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Abstract: Currently, the efficacy of antibiotics is severely affected by the emergence of the antimicro-
bial resistance phenomenon, leading to increased morbidity and mortality worldwide. Multidrug-
resistant pathogens are found not only in hospital settings, but also in the community, and are
considered one of the biggest public health concerns. The main mechanisms by which bacteria
develop resistance to antibiotics include changes in the drug target, prevention of entering the cell,
elimination through efflux pumps or inactivation of drugs. A better understanding and prediction of
resistance patterns of a pathogen will lead to a better selection of active antibiotics for the treatment
of multidrug-resistant infections.

Keywords: antibiotic resistance; multidrug-resistant bacteria; mechanism of resistance; persistence;
biofilms; antibiotherapy

1. Introduction

The clinical use of antibiotics started at the beginning of the 20th century, when ar-
sphenamine, a toxic organoarsenic compound, was used in syphilis treatment. Until 1938,
when penicillin was introduced in therapy, arsphenamine had been the appropriate op-
tion for this pathology [1]. Despite the use of arsphenamine, the antibiotherapy era had
started in 1936 when sulfonamides (inhibitors of dihydropteroate synthetase) were used
for the first time in therapy [2]. During the golden era (1936–1975), many classes of an-
tibiotics with different spectra of activity and mechanisms of action were discovered. This
was the most fruitful period in the history of antibiotics with high significance for clinical
use (β-lactams—1938, aminoglycosides—1946, tetracyclines—1948, amphenichols—1949,
polymyxins—1950, macrolides—1951, nitrofurans—1953, quinolones and trimetoprim—
1962, lincosamides and ansamycins—1963, cephalosporins—1964, streptogramins—1965,
phosphonates—1971, etc.) (Figure 1). Unfortunately, shortly after their first use in therapy,
clinicians discovered a pressing problem, the lack of antibiotic efficacy. This inefficiency
of the antimicrobial drug against the growth and multiplication of microorganisms was
named antimicrobial resistance (AMR) [3]. Thus, from the beginning of the widespread
use of penicillin, its discoverer, Sir Alexander Fleming, warned of the risk of its uncon-
trolled use leading to AMR. In fact, after only one year of use, the first cases of infec-
tions with penicillin resistance, Staphylococcus aureus, were observed [4]. In this context,
it was necessary to intensify the research in the field, and the medicinal chemistry era
(1975–2000) started. The research was conducted to obtain synthetic compounds with
broad spectrum (carbapenems and mupirocin—1985, monobactams—1986, oxazolidinones—
2000, lipopeptides—2003) [5]. During the last two decades, novel classes of antibiotics
have been discovered (pleuromutilins—2007, macrolactones—2011, diarylquinolines—2012,
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catechol-substituted siderophores—2019) [2,5–7]. Simultaneously, other molecules from older
classes were introduced in clinical use: cephalosporins (ceftaroline—2010), aminoglycosides
(plazomicin—2018), tetracyclines (eravacycline—2018), beta-lactam/beta-lactamase inhibitor
(ceftolozane/tazobactam—2014, ceftazidime/avibactam—2015, meropenem/vaborbactam—
2017, and cilastatin-imipenem/relebactam—2019). Their activity is predominant against
Gram-negative bacteria and they can be used when bacteria is resistant to third-generation
cephalosporines or to carbapenems (Figure 1) [7].
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Figure 1. The evolution of antibiotics discovery and their resistance (MRSA—methicillin-resistant
Staphylococcus aureus, PDR—pan-drug-resistant, VRE—vancomycin-resistant enterococci, VRSA—
vancomycin-resistant Staphylococcus aureus, XDR—extensively drug-resistant) [2,5,6,8].

Among the factors that led to the emergence of AMR, the following can be listed:
(a) biological factors represented mainly by bacterial evolution and genetic mutations;
(b) excessive and abusive use of antibiotics; (c) extensive use of antibiotics in agriculture
(in animal or fish feed, in water for the prevention of infections or for the treatment of sick
animals); (d) increase of the population income (which generates a direct increase in the
consumption of antibiotics, and also indirectly as a result of the increase in consumption
of contaminated meat); (e) the possibility of travel or transport of consumer goods allows
the spread of microorganisms; (f) incomplete information on the phenomenon of AMR,
including statistics on the consumption of antibiotics; (g) lack of information released to the
public regarding the correct administration of antibiotics and the risks of misuse; (h) lack
of adequate measures adopted by authorities (such as infection management, ensuring
optimal conditions in health facilities) [3,9,10]. In addition to the above mentioned, there
are several factors that discourage drug manufacturers from investing sufficient funds to
develop new antibiotics, leading them to focus their research on the drug classes used to
treat chronic diseases. Thus, the following could be mentioned: high costs for research and
development of new molecules, the long time required for their authorization, the risk that
the antibiotic will soon become ineffective, strict legislation and strict price control [10,11].

