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Summary:

Electronic health records (EHRs) have become a platform for data-driven granular-level 

surveillance in recent years. In this paper, we make use of EHRs for early prevention of childhood 

obesity. The proposed method simultaneously provides smooth disease mapping and outlier 

information for obesity prevalence, which are useful for raising public awareness and facilitating 

targeted intervention. More precisely, we consider a penalized multilevel generalized linear model. 

We decompose regional contribution into smooth and sparse signals, which are automatically 

identified by a combination of fusion and sparse penalties imposed on the likelihood function. 

In addition, we weigh the proposed likelihood to account for the missingness and potential 

non-representativeness arising from the EHR data. We develop a novel alternating minimization 

algorithm, which is computationally efficient, easy to implement, and guarantees convergence. 

Simulation studies demonstrate superior performance of the proposed method. Finally, we apply 

our method to the University of Wisconsin Population Health Information Exchange database.
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1. Introduction

Childhood obesity prevention has become increasingly important to control the global 

obesity epidemic. Granular-level surveillance of childhood obesity that identifies and tracks 

obesity trends is needed to help design interventions and guide policy solutions when 

monetary resources are limited (Longjohn et al., 2010). Routinely collected massive health 

databases, such as Electronic Health Records (EHRs), are gaining attention as a platform for 

assessing trends and local childhood obesity risk (Friedman et al., 2013).

Statistical methods for geospatial surveillance may include two aspects: i) monitoring 

regional trends in prevalence (also known as “disease mapping”) and ii) identifying 

unexpected variation in the prevalence of different locations (also known as “hot spot 

detection”). Traditionally, these two tasks have been accomplished separately. For task i), 

obesity literature mainly used the standard generalized linear mixed effect model (GLMM) 

to account for individual factors and community environments. Those approaches assumed 

the regional random effects to be independent, although a spatial dependency exists even 

after adjusting for covariates (Panczak et al., 2016). To account for the spatial dependence, 

methods for smooth disease mapping have been proposed from both frequentist and 

Bayesian perspectives. Under Poisson log-linear models or multilevel logistic models, the 

region-specific effects were smoothed by kernels (Ghosh et al., 1999) or splines (Ugarte et 

al., 2010), or were modeled as a dependent random vector by conditional autoregressive 

(CAR) priors (Besag et al., 1991; Mercer et al., 2015). These strategies resulted in 

“clustered” risk maps, which enhanced interpretability, but did not explore identification 

of aberrant regions. For task ii), the most popular approach is the spatial scan statistic 

method (Kulldorff and Nagarwalla, 1995; Jung, 2009). The scan statistic methods search 

over a pre-specified set of geographical districts and conduct a generalized likelihood ratio 

test for testing whether the proportions of events are homogeneous across, inside, and 

outside the district. However, it may not be suitable for identifying multiple locations with 

heterogeneous sizes. Residuals generated from regression approaches can also be used to 

detect regional outbreaks, in a way that an observation with large residual is regarded as an 

outlier (Farrington et al., 1996; Zhao et al., 2011). However, residual cutoff-based outlier 

detection is known to fail when an outlier is a leverage point or there are multiple outliers 

(She and Owen, 2011).

Use of the fusion penalty for smoothing was first proposed in a least squares setup 

(Tibshirani et al., 2005), and then for public health research (Wang and Rodríguez, 2014). 

The resulting fit from the fusion penalty appears to be piecewise constant, yielding a 

natural clustering of fitted values. Smoothing by the fusion penalty enables an additional 

regularization using a different penalty, such as a sparse penalty, which may not be 

straightforward in other smooth disease mapping methods. Sparse penalty for outlier 

detection was used with the squared error loss (Kim et al., 2009; Tibshirani and Taylor, 

2011; She and Owen, 2011). Kim et al. (2009) and Tibshirani and Taylor (2011) considered 

the ℓ1 penalty, and She and Owen (2011) reported that nonconvex penalties outperformed 

both ℓ1 penalty and cutoff-based approaches for detection in standard multiple linear 

regression.
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We develop a new method that simultaneously produces an interpretable disease map and 

detects outlier regions. We formulate a multilevel logistic model to naturally incorporate 

risk factors. A novel hybrid regularization includes a smooth signal representing the region-

specific effect and a sparse signal. The smooth signal is regularized by a fusion penalty so 

that adjacent locations tend to have similar fitted baseline obesity rates. A nonconvex sparse 

penalty is enforced for the sparse signals so that nonzero fitted coefficients signify potential 

outliers. It is worth mentioning that estimating population health metrics from EHRs can be 

challenging due to missingness and non-representativeness. Following Flood et al. (2015), 

we adopt a two-step weighting procedure to account for missing data and to adjust the 

covariate distribution for a nationally representative sample.

Our original contributions are twofold. First, while the hybrid regularization of the fusion 

and ℓ1 penalties has been considered in linear models (Kim et al., 2009; Tibshirani and 

Taylor, 2011), to the best of our knowledge we are the first to incorporate a fusion 

penalty and a nonconvex penalty to identify outliers. Second, we provide an efficient 

optimization algorithm that guarantees convergence for the hybrid regularization model 

and can leverage off-the-shelf software packages. Although our algorithm is described in a 

Bernoulli likelihood, it can be easily extended to handle other convex loss functions.

In Section 2, we describe the University of Wisconsin Electronic Health Record Public 

Health Information Exchange (PHINEX) database that motivated our study, and we 

introduce our method in Section 3. Simulation studies are presented in Section 4, which 

demonstrate the superior performance of our proposed method. We apply our method to 

PHINEX on childhood obesity surveillance in Section 5. We provide concluding remarks in 

Section 6.

