ ϕ + λℒsmootℎ , (1)

where ℒSim is the mean squared error (MSE), λ is the regularization parameter, and ℒsmootℎ
is a regularization on the deformation field ϕ to further enforce smoothness spatially as given 

by

ℒsmootℎ = ∑
iεΩ

∥ Δϕ(i) ∥2 , (2)

where Δ is the Laplacian operator that takes into consideration both global as well as local 

properties of the objective function, as inspired by Zhu et al. [16]. We found that our model 

performs best with λ = 10 3.

E. Isosurface Mesh Extraction

The surface mesh generation pipeline contains two main tasks: surface mesh generation 

and smoothing. The predominant algorithm for isosurface extraction from original 3D data 

is marching cubes [17], which produces a triangulation within each cube to approximate 

the isosurface by using a look-up table of edge intersections. For this purpose, we used 

the segmentation map of all the frames in a cardiac cycle generated by our CondenseUNet 
model. Since the slice thickness was large and ranged from 5 mm to 10 mm, we re-sampled 

the dataset to achieve a 1 mm consistent slice thickness. After extracting the isosurface 

models using the Lewiner marching cubes [17] algorithm implemented using the scikit-

image library [18] in the Python programming language, our next task was to remove the 

surface noise by applying smoothing operations. In order to smooth the isosurface meshes, 

we used the joint smoothing technique in 3D Slicer 4.10.2 [19], with the smoothing factor 
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in the range of 0.15 to 0.2. This mesh smoothing operation significantly improves mesh 

appearance as well as shape, by moving mesh vertices without modifying topology.

Besides the RV isosurface meshes generated from the individual cardiac image frame 

segmentations following marching cubes and smoothing, which served as ground truth, 

we generated three additional sets of meshes by propagating the isosurface mesh at the ED 

phase to all the subsequent cardiac frames using the registration field estimated using the 

proposed VoxelMorph registration, as well as two traditional nonrigid image registration 

methods: the B-spline free form deformation (FFD) [20] algorithm and the fast symmetric 

force Demon’s algorithm [21], [22], as detailed in Section II-F.

F. Baseline Comparisons:

The results obtained using the proposed deep learning registration framework were 

compared to those obtained using traditional iterative image registration methods, including 

the FFD [20] algorithm and the fast symmetric force Demon’s algorithm [22]. The FFD 

registration method was implemented in SimpleElastix [23]. The FFD algorithm was set to 

use the adaptive stochastic gradient descent method as the optimizer, MSE as the similarity 

measure, binding energy as the regularization function, and was optimized in 500 iterations. 

The Demon’s algorithm was implemented in SimpleITK [24]. The standard deviations for 

the Gaussian smoothing of the total displacement field was set to 1 and optimized in 500 

iterations. These algorithms are trained using manually tuned parameters on an Intel(R) 

Core(TM) i9-9900K CPU.

III. Results and Discussion

To evaluate the registration performance of the FFD, Demon’s and VoxelMorph methods, 

the isosurface of the right ventricle (RV) generated from the segmentation map in the ED 

frame is propagated to all the subsequent cardiac frames using the registration field. We then 

compare the registration accuracy by measuring the overlap between the isosurfaces directly 

generated by segmenting all cardiac image frames using our CondenseUNet model [8] (i.e., 

“silver standard”) and those propagated by FFD, Demon’s and VoxelMorph using Dice score 

and mean absolute distance (MAD).

Table I summarizes the registration performance between these propagated and “silver 

standard” isosurfaces, for both normal and abnormal RV. Fig. 2 illustrates the MAD 

between the propagated and segmented isosurfaces for one patient each with normal and 

abnormal RV. It can be observed that the CNN-propagated isosurfaces are closer to the 

segmented isosurfaces than the FFD-propagated isosurfaces; they are comparable to the 

Demon’s-propagated isosurfaces.

As mentioned in Section II-E, we generate four sets of isosurface meshes at each frame 

of the cardiac cycle for one patient with a normal RV and one patient with an abnormal 

RV. Fig. 3 shows the mean nearest neighbor (NN) distance between the three sets of the 

registration-propagated isosurface meshes and the isosurface meshes generated directly from 

the segmented masks at each frame of the cardiac cycle for both the normal and abnormal 

RV subjects. It can be observed that the isosurface meshes are in close agreement with one 
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another in the subjects with both a normal and an abnormal RV. Fig. 4 illustrates the model-

to-model distance at the end-systole (ES) frame between the three registration-propagated 

isosurface meshes and the isosurface meshes generated directly from the segmented masks 

for both the normal and abnormal RV subjects.

The proposed CNN-based cardiac motion extraction can be used to generate isosurface 

meshes at all the cardiac phases, which are in close agreement with the isosurface meshes 

propagated using traditional iterative image registration algorithms, as well as the meshes 

generated from the direct segmentation of the cardiac image frames.