Therefore, AMR is a major problem for any health system, with a slow but con-
stant evolution [12] and with multiple implications from a medical, social and economic
point of view [3]. The direct consequences of AMR on the patient are the aggravation of
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pathologies, the compromise of the patient’s immune system, the appearance of various
complications and even therapeutic ineffectiveness. At the level of the health system, AMR
generates an increase in healthcare costs due to prolonged hospitalization, the need for
additional monitoring or more expensive medication. AMR can also reduce the chance
of successful medical procedures (such as surgery, antitumor chemotherapy or organ
transplantation) or therapeutic success in vulnerable patients (such as diabetic, asthmatic,
rheumatic patients, etc.). Last but not least, the social system is influenced by AMR by
increasing the costs of declining productivity, the onset of disability and increasing pa-
tient mortality [3,10,13], with around 4.95 million deaths worldwide [14] among which
30,000 are in Europe [15]. Such severe consequences have been reported in infections with
methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant Gram-negative bac-
teria (Enterobacter spp., Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, etc.),
but also in tuberculosis, gonorrhea, candidiasis and typhoid fever [3,16].

Given the current epidemiological context dominated by the COVID-19 pandemic,
the use of antibiotics for the treatment of bacterial infections associated with coronavirus
SARS-CoV-2 [17] should also be considered. Numerous studies have shown an increased
prevalence of multidrug-resistant bacterial infections or even fungal infections during the
COVID-19 pandemic [13]. Thus, an abusive and excessive consumption of antibiotics was
reported, which led to an increased risk of AMR phenomenon, but also of the occurrence of
side effects [13,18,19]. During the COVID-19 pandemic, in order for the use of antibiotics
in patients infected with the SARS-CoV-2 virus to be rational, the WHO developed a
guideline that antibiotics are recommended only in severe cases of COVID-19, in which
case therapy should be reevaluated daily. In these cases, antibiotics will be used only on
the basis of clinical diagnosis, local epidemiology, and susceptibility data. It is also stated
that empirical therapy should not last more than 5–7 days, and it should be confirmed
by clinical evaluation and the results of microbiological tests. The WHO notes that the
use of antibiotics can also lead to infections with Clostridium difficile, while unjustified use
leads to AMR and multidrug-resistant bacteria which increase the number of deaths among
COVID-19 patients [9].

Considering all these aspects, the aim of this review is to summarize the main mecha-
nisms of bacterial resistance to antibiotics and to discuss potential therapeutic options for
infections caused by MDR bacteria.

2. Mechanisms of Action and Antibiotic Resistance of Microorganisms

The mechanisms by which antibiotics act against microorganisms are: inhibition of
bacterial cell wall synthesis, alteration of the bacterial cell membrane, inhibition of the
protein synthesis, inhibition of nucleic acids’ synthesis (Figure 2).

Figure 2 summarizes the variety of mechanisms responsible for antibiotic activity [20,21]
and Table 1 presents the main classes of antibiotics according to their mechanisms of action.

With the introduction of the first antibiotics in therapy, the problem of treating bacterial
infections was considered solved, but it soon became clear that bacteria, both Gram-positive
and Gram-negative, were able to develop mechanisms of resistance to more and more
antibacterial drugs. The increased use of antibiotics has led to the rapid emergence and
expansion of the resistance of pathogenic strains. Microorganisms are undergoing more and
more mutations, so they manage to survive the action of many antibiotics used currently in
therapy. At this rate, bacteria will also acquire resistance to newly approved antibiotics or
to those in the research and development phase.
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Table 1. Classification of antibiotics according to their mechanisms of action.

Mechanism of Action Antibiotic Class Reference

Inhibition of bacterial cell wall synthesis

Penicillins
Cephalosporins
Monobactams
Carbapenems
Glicopeptides
Polypeptides

[21,25,26]

Depolarization of the bacterial cell membrane Lipopeptides antibiotics [27]

Inhibition of protein synthesis:
Binding to 30S ribosomal subunits

Aminoglycosides
Tetracyclines [28,29]

Inhibition of protein synthesis:
Binding to 50S ribosomal subunits

Macrolides
Amphenicols
Lincosamides

Streptogramins
Oxazolidindiones

[30–32]

Inhibition of DNA synthesis
Quinolones

Fluoroquinolones
Nitroimidazoles

[33]