2. Data

The University of Wisconsin Electronic Health Record Public Health Information Exchange 

(UW eHealth PHINEX) database contains EHR data from a south-central Wisconsin 

academic healthcare system. It consists of patient records with documented primary care 

encounters at family medicine, pediatric, and internal medicine clinics occurring from 

2007 to 2012. All PHINEX data were derived from the Epic EHR Clarity Database 

(EpicCare Electronic Medical Record, Epic Systems Corp., Verona WI). Furthermore, the 

program geocodes to the census blockgroup and links EHRs with community-level social 

determinants of health. It was created to improve clinical practice and population health by 

understanding local variations in disease risk, patients, and communities (Guilbert et al., 

2012).

In this paper, we focused on 93, 130 patients aged 2–19 years during 2011–2012. Body mass 

index (BMI) values (in kg/m2) were calculated from a subject’s height and weight, measured 

at the same visit. Any subject with a BMI at or above the 95th percentile was categorized 

as obese. Among all the patients, 34, 852 (37.4%) were missing a valid BMI. Individual-

level covariates included sex, age, race/ethnicity, health service payor (i.e., insurance), and 

the 2010 census blockgroup information on subject residence. Region-specific covariates 

included economic hardship index (EHI) and urbanicity of the blockgroups, where EHI 
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(Nathan and Adams, 1989) was used as a measure of blockgroup socioeconomic status and 

normalized for all Wisconsin census blockgroups. Urbanicity of a census blockgroup was 

based on its 11 Urbanization Summary Groups, according to ESRI (2012). These groups 

were derived from data on census blockgroup population density, city size, proximity to 

metropolitan areas, and economic/social centrality. Urbanicity integer values ranged from 1 

(the most urban) to 11 (the most rural).

3. Method

3.1 Model setup

We use a double subscript, ij (j = 1, …, ni, i = 1, …, K) to indicate the j-th subject in the i-th 

region. Let Si be the position of the centroid of the i-th region. Let Xi denote the region-level 

covariates such as urbanicity and EHI. Let Yij be the obese indicator of the (ij)-th subject, 

with Yij = 1 indicating obese. Lastly, let Zij be a vector of the covariates of the (ij)-th subject 

such as gender, age, race/ethnicity, and insurance payor.

Let pij = ℙ Y ij = 1 ∣ Zij, Xi . We formalize our model for the pij as

logit pij = Zij
Tα1 + Xi

Tα2 + βi + γi, (1)

 subject to     ∑
i1 < i2

ρi1, i2 βi1 − βi2 ⩽ c1;
(2)

∑
i = 1

K
I γi ≠ 0 ⩽ c2, (3)

where c1, c2 ⩾ 0, logit(t) = log{t/(1−t)}, and I(·) is the indicator function. The βis represent 

the regional contribution to obesity prevalence that is not explained by individual or other 

areal-level characteristics. Since the probability of a child being obese might be affected 

by the community environment, we expect the regional contribution to obesity prevalence 

to be similar for individuals in neighboring locations (Panczak et al., 2016), and thus a 

smoothness constraint (2) is imposed on βi. The fusion weight ρi1, i2 ρi1, i2 ⩾ 0  represents the 

strength of the “fusion” for each pair of i1 and i2. A higher value of ρi1, i2 will lead to a more 

similar pair of the fitted βi1 and βi2. With an appropriate choice of tuning parameter, the 

values that βi could take are limited where similar locations are grouped together. We may 

interpret the distinct levels of βi as segmentation or clustering of the regions. γi is introduced 

to capture potential aberrant regions, where the i-th region is an outlier with unusual obesity 

prevalence if γi ≠ 0. Given the sparsity constraint (3), we expect γi will be zero (non-outlier) 

for most regions, but a few might be nonzero (outliers). Our formulation can be viewed 

as an extension of Wang and Rodríguez (2014), where we added a sparsity constraint on 

each region in addition to the fusion constraint. This addition enables capturing of aberrant 

outbreaks after adjusting for the dependency at the region level.
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The model is identifiable if γi’s are sufficiently away from zero, but may not be otherwise. 

Although the idea of separating signals was considered in She and Owen (2011), Kim 

et al. (2009), Tibshirani (2014), and Chernozhukov et al. (2017), boundary values that 

determine the identifiability of the model have not been formally studied, and require further 

investigation. Note, however, that αij, βi + γi 1 ⩽ j ⩽ ni, 1 ⩽ i ⩽ K are identifiable.

3.2 Estimation with complete data

Denote N = ∑i = 1
K ni, α = α1

T , α2
T T

, β = (β1, …, βK)T and γ = (γ1, …, γK)T. If all patients 

had complete records, the parameters could be estimated by a penalized logistic likelihood, 

where (α, β, γ ) = argminα, β, γϕ(α, β, γ), and the objective function ϕ is

ϕ(α, β, γ) = − loglik(α, β, γ) + Pλ1(β) + Qλ2(γ) . (4)

The normalized negative log-likelihood function is

−loglik(α, β, γ) = 1
N ∑

i = 1

K
∑
j = 1

ni
log 1 + exp Zij

Tα1 + Xi
Tα2 + βi + γi

−Y ij Zij
Tα1 + Xi

Tα2 + βi + γi .
(5)

The second term Pλ1(β) is a fusion penalty that stems from the Lagrangian of (2), where 

Pλ1(β) = λ1∑i1 < i2ρi1, i2 βi1 − βi2 . We use ρi1, i2 = 1/d Si1, Si2 , where the d Si1, Si2  denotes a 

distance between Si1 and Si2. Here, geodistance is used to define d(·,·), but other measures 

of similarity can be employed. Without loss of generality, we assume maxi1, i2ρi1, i2 = 1, 

otherwise we can normalize it. Since the computational cost of the optimization involving 

fusion penalty increases quadratically in the number of nonzero ρi1, i2’s, one may want to 

retain a few ρi1, i2s with large values and truncate the others at zero for ease of computation.

