Table 1. Classification results for different PSD-based feature selection methods: REF, ReliefF, PCA, and mRMR with different classifiers: DNN, KNN, RF, and SV.
| Feature selection | Classifiers | Accuracy (%) | Recall (%) | Precision (%) | F-measure (%) |
|---|---|---|---|---|---|
| RFE | LDA | 94 | 94 | 95 | 94 |
| SVM | 95 | 95 | 95 | 95 | |
| RF | 100 | 100 | 100 | 100 | |
| DNN | 98 | 98 | 98 | 98 | |
| KNN | 90 | 90 | 90 | 90 | |
| ReliefF | LDA | 95 | 95 | 95 | 95 |
| SVM | 97 | 97 | 97 | 97 | |
| RF | 100 | 100 | 100 | 100 | |
| DNN | 99 | 99 | 99 | 99 | |
| KNN | 94 | 94 | 94 | 94 | |
| PCA | LDA | 55 | 55 | 30 | 39 |
| SVM | 81 | 81 | 83 | 82 | |
| RF | 82 | 82 | 84 | 83 | |
| DNN | 90 | 90 | 90 | 90 | |
| KNN | 81 | 81 | 82 | 81 | |
| mRMR | LDA | 95 | 95 | 96 | 95 |
| SVM | 97 | 97 | 97 | 97 | |
| RF | 100 | 100 | 100 | 100 | |
| DNN | 99 | 99 | 99 | 99 | |
| KNN | 94 | 94 | 94 | 94 | |
| Importance (10 features) | LDA | 93 | 93 | 94 | 93 |
| SVM | 98 | 98 | 98 | 98 | |
| RF | 100 | 100 | 100 | 100 | |
| DNN | 97 | 97 | 97 | 97 | |
| KNN | 94 | 94 | 94 | 94 | |
| Importance (30 features) | LDA | 94 | 94 | 94 | 94 |
| SVM | 96 | 96 | 96 | 96 | |
| RF | 97 | 97 | 97 | 97 | |
| DNN | 98 | 98 | 98 | 98 | |
| KNN | 93 | 93 | 93 | 93 | |
| None | LDA | 70 | 70 | 71 | 70 |
| SVM | 86 | 86 | 87 | 86 | |
| RF | 93 | 93 | 93 | 93 | |
| DNN | 93 | 93 | 93 | 93 | |
| KNN | 78 | 78 | 79 | 78 |