Inhibition of RNA synthesis Rifamycins [34]

Resistance can be achieved through multiple and complex mechanisms, such as
mutations, absorption of exogenous genes, horizontal transfer from other bacterial strains or
triggering of a genetic cascade, thus inducing the expression of resistance mechanisms [35].
Microorganisms can also develop resistance through mechanisms that have an impact on
the pharmacokinetics and pharmacodynamics of a drug substance, such as: limiting the
absorption into the bacterial cell, modifying the drug target site, inactivating of a drug or its
active efflux. These mechanisms of resistance may be native characteristics of some species
or may be acquired from other microorganisms, and the elucidation of these mechanisms
may lead to more effective treatment options for infectious diseases and the development
of novel antimicrobial drugs [20].
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With the discovery of antibiotics, the continuous pressure of drug-induced selection
led to the emergence of microorganisms known as superbugs that are resistant to multiple
drugs, such as multidrug-resistant (MDR), extensively drug-resistant (XDR) or pan-drug-
resistant (PDR), etc. [20].

Microorganisms that have developed MDR are generally extremely dangerous microbial
species with significant pathogenicity, among which are ESKAPE bacteria (Enterococcus faecium,
methicillin-resistant Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa and Enterobacter species), Mycobacterium tuberculosis, extended spectrum
beta-lactamases (ESBL)-producing bacteria and vancomycin-resistant enterococci (VRE) [36–40].

Antibiotic resistance of microorganisms can be intrinsic or acquired; it is the result of
complex factors among which are genes that act directly or indirectly to block the activity
of antibiotics. Often, resistant strains can act through several mechanisms, resulting in
combinatorial resistance, which ultimately complicates clinical therapy. The existence of
precursor or proto-resistance genes has given rise to all highly effective elements that result
in the resistance of the microorganism [41,42].

Susceptibility and resistance are assessed in relation to the minimum inhibitory con-
centration (MIC). If the MIC value for a species is high, bacteria is considered to have
intrinsic resistance to that drug. In addition, bacteria can acquire resistance genes from
other related microorganisms, and the level of resistance will vary depending on the species
and the genes acquired [43–45].

The main mechanisms of resistance to antibiotics are (Table 2):
(1) Antibiotic inactivation through the production of specific enzymes: inactivation

occurs through the activity of the enzymes produced by bacteria that disorganize and break
the specific bonds of the molecule of the antibiotic, making it inefficient. These enzymes are:
β-lactamases, ESBL, etc. [46]. These β-lactamases-producing bacteria are a typical source of
nosocomial infections, which can vary from uncomplicated urinary tract infections (UTIs)
to serious problems like sepsis [47–49];

(2) Variations in the permeability of the membrane through which the antibiotic is
prevented from entering the cell membrane by regulating porin expression. For example,
P. aeruginosa strains could become resistant to imipenem due to the loss of OprD porin,
necessary for antibiotic penetration through the cell membrane [50,51];

(3) Elimination through efflux pumps, which prevents the accumulation of the an-
tibiotic in the intracellular environment so that it does not reach levels of intracellular
concentration that can kill the bacterial cell. Efflux pumps can eliminate a broad range
of compounds that can be toxic to the microorganism, which is why they have also been
named multidrug efflux pumps. These proteins have an important contribution to the
establishment of resistance to many drugs and can occur in several bacteria. Bacterial
resistance mediated by efflux pumps is associated with many classes of antibiotics, such as
tetracyclines, fluoroquinolones, aminoglycosides, etc. [52,53];

(4) Modification of the target site: the bacteria modify the conformation of the target
or prevent the binding of the antibiotic to its site of action. Some resistant bacteria avoid
antibiotics through the reprogramming or camouflage of target sites, in order to escape
from being recognized by these substances. Thus, even if the intact and active antimicrobial
compound is present in the intracellular medium, no further binding or inhibition will take
place. For example, in Staphylococcus aureus there is a diminished affinity of the antibiotic
for penicillin-binding proteins (PBP) due to alteration of the protein-binding site, so that
the bacteria continue to grow and to multiply even at large antibiotic concentrations [54].
This mechanism of resistance is also employed during [55–57]:

- Modification of PBP, which leads to a decreased affinity of beta-lactam antibiotics
(methicillin-resistant Staphylococcus aureus, Streptococcus pneumoniae, group A Streptococcus,
Listeria monocytogenes, Neisseria gonorrhoeae);

- Modifications in the structure of peptidoglycan and in the thickness of the cell wall resulting
in diminished activity of vancomycin (vancomycin-resistant Staphylococcus aureus, VRSA);
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- Alteration of the D-Ala-D-Ala ligase (vancomycin-resistant Enterococcus faecium and
Enterococcus faecalis);

- Modifications of the DNA-gyrase subunits which led to decreased activity of fluo-
roquinolones: thus, many Gram-negative bacteria have developed resistance to this
class of antibiotics;

- Modification of topoisomerase IV subunits that reduce the activity of fluoroquinolones
(many Gram-positive bacteria, especially Staphylococcus aureus and Streptococcus pneumoniae);

- Alteration of the RNA polymerase, leading to a reduction in the activity of rifampicin
activity against Mycobacterium tuberculosis;

- Modification of 16S ribosomal rRNA or ribosomal proteins: Mycobacterium spp.