The third term, Qλ2(γ) = ∑i = 1
K niqλ2 γi /N, is a sparse penalty that is a relaxation of the 

Lagrangian of (3), where qλ(·) is a univariate penalty function. In particular, we consider the 

hard penalty function as proposed in She and Owen (2011), qλ(t) = (λ|t| − t2/2)I(t < λ) + 

λ2/2I(t ⩾ λ). The hard penalty results in a nonconvex formulation on (4), which guarantees 

convergence to a local minima. We weigh the i-th penalty in Qλ2(γ) by ni such that subjects 

across different regions are penalized equally.

3.3 Optimization algorithm

We developed an alternating minimization algorithm. It alternately updates α, β, and γ, each 

time minimizing one of them while keeping the others fixed. Denote the current iterates by 

α(t), β(t), and γ(t). In addition, we denote Qij = Zij
T , Xi

T . Then Qij
Tα = Zij

Tα1 + Xi
Tα2.

Updating α. Fix β = β(t) and γ = γ(t). The objective function is equivalent to
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ϕ α, β(t), γ(t) = 1
N ∑

i = 1

K
∑

j = 1

ni
log 1 + exp QijT α + μij

(t) − Yij QijT α + μij
(t)

with μij
(t) = βi

(t) + γi
(t), which corresponds to a classical logistic regression on N individuals. 

One can run standard packages (such as glm in R) to obtain α(t+1).

Updating β. Fix α = α(t+1) and γ = γ(t), then

ϕ α(t + 1), β, γ(t) = 1
N ∑

i = 1

K
∑

j = 1

ni
log 1 + exp βi + θij

(t) − Yij βi + θij
(t)

= : l(β)

+ λ1 ∑
i1 < i2

ρi1, i2 βi1 − βi2 ,

where θij
(t) = Qij

Tα(t + 1) + γi
(t) for each i and j. For simplicity, define ψ(β) = ϕ(α(t+1), β, γ(t)), 

which is convex in β. To update β(t), we propose minimizing a surrogate objective function 

in which l(β) is replaced by its local quadratic approximation around β(t).

Write the second-order Taylor expansion of l(β) at β(t) as

l β; β(t) = l β(t) + ∇βl β(t) T β − β(t) + 1
2 β − β(t) T ∇ββ

2 l β(t) β − β(t) ,

where ∇β and ∇ββ
2  are the first and the second derivative operators with respect to 

β. Define the surrogate objective function as ψ β; β(t) = l β; β(t) + Pλ1(β). We calculate 

β = argminβψ β; β(t) , where

β = argmin
β

1
2 ∑

i = 1

K
Ai

(t) βi − Bi
(t) 2

+ λ1 ∑
i1 < i2

ρi1, i2 βi1 − βi2 ,

with

Ai
(t) = ∑

j = 1

ni exp βi
(t) + θij

(t)

1 + exp βi
(t) + θij

(t) 2 ; Bi
(t) = βi

(t) − 1
Ai

(t) ∑
j = 1

ni exp βi
(t) + θij

(t)

1 + exp βi
(t) + θij

(t) − Yij .

For the calculation of β, we applied the majorization-minimization algorithm proposed by 

Yu et al. (2015), which yields a stable solution and can be easily implemented.

To ensure ψ β(t) ⩾ ψ(β), we adopt Lee et al. (2016)’s one-step modification 

of β: if ψ β(t) ⩾ ψ(β), let β(t + 1) = β; otherwise, β(t + 1) = ℎβ + (1 − ℎ)β(t), where 
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ℎ = argminℎ ∈ [0, 1]ψ ℎβ + (1 − ℎ)β(t) . We will show in Proposition 1 that ℎ always exists 

and ψ(β(t)) ⩾ ψ(β(t+1)) holds over iterations.

Updating γ. Given that α = α(t+1) and β = β(t+1),

ϕ α(t + 1), β(t + 1), γ = 1
N ∑

i = 1

K
∑

j = 1

ni
log 1 + exp γi + νij

(t) − Yij γi + νij
(t) + 1

N ∑
i = 1

K
niqλ2 γi ,

where νij
(t) = Qij

Tα(t + 1) + βi
(t + 1). With a slight abuse of notation, we define a univariate 

objective function ϕi(γ) and a loss function li(γ) (i = 1, …, K) as

ϕi(γ) = ∑
j = 1

ni
log 1 + exp γ + νij

(t) − Yij γ + νij
(t)

li(γ)

+ niqλ2(γ) .

Clearly ϕ α(t + 1), β(t + 1), γ = N−1∑i = 1
K ϕi γi . Thus, it suffices to optimize K univariate 

functions ϕi(·), i = 1, …, K. Although each ϕi(γ) is nonconvex, we can find a global 

optimum of ϕi as follows. Let t = argmint ∈ ℝli(t). Since qλ2( ⋅ ) is constant outside [−λ2, λ2], 

a minimizer of ϕi(·) either lies on [−λ2, λ2] or equals to t . Hence, we propose a grid search 

approach. Let {t1, …, tT } ⊆ [−λ2, λ2], and γ i
(t + 1) = argminγ ∈ t , t1, …, tT ϕi(t).

The complete algorithm is provided in Web Appendix C. The following property is 

guaranteed by the proposed algorithm.