One of the major advantages of the proposed CNN-based framework over the traditional 

nonrigid image registration techniques is the significantly faster computing time. For 

example, it takes around 40 seconds to propagate the isosurface mesh at the ED frame 

to the other frames of the cardiac cycle using a trained VoxelMorph model, compared 

to 135 and 160 seconds using the FFD and Demon’s registration methods, respectively. 

Similarly, the advantage of using mesh propagation rather than direct mesh generation 

from individual cardiac image frame segmentation is point correspondence across meshes 

at different frames, as well as an overall smoother mesh animation over sequential frames, 

since the individual frame segmentation is accompanied by inherent uncertainty. One area 

of improvement is to impose diffeomorphic restrictions to the CNN-based image registration 

method in order to prevent mesh tangling and maintain high mesh quality.

IV. Conclusion

This paper presents an unsupervised deep learning-based deformable image registration 

technique to generate individualized anatomically detailed RV models from high resolution 

cine cardiac MR images. The cardiac motion estimation was formulated as a 4D image 

registration problem, which constrains the smoothness of the estimated motion fields 

concurrently with the image registration procedure. The performance of this 4D registration 

method for cardiac applications has been evaluated by qualitative, as well as quantitative 

validation using cardiac cine MR images. In addition, our method is not restricted to only 

the RV geometry and can be extended to bi-ventricular models. Thus, it can be used 

potentially for improving early diagnosis and treatment planning of cardiomyopathies. As 

part of future work, we will use the deformable endocardial RV models to characterize the 

kinematics of the RV endocardium and study the displacement, velocity and acceleration, 

as well as shape changes and use these quantities as potential biomarkers across various 

RV-specific cardiac diseases, such as pulmonary hypertension or other cardiac conditions 

resulting from RV malfunction.

Acknowledgments

This work was supported by grants from the National Science Foundation (Award No. OAC 1808530, OAC 
1808553 & CCF 1717894) and the National Institutes of Health (Award No. R35GM128877).

References

[1]. Benjamin et al. Heart disease and stroke statistics—2019 update: a report from the American Heart 
Association. Circulation, 139(10):e56–e528, 2019. [PubMed: 30700139] 

Upendra et al. Page 6

Annu Int Conf IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2022 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[2]. Gao et al. Estimation of cardiac motion in cine-MRI sequences by correlation transform optical 
flow of monogenic features distance. Physics in Medicine & Biology, 61(24):8640, 2016. 
[PubMed: 27880739] 

[3]. Moody et al. Comparison of magnetic resonance feature tracking for systolic and diastolic strain 
and strain rate calculation with spatial modulation of magnetization imaging analysis. Journal of 
Magnetic Resonance Imaging, 41(4):1000–1012, 2015. [PubMed: 24677420] 

[4]. Metaxas et al. Automated segmentation and motion estimation of LV/RV motion from MRI. In 
Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the 
Biomedical Engineering Society][Engineering in Medicine and Biology, volume 2, pages 1099–
1100. IEEE, 2002.

[5]. Park et al. A finite element model for functional analysis of 4D cardiac-tagged MR images. 
In International Conference on Medical Image Computing and Computer-Assisted Intervention, 
pages 491–498. Springer, 2003.

[6]. Hoogendoorn et al. Bilinear models for spatio-temporal point distribution analysis. International 
Journal of Computer Vision, 85(3):237–252, 2009.

[7]. Xi et al. Patient-specific computational analysis of ventricular mechanics in pulmonary arterial 
hypertension. Journal of Biomechanical Engineering, 138(11), 2016.

[8]. Kamrul Hasan SM and Linte Cristian A. CondenseUNet: A memory-efficient condensely-
connected architecture for bi-ventricular blood pool and myocardium segmentation. In Medical 
Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling, volume 11315, 
page 113151J. International Society for Optics and Photonics, 2020.

[9]. Bernard et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation 
and diagnosis: Is the problem solved? IEEE Transactions on Medical Imaging, 37(11):2514–
2525, 2018. [PubMed: 29994302] 

[10]. Kamrul Hasan SM and Linte Cristian A. L-CO-Net: Learned condensation-optimization network 
for segmentation and clinical parameter estimation from cardiac cine MRI. In 2020 42nd Annual 
International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 
pages 1217–1220. IEEE, 2020.

[11]. Dangi et al. Cine cardiac MRI slice misalignment correction towards full 3D left ventricle 
segmentation. In Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and 
Modeling, volume 10576, page 1057607. International Society for Optics and Photonics, 2018.

[12]. Ronneberger et al. U-Net: Convolutional networks for biomedical image segmentation. In 
International Conference on Medical Image Computing and Computer-Assisted Intervention, 
pages 234–241. Springer, 2015.

