Skip to main content
. 2022 Apr 26;8:e944. doi: 10.7717/peerj-cs.944

Table 1. Classification results for different PSD-based feature selection methods: REF, ReliefF, PCA, and mRMR with different classifiers: DNN, KNN, RF, and SV.

Feature selection Classifiers Accuracy (%) Recall (%) Precision (%) F-measure (%)
RFE LDA 94 94 95 94
SVM 95 95 95 95
RF 100 100 100 100
DNN 98 98 98 98
KNN 90 90 90 90
ReliefF LDA 95 95 95 95
SVM 97 97 97 97
RF 100 100 100 100
DNN 99 99 99 99
KNN 94 94 94 94
PCA LDA 55 55 30 39
SVM 81 81 83 82
RF 82 82 84 83
DNN 90 90 90 90
KNN 81 81 82 81
mRMR LDA 95 95 96 95
SVM 97 97 97 97
RF 100 100 100 100
DNN 99 99 99 99
KNN 94 94 94 94
Importance (10 features) LDA 93 93 94 93
SVM 98 98 98 98
RF 100 100 100 100
DNN 97 97 97 97
KNN 94 94 94 94
Importance (30 features) LDA 94 94 94 94
SVM 96 96 96 96
RF 97 97 97 97
DNN 98 98 98 98
KNN 93 93 93 93
None LDA 70 70 71 70
SVM 86 86 87 86
RF 93 93 93 93
DNN 93 93 93 93
KNN 78 78 79 78