PROPOSITION 1: Assume that for each i, there exist j1, j2 such that Y ij1 = 0 and Y ij2 = 1. For 

any choice of α(t), β(t), and γ(t), the updated iterates α(t+1), β(t+1), and γ(t+1) by Algorithm 1 

in Web Appendix C satisfy a monotone decreasing property: ϕ(α(t), β(t), γ(t)) ⩾ ϕ(α(t+1), β(t), 

γ(t)) ⩾ ϕ(α(t+1), β(t+1), γ(t)) ⩾ ϕ(α(t+1), β(t+1), γ(t+1)).

The proof is deferred to Web Appendix A. The assumption indicates that the naïve 

prevalence rate ∑j = 1
ni Y ij/ni lies on (0, 1) for each i, which is crucial to guarantee the 

existence of the optima at each step. By Proposition 1, any limit point of {(α(t), β(t), γ(t))} 

is a stationary point if ϕ is continuous. Since the objective function ϕ is nonconvex, the 

proposed algorithm can only guarantee the convergence to a local optimum and requires 

a careful selection of the initial point. We could use the warm start strategy, where the 

solution under the previous tuning parameter is used as the initial point for the next choice of 

tuning parameter. This strategy performed well when implemented in our numerical studies. 

In addition, it is straightforward to extend the described algorithm to other (multilevel) 

generalized linear models. We can still solve α-step using an off-the-shelf package (e.g. glm 

in R), and β- and γ-steps using the same strategies.
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3.4 Choice of tuning parameter

We implement a model selection procedure to tune the choice of λ1 and λ2. We used 

the modified Bayesian information criterion (BIC) proposed in She and Owen (2011), 

BIC* λ1, λ2 = − 2N ⋅ loglik(α, β, γ ) + DF ⋅ (1 + logN). Here, loglik(α, β, γ ) is defined in (5), and 

the degrees of freedom (DF) is calculated by combining the DF calculated in the lasso and 

fused lasso regressions (Tibshirani et al., 2005; Zou et al., 2007; Tibshirani and Taylor, 

2011), where

DF = ( dimension of α) + ( #  of distinct values of β) + (
#  of nonzero values of γ) . (6)

We searched for the (λ1, λ2) among a candidate set that minimizes the BIC*(λ1, λ2).

3.5 Weighting to account for missingness and selection bias

As indicated in the previous sections, our dataset involves a large number of missing values 

for the obese indicators (Yij). Furthermore, the data may not be directly comparable to a 

national sample. We consider a two-step weighting procedure to adjust for both missing 

BMI values and selection bias.

The first step is to account for the missingness of BMI. We assume missing at random 

(MAR), where the probability of missing BMI is independent of its response conditional on 

the covariates (Little and Rubin, 2014). Let Rij = 1 if Yij is observed and Rij = 0 otherwise. 

The weight was defined as the inverse probability of observing BMI, ℙ Rij = 1 ∣ Zij, Xi , 

which can be estimated by a logistic regression. The second step is to adjust for the 

population distribution of age, sex, and race/ethnicity. We applied a post-stratification 

correction using 2012 national census data. The final weight for each subject was the 

product of the inverse probability weight and the post-stratification weight. The objective 

function and subsequent procedures are modified accordingly. Furthermore, we employed 

a bootstrap method with a first-order normal approximation (see e.g. Puth et al., 2015 and 

Efron and Tibshirani, 1994) to construct confidence intervals that account for the uncertainty 

of missingness and selection bias, where the weights and model estimates were recalculated 

for each resampled dataset. Details can be found in Web Appendix B.

4. Simulation studies

We compared the proposed method with a classic GLMM, the GLMM with a 

conditional autoregressive random effect (GLMM-CAR), and the covariate-adjusted 

spatial scan statistic proposed by Jung (2009) (Scan Statistic). The GLMM assumes 

logit pij = Zij
Tα1 + Xiα2 + ri + δ where (r1, …, rK)T ~ MVN(0, IK) is the independent 

random effect, and δ is the global intercept. The model for GLMM-CAR is 

logit pij = Zij
Tα1 + Xiα2 + bi + ri + δ, where (b1, …, bK)T ~ MVN(0, Σ) represents the 

spatially smooth random effect, and Σ enjoys the form in the CAR model proposed by Besag 

et al. (1991). We used the function S.CARmultilevel() of R package CARBayes with 

the default option to implement GLMM-CAR. We use cutoff-based approaches to identify 

outlier regions once models are fitted via GLMM and GLMM-CAR. Let r i be the predicted 
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random effect of the i-th region. The i-th region was declared as an outlier if r i > 2.5σ, 

where σ is an estimated standard deviation of ri. The cutoff of 2.5σ is a popular choice in 

the literature (She and Owen, 2011). The covariate-adjusted scan statistic method (Jung, 

2009) assumes logit pij = Zij
Tα1 + Xiα2 + I(i ∈ S)θ + δ. Here, S denotes a cluster of regions. 

For each S ∈ S, the method repeatedly fits the model and calculates the likelihood ratio test 

(LRT) statistic for testing H0 : θ = 0. Then the method selects S0 ∈ S as the hot spot if the 

corresponding LRT statistic is the largest. We also included three “oracle” versions of our 

method, where ϕ is minimized with respect to one of α, β, or γ while the other two are set to 

the true values: with respect to α (Oracle α); with respect to β (Oracle β); and with respect 

to γ (Oracle γ).