[13]. Balakrishnan et al. VoxelMorph: A learning framework for deformable medical image 
registration. IEEE Transactions on Medical Imaging, 38(8):1788–1800, 2019.

[14]. Upendra et al. A convolutional neural network-based deformable image registration method for 
cardiac motion estimation from cine cardiac MR images. In 2020 Computing in Cardiology, 
pages 1–4. IEEE, 2020.

[15]. Upendra et al. CNN-based cardiac motion extraction to generate deformable geometric left 
ventricle myocardial models from cine MRI. In International Conference on Functional Imaging 
and Modeling of the Heart, page TBD. Springer, 2021. arXiv preprint https://arxiv.org/abs/
2103.16695.

[16]. Zhu et al. New loss functions for medical image registration based on VoxelMorph. In Medical 
Imaging 2020: Image Processing, volume 11313, page 113132E. International Society for Optics 
and Photonics, 2020.

[17]. Lewiner et al. Efficient implementation of marching cubes’ cases with topological guarantees. 
Journal of Graphics Tools, 8(2):1–15, 2003.

[18]. van der Walt Stéfan et al. Scikit-image: Image processing in Python. PeerJ, 2:e453, 6 2014. 
[PubMed: 25024921] 

[19]. Fedorov et al. 3D Slicer as an image computing platform for the quantitative imaging network. 
Magnetic Resonance Imaging, 30(9):1323–1341, 2012. [PubMed: 22770690] 

[20]. Rueckert et al. Nonrigid registration using free-form deformations: Application to breast MR 
images. IEEE Transactions on Medical Imaging, 18(8):712–721, 1999. [PubMed: 10534053] 

Upendra et al. Page 7

Annu Int Conf IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2022 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/2103.16695
https://arxiv.org/abs/2103.16695


[21]. Pennec Xavier, Cachier Pascal, and Ayache Nicholas. Understanding the “Demon’s algorithm”: 
3D non-rigid registration by gradient descent. In International Conference on Medical Image 
Computing and Computer-Assisted Intervention, pages 597–605. Springer, 1999.

[22]. Dru Florence and Vercauteren Tom. An ITK implementation of the symmetric log-domain 
diffeomorphic Demons algorithm. 2009.

[23]. Marstal et al. SimpleElastix: A user-friendly, multi-lingual library for medical image registration. 
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 
pages 134–142, 2016.

[24]. Yaniv et al. SimpleITK image-analysis notebooks: A collaborative environment for education and 
reproducible research. Journal of Digital Imaging, 31(3):290–303, 2018. [PubMed: 29181613] 

Upendra et al. Page 8

Annu Int Conf IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2022 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Image segmentation and deformable registration pipeline: a) ED frame segmentation and 

slice misalignment correction; b) deep learning registration framework. The CNN G(f, m) 

learns to predict the deformation field and register the moving 3D image to the fixed 3D 

image to generate the transformed image using the spatial transformation function.
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Fig. 2. 
Mean absolute distance (MAD) between FFD-, Demon’s- and CNN-propagated and 

segmented (i.e., “silver standard”) masks at all cardiac frames for patients with normal 

and abnormal RVs.
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Fig. 3. 
Nearest neighbor (NN) distance between FFD-, Demon’s- and CNN-propagated and 

segmented (i.e., “silver standard”) isosurface meshes at all cardiac frames for patients with 

normal and abnormal RVs.
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Fig. 4. 
Model-to-model distance between the isosurface mesh at end-systole (ES) frame generated 

from segmentation and propagated using FFD, Demon’s and CNN-based deformable 

registration methods (left to right) for a patient with normal RV (top) and a patient with 

abnormal RV (bottom).
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TABLE I

RV Endocardium Mean (std-dev) Dice score (%) and mean absolute distance (MAD) between FFD and 

segmentation (FFD-SEG), Demon’s and segmentation (Dem-SEG), CNN and segmentation (CNN-SEG), ffd 

and CNN (FFD-CNN), and Demon’s and CNN (Dem-CNN) results. Statistically significant differences were 

confirmed via t-test between FFD-SEG and Dem-SEG, and FFD-SEG and CNN-SEG (* p < 0.1 and ** p < 

0.05).

Methods Normal RV Abnormal RV

Dice MAD Dice MAD

FFD-SEG 75.47 (5.71) 4.37 (1.23) 81.72 (3.32) 2.39 (0.62)

Dem-SEG 79.49 (4.77)** 3.52 (0.93) 84.54 (4.75)** 2.14 (0.46)

CNN-SEG 79.51 (4.93)** 3.34 (0.82)* 83.61 (4.96)** 2.44 (0.63)

FFD-CNN 80.15 (5.86) 1.69 (1.02) 87.31 (3.45) 1.03 (0.56)

Dem-CNN 84.91 (5.58) 1.08 (0.91) 90.64 (2.55) 0.78 (0.31)
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