We considered K (K = 20, 40) regions where the number of subjects in each region was n 
(n = 50, 100). We generated Qij = (Zij, Xi)T, where Zij and Xi were drawn from Bernoulli 

distributions with a probability of 0.5. We set α = (α1, α2) = (−0.2, 0.2). For simplicity, 

we simulated K locations on a one-dimensional line with Si ~ Unif(5, 95), i = 1, …, K. βi 

was set to logit(0.4) if 5 ⩽ Si < 35, logit(0.5) if 35 ⩽ Si < 65, and logit(0.6) if 65 ⩽ Si ⩽ 
95. We randomly chose KO regions, where γi = 2 for ⌊K0/2⌋ regions (⌊t⌋ is the maximum 

integer no larger than t) and γi = −2 for the remaining. Thus, those KO regions with γi ≠ 0 

are the outliers. We varied the number of outliers so that KO/K = 0%, 5%, 10%, 15%. For 

each scenario, we repeatedly generated 1000 datasets. We applied different methods on each 

dataset and evaluated the performance metrics. The performance measures were averaged 

over 1000 replications. The tuning parameters were selected using the proposed modified 

BIC, among a pre-defined candidate set with λ1 ∈ [2−2, 212] and λ2 ∈ [2−5, 22].

To compare the performances in outlier detection, we used Matthews Correlation Coefficient 

(MCC), defined by

MCC = TP ⋅ TN − FP ⋅ FN
(TP + FP)(TP + FN)(TN + FP)(TN + FN) .

Here, TP stands for true positive, where the detected outlier region is indeed an outlier; 

TN stands for true negative, where the labeled normal region is normal; FP stands for 

false positive, where the detected outlier region is actually normal; and FN stands for 

false negative, where the labelled normal region is actually an outlier. A higher value of 

MCC is preferred, where MCC = 1 indicates a perfect classifier and MCC = 0 indicates 

a random guess. We evaluated the MCC on the proposed, GLMM, GLMM-CAR, Scan 

Statistic, and Oracle γ. The MCCs are presented in Figure 1. The MCC of the proposed 

method was comparable to its oracle counterpart, Oracle γ. It improved over increasing K 
and stabilized over increasing proportion of outliers. In contrast, the MCCs of the GLMM 

and GLMM-CAR decreased when either the proportion of outliers or the K increased. We 

further present the true positive rate (sensitivity) and the true negative rate (specificity) in 

the Appendix D.1 of the supplementary material. Figures S1 and S2 show that when the 

proportion of outliers increased, both GLMM and GLMM-CAR yield low sensitivities. This 

finding is consistent with existing literature, e.g, She and Owen (2011), suggesting that 

cutoff-based outlier detection may not operate well with multiple outliers, since the optimal 
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choice of the cutoffs depends on the true residual distribution that is usually unknown. The 

MCC of the Scan Statistic was around zero, even when n and K were increased, indicating 

that the Scan Statistic failed to detect multiple outlier regions. In summary, our method 

showed promising performance in identifying outliers, especially when the proportion of 

outliers was increased.

We further compared the proposed method with GLMM, GLMM-CAR, and Oracle α in 

terms of the bias of the individual-level covariate effect α1 − α1  and the community-level 

covariate effect α2 − α2 ; the empirical coverage probabilities of α1 and α2; and the root 

mean squared error (RMSE) of the region-level prevalence rates ∑i = 1
K pi − pi

2/K. Here, 

pi = E Y ij ∣ Xi  and pi is the empirical average of the estimated individual-level prevalence 

estimates, pij, taken over j = 1, …, ni. The results are presented in Table 1. The scan 

statistic was excluded from the comparison because it did not provide estimators of α and pi. 

The biases of estimating α1, the individual-level covariate effect, were close to zero in the 

proposed method, especially when both n and K increased. The confidence intervals from 

different methods were comparable. The biases of α2, the region-level covariate effect, were 

reduced as K increased in the proposed method. The performances of the proposed method 

and Oracle α were similar in terms of the biases. The slightly lower coverage of α2 by the 

proposed method when K = 20 might be due to the relatively small K for estimating a large 

number of region-level parameters (β and γ). The method achieved nominal coverage when 

K increased to 40. The RMSEs of pi were smaller in the proposed method than in the two 

GLMMs, although, as anticipated, larger compared to Oracle α.

We then compared the RMSE of β, ∑i = 1
K β i − βi

2/K, from the proposed method, GLMM-

CAR, and Oracle β. The remaining methods were not included in the comparison because 

they did not provide an estimator of β. Figure 2 shows that the RMSE of β decreased when 

n or K increased, and slightly increased with a larger proportion of outliers. The proposed 

method was comparable to Oracle β, and outperformed the GLMM-CAR. This indicates that 

the proposed method provides a good estimate of the baseline obesity rate.

In Web Appendix D.2 we report the performance of different methods when outcome Y 
could be missing. As anticipated, biases are larger in the estimated coefficients in the 

presence of missingness, but the proposed method outperformed the competitors overall.

5. Application to the PHINEX database

We considered census blockgroup as the geographic unit, and excluded certain blockgroups 

with small sample sizes, following the guidelines of Behavioral Risk Factor Surveillance 

System (CDC, 2016). The individual covariates Zij included sex, age as of 2012, race/

ethnicity, insurance status, and the region-level covariates Xi included urbanicity and 

EHI. Age was categorized into 3 groups: 2–4 years, 5–9 years, and 10–14 years. Race 

and ethnicity were combined into a single covariate, and categorized into 4 groups: 

Hispanic, non-Hispanic white, non-Hispanic black, and non-Hispanic other. Patients with 

a commercial health service payor or Medicaid were included, and a few subjects with no 
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insurance were excluded. Urbanicity, ranging from 1 to 11, was categorized into 3 groups: 

urban (1–4), suburban (5–8), or rural (9–11). We standardized EHI for numerical stability 

of the proposed algorithm. Raw-level frequencies of childhood obesity are presented in Web 

Appendix E.

The position Si was defined by a vector of the longitude and latitude of the centroid 

of the i-th block group. We constructed ρi1, i2 as the inverse of geodesic distances, 

ρi1, i2 = 1/dgeo  Si1, Si2 , where dgeo  Si1, Si2  denotes the greater circle distance between Si1
and Si2. For the i1-th region, we retained the L largest ρi1, i2s and truncated the others at 

zero, where we treated L as a tuning parameter. A grid search on λ1 ∈ [2−1, 217], λ2 ∈ [2−5, 

22] and L ∈ {3, 5, 7} was conducted to find the best combination of tuning parameters that 

maximizes BIC*. The confidence interval of each parameter was constructed using bootstrap 

over 1000 replications.

The estimated αs are summarized in Table 2. Overall, the proposed method had wider 

confidence intervals than GLMM and GLMM-CAR. This result was anticipated, given that 

our method had more parameters to estimate, which could lead to higher variabilities. The 

estimated coefficients from our model were comparable to those of GLMM and GLMM-

CAR, except for the suburban effect. The obesity rate in females was lower compared to 

males, and younger children had lower obesity rates. Obesity rates in both non-Hispanic 

white and non-Hispanic other were lower than those in non-Hispanic black and Hispanic 

patients. The obesity prevalence was higher in subjects with Medicaid compared to those 

with commercial insurance. The EHI was positively associated with the estimated obesity 

rate.

The fitted baseline obesity rates, logit−1 β i , of the proposed method are displayed in the 

upper-left part of Figure 3, which appear to coincide with empirical knowledge of the greater 

Madison area. The lowest prevalence areas included the western portion of the Madison, 

Middleton, and Verona areas. It is known that these areas were recently developed and 

expanded, and include people who are generally younger and more socioeconomically 

advantaged compared to the surrounding areas. The intermediate prevalence areas, 

comprising the greater central and eastern Madison region, are more established, historic 

areas of the region, and are known to contain more stereotypical middle-class citizens. 

The highest prevalence areas are clearly the most geographically distant from the center of 

Madison, and are also all outside of Dane county, which contains Madison.

The proposed method identified several outliers. Aberrant locations with obesity rates above 

the trend (γ i > 0) and below the trend (γ i < 0) are shown as black and yellow, respectively, in 

Figure 3. We identified 6% of blockgroups as outliers above the trend, and 8% as below the 

trend. Results are presented in Table 3, including:

• crude obesity rates, pi
crude  = 1

∑jwijI Rij = 1 ∑jwijI Rij = 1 Y ij;

• baseline obesity rates, pi
bsl = logit−1 β i ;
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• obesity rates adjusted for covariates and outliers,

pi
adj = Eγi = 0 Yij ∣ Xi = 1

∑jwijI Rij = 1 ∑
j = 1

ni
wijI Rij = 1 ⋅ logit−1 ZijT α1 + XiTα2 + βi ,

and frequencies of detections over B = 1000 bootstrap replications. We note that 

the outlier identification is relative to the fitted trend. For example, blockgroup 

212 had an ordinary level of the estimated crude obesity rate (0.180). However, 

the crude rate was much higher than the fitted value of expected obesity 

prevalence (0.085). There existed unexplained information that could contribute 

to the elevated rate. Hence, it was declared as an outlier above the trend. 

The frequency of detection based on the bootstrap provides a glimpse of the 

uncertainty of aberrance. The outlier regions above the trend tended to have 

higher frequencies than those below the trend.

The identified outliers by various methods do not fully overlap with each other, since 

the underlying mechanisms for detecting outlier regions are different. The crude method 

identifies the regions with the highest/lowest proportions without accounting for covariate 

effects. The GLMM method detects outliers based on the highest/lowest residual effects 

that do not rule out smooth regional effects. The proposed method and GLMM-CAR, on 

the other hand, declares a region as an outlier based on the residual regional effects after 

adjusting for the smooth regional effects. Unlike our method, both GLMM and GLMM-

CAR identified very few outliers: two regions by GLMM and one by GLMM-CAR. As 

noted in Section 4, this conservative behavior is as expected. A different note is that the Scan 

Statistic only identified midwestern Madison area as abnormally low.

The localized outbreaks from our model may enable comparative investigations at 

granular levels. Obesity prevalence is determined by the interplay of patient demographic 

characteristics, behaviors, and community environmental factors. Our model has accounted 

for only a subset of them. Outliers could represent communities with meaningfully different 

environments than expected (e.g. much better or worse than average access to grocery 

stores, parks, etc), and/or it could represent community members with behaviors that are 

substantially different than expected (e.g. much greater or less physical activity, substantially 

better or worse dietary habits, etc.). Based on our results, healthcare professionals could look 

into risk factors within the outliers and compare these factors to adjacent blockgroups.

6. Concluding remarks

Motivated by childhood obesity surveillance using routinely collected EHR data, we 

developed a multilevel penalized logistic regression model, where the fusion and the 

nonconvex sparsity penalties are incorporated for simultaneous regional smoothing and 

outlier detection. While we only considered spatial surveillance, we are interested in 

generalizing the method to a longitudinal data setup for spatiotemporal surveillance.

In our paper, we assume that BMI is MAR, which is not testable in observational data. 

The feasibility of MAR for EHR data is an active area of research (Snyder et al., 2018). 
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In the future, we can develop sensitivity analysis techniques that investigate sensitivity 

of the results to uncontrolled confounding (Greenland, 2004). Another future direction is 

to develop principled inferential procedures for the proposed work. We could potentially 

use ideas from inferential procedures for penalized generalized linear models (Taylor and 

Tibshirani, 2018).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
MCC, varying the number of outliers over 1000 replications.
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Figure 2. 
RMSE of β, varying the number of outliers over 1000 replications.
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Figure 3. 
Estimated baseline prevalence rates and the identified outliers in childhood obesity 

surveillance. Each polygon represents a census blockgroup. Top-left: Result from the 

proposed method. Outliers are marked as black (yellow) as above the trend, γ i > 0 (below 

the trend, γ i < 0). Top-right: Result from the GLMM. Outliers are marked as black (yellow) 

as above the trend, r i > 2.5σ (below the trend, r i < 2.5σ). Bottom-left: Result from the 

GLMM-CAR. Outliers are marked in the same manner with the GLMM. Bottom-right: 

Discovered cluster by the Scan Statistic with the highest likelihood ratio, which was below 

the trend.
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Table 1

Biases (± standard errors) and empirical coverage probabilities of α1 and α2, RMSE of pi i = 1
K , over 1000 

replications, varying the proportion of true outlier regions (KO/K).

KO/K Method

n = 50 per region n = 100 per region

α1 α2 RMSE of 
pi

α1 α2 RMSE of 
piBias CP Bias CP Bias CP Bias CP

K = 20 regions

Proposed −.004 ± 
.008 .942 .002 ± .011 .909 .053 .003 ± .006 .950 −.011 ± 

.009 .871 .040

0% GLMM −.004 ± 
.008 .950 −.008 ± 

.013 .809 .057 .003 ± .006 .951 −.013 ± 
.011 .684 .044

GLMM-
CAR

−.004 ± 
.008 .957 −.013 ± 

.011 .943 .052 .002 ± .006 .956 −.014 ± 
.009 .956 .038

Oracle α −.002 ± 
.007 .948 .003 ± .006 .958 .016 .003 ± .005 .953 −.003 ± 

.005 .953 .011

Proposed −.006 ± 
.008 .949 −.004 ± 

.012 .931 .054 .002 ± .006 .957 −.010 ± 
.010 .898 .041

5% GLMM −.006 ± 
.008 .951 −.013 ± 

.016 .663 .062 .001 ± .006 .953 −.026 ± 
.017 .465 .046

GLMM-
CAR

−.003 ± 
.008 .955 −.013 ± 

.016 .912 .062 .001 ± .006 .951 −.017 ± 
.015 .940 .045

Oracle α −.003 ± 
.007 .944 .006 ± .006 .959 .016 .003 ± .005 .953 −.003 ± 

.005 .945 .011

Proposed −.003 ± 
.008 .936 −.002 ± 

.013 .943 .055 .004 ± .006 .950 −.011 ± 
.010 .918 .041

10% GLMM −.003 ± 
.008 .936 −.012 ± 

.020 .608 .063 .003 ± .006 .951 −.025 ± 
.020 .466 .046

GLMM-
CAR

−.005 ± 
.008 .951 .002 ± .019 .920 .063 .002 ± .006 .956 −.006 ± 

.019 .934 .046

Oracle α −.001 ± 
.007 .943 .005 ± .007 .961 .016 .003 ± .005 .953 −.004 ± 

.005 .951 .011

Proposed −.001 ± 
.009 .937 −.003 ± 

.014 .947 .056 .003 ± .006 .961 −.010 ± 
.010 .907 .041

15% GLMM −.002 ± 
.009 .930 −.012 ± 

.023 .545 .063 .002 ± .006 .956 −.025 ± 
.023 .400 .046

GLMM-
CAR

−.005 ± 
.008 .948 .010 ± .023 .911 .063 .002 ± .006 .955 .002 ± .023 .924 .046

Oracle α .001 ± .007 .950 .005 ± .007 .954 .016 .002 ± .005 .956 −.004 ± 
.005 .940 .011

K = 40 regions

Proposed −.004 ± 
.006 .948 .010 ± .007 .919 .043 −.000 ± 

.004 .946 −.002 ± 
.005 .923 .033

0% GLMM −.004 ± 
.006 .948 .004 ± .009 .804 .055 −.001 ± 

.004 .950 −.003 ± 
.008 .683 .043

GLMM-
CAR

−.003 ± 
.006 .943 .002 ± .007 .961 .047 −.001 ± 

.004 .949 −.001 ± 
.005 .983 .035

Oracle α −.005 ± 
.005 .953 .005 ± .005 .950 .012 .000 ± .003 .950 −.001 ± 

.003 .939 .008

Proposed −.003 ± 
.006 .938 .010 ± .008 .948 .045 −.000 ± 

.004 .950 .000 ± .005 .942 .033
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KO/K Method

n = 50 per region n = 100 per region

α1 α2 RMSE of 
pi

α1 α2 RMSE of 
piBias CP Bias CP Bias CP Bias CP

5% GLMM −.004 ± 
.006 .934 .005 ± .011 .639 .061 −.001 ± 

.004 .950 −.001 ± 
.011 .507 .046

GLMM-
CAR

−.004 ± 
.006 .948 .002 ± .010 .947 .059 −.000 ± 

.004 .945 −.004 ± 
.010 .944 .044

Oracle α −.004 ± 
.005 .948 .004 ± .005 .938 .012 .000 ± .003 .951 −.000 ± 

.003 .932 .008

Proposed −.006 ± 
.006 .941 .011 ± .008 .963 .046 −.001 ± 

.004 .943 .003 ± .006 .950 .034

10% GLMM −.006 ± 
.006 .941 .004 ± .014 .589 .062 −.002 ± 

.004 .943 −.003 ± 
.014 .423 .046

GLMM-
CAR

−.004 ± 
.006 .949 −.002 ± 

.013 .944 .062 −.002 ± 
.004 .943 −.007 ± 

.013 .943 .045

Oracle α −.006 ± 
.005 .951 .006 ± .005 .935 .012 −.001 ± 

.003 .950 .000 ± .003 .946 .008

Proposed −.007 ± 
.006 .945 .010 ± .008 .966 .047 .000 ± .004 .947 .001 ± .006 .951 .035

15% GLMM −.006 ± 
.006 .948 .006 ± .016 .512 .063 −.001 ± 

.004 .949 .005 ± .017 .383 .046

GLMM-
CAR

−.004 ± 
.006 .950 −.002 ± 

.016 .950 .063 −.001 ± 
.004 .945 −.005 ± 

.016 .945 .045

Oracle α −.006 ± 
.005 .950 .005 ± .005 .948 .012 .000 ± .003 .952 −.000 ± 

.003 .955 .008
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Table 2

Fitted coefficients and confidence intervals (in parentheses) for covariate effects.

Model

Proposed GLMM GLMM-CAR

Individual-level covariates

 Sex (Base: Female)

 ~ Male .235 (.123, .347) .226 (.147, .305) .227 (.182, .274)

 Age at 2012 (Base: Pre-school)

 ~ School-aged .568 (.449, .687) .562 (.448, .675) .558 (.489, .629)

 ~ Adolescent .875 (.773, .977) .869 (.757, .981) .864 (.798, .930)

 Race/Ethnicity (Base: White, non-Hispanic)

 ~ Black, non-Hispanic .437 (.269, .605) .434 (.315, .553) .440 (.360, .519)

 ~ Other, non-Hispanic .035 (−.198, .269) .042 (−.107, .191) .054 (−.061, .166)

 ~ Hispanic .680 (.538, .822) .667 (.556, .779) .672 (.609, .734)

 Insurance status (Base: Commercial)

 ~ Medicaid .522 (.417, .627) .509 (.408, .611) .509 (.452, .567)

Community-level covariates

 Urbanicity (Base: Urban)

 ~ Suburban −.134 (−.217, −.051) .037 (−.058, .132) −.030 (−.071, .106)

 ~ Rural .125 (−.011, .262) .237 (.095, .379) .090 (−.084, .279)

 Economic Hardship Index (standardized) .120 (.083, .156) .143 (.105, .181) .096 (.044, .149)
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Table 3

The anonymized IDs of the outlier blockgroups identified by the proposed method, their sample sizes, crude 

obesity rates, fitted baseline obesity rates, adjusted obesity rates, and frequencies of detections over B=1000 

bootstrap replications.

Blockgroup ID Unweighted 
sample size (ni)

Crude obesity 

rate pi
crude 

Fitted baseline obesity 

rate pi
bsl

Fitted adjusted obesity 

rate pi
adj

Frequency of detection 
∑iI γ i ≠ 0 /B

Above the trend

7 60 .432 .097 (.061, .150) .264 (.153, .351) .701

23 91 .234 .048 (.042, .057) .129 (.110, .167) .483

24 93 .206 .048 (.042, .057) .113 (.095, .128) .515

25 104 .207 .048 (.042, .057) .115 (.094, .139) .496

83 96 .291 .058 (.047, .064) .174 (.133, .179) .689

85 91 .356 .058 (.047, .064) .187 (.139, .196) .895

100 62 .288 .058 (.047, .064) .149 (.117, .155) .763

102 53 .335 .058 (.047, .064) .217 (.147, .246) .579

124 66 .207 .058 (.047, .064) .117 (.090, .136) .535

200 93 .218 .058 (.047, .064) .133 (.102, .151) .474

212 100 .180 .048 (.042, .057) .085 (.076, .094) .634

244 71 .203 .053 (.044, .064) .121 (.096, .135) .446

245 94 .248 .053 (.044, .064) .148 (.105, .184) .573

252 68 .278 .056 (.046, .073) .148 (.108, .179) .706

254 82 .204 .058 (.048, .071) .103 (.080, .111) .698

264 74 .257 .048 (.042, .057) .130 (.092, .157) .726

Below the trend

22 110 .063 .048 (.042, .057) .123 (.109, .151) .363

32 221 .045 .048 (.042, .057) .092 (.080, .101) .079

35 146 .067 .048 (.042, .057) .126 (.109, .151) .300

70 67 .168 .058 (.047, .064) .283 (.203, .292) .269

73 109 .175 .058 (.047, .064) .273 (.202, .279) .136

82 259 .173 .058 (.047, .064) .329 (.209, .342) .106

94 134 .105 .058 (.047, .064) .198 (.159, .210) .383

115 68 .061 .058 (.047, .064) .157 (.120, .161) .468

118 192 .141 .058 (.047, .064) .248 (.155, .253) .062

125 81 .047 .058 (.047, .064) .115 (.091, .115) .277

127 295 .051 .058 (.047, .064) .114 (.094, .121) .195

128 125 .054 .058 (.047, .064) .154 (.122, .175) .698

136 466 .038 .048 (.042, .057) .114 (.100, .132) .684

153 469 .045 .048 (.042, .057) .095 (.085, .103) .047

159 202 .081 .058 (.047, .064) .158 (.130, .176) .345

168 139 .117 .056 (.046, .071) .221 (.169, .247) .418

186 66 .097 .058 (.047, .064) .167 (.118, .184) .204

229 133 .139 .077 (.048, .127) .299 (.189, .395) .599
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Blockgroup ID Unweighted 
sample size (ni)

Crude obesity 

rate pi
crude 

Fitted baseline obesity 

rate pi
bsl

Fitted adjusted obesity 

rate pi
adj

Frequency of detection 
∑iI γ i ≠ 0 /B

235 61 .139 .077 (.048, .127) .235 (.139, .312) .365

246 210 .060 .053 (.044, .064) .138 (.106, .158) .283

262 90 .076 .081 (.050, .114) .189 (.116, .237) .459
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