Through various mechanisms, microorganisms can develop resistance to antibiotics,
which often leads to the ineffectiveness of the antibiotic. Thus, there are two important
types of resistance mechanisms: (1) intrinsic/natural resistance; (2) acquired resistance
(Figure 3).

Table 2. Main mechanisms of bacterial resistance to different classes of antibiotics.

Mechanism of Resistance Classes/Examples References

Altered target

PBP Beta-lactams:
Penicillins, Cephalosporins, Carbapenems, Monobactams [58–60]

Peptidoglycan biosynthesis
(D-Ala-D-Ala ligase)

Glycopeptides:
Vancomycin, Teicoplanin [61,62]

Overproduction of capsular
polysaccharide

Cationic peptides:
Colistin, Polymyxin E [63,64]

Lipopolysaccharides from bacterial
outer membrane

Cationic peptides:
Colistin, Polymyxin E [63,64]

Ribosomal subunit

Aminoglycosides:
Amikacin, Gentamicin, Kanamycin, Spectinomycin, Streptomycin,

Tobramycin
[65,66]

Macrolides:
Erythromycin, Clarithromycin, Azithromycin [67,68]

Tetracyclines:
Tetracycline, Doxycycline, Minocycline, Tigecycline [69,70]

Streptogramins:
Quinupristin and dalfopristin [30]

Oxazolidinones:
Linezolid [71]

Lincosamides:
Clindamycin [72,73]

DNA gyrase Fluoroquinolones:
Ciprofloxacin, Ofloxacin, Levofloxacin, Sparfloxacin [72,74]

RNA polymerase Rifamycins:
Rifampin [72,75]

Folate inhibitors
Folate inhibitors:
Trimethoprim
Sulfonamides

[76,77]
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Table 2. Cont.

Mechanism of Resistance Classes/Examples References

Efflux pumps Reduction of antibiotic absorption

Aminoglycosides:
Amikacin, Gentamicin, Kanamycin, Spectinomycin, Streptomycin,

Tobramycin
[65,66]

Beta-lactams:
Penicillins, Cephalosporins, Carbapenems, Monobactams [58–60]

Tetracyclines:
Tetracycline, Doxycycline, Minocycline, Tigecycline [69,70]

Streptogramines:
Quinupristin and Dalfopristin [30,72]

Oxazolidinones:
Linezolid [71]

Lincosamides:
Clindamycin [72,73]

Fluoroquinolones:
Ciprofloxacin, Ofloxacin, Levofloxacin, Sparfloxacin [72,74]

Folate inhibitors:
Trimethoprim
Sulfonamides

[76,77]

Macrolides:
Erythromycin, Clarithromycin, Azithromycin [67,68]

Cationic peptides:
Colistin, Polymyxin E [63,64]

Rifamycins:
Rifampicin [72,75]

Enzymes

Hydrolysis

Beta-lactams:
Penicillins, Cephalosporins, Carbapenems, Monobactams [58–60]

Macrolides:
Erythromycin, Clarithromycin, Azithromycin [67,68]

Acetylation

Amoglycosides:
Amikacin, Gentamicin, Kanamycin, Spectinomycin, Streptomycin,

Tobramycin
[65,66]

Fluoroquinolones:
Ciprofloxacin, Ofloxacin, Levofloxacin, Sparfloxacin [72,74]

Streptogramines:
Quinupristin and Dalfopristin [30,72]

Carbon-Oxygen lyase Streptogramines:
Quinupristin and Dalfopristin [30,72]

Phosphorylation

Lincosamides:
Clindamycin [72,73]

Macrolides:
Erythromycin, Clarithromycin, Azithromycin [67,68]

Aminoglycosides:
Amikacin, Gentamicin, Kanamycin, Spectinomycin, Streptomycin,

Tobramycin
[65,66]

Glycosylation Macrolides:
Erythromycin, Clarithromycin, Azithromycin [67,68]

Nucleotidylation

Lincosamides:
Clindamycin [72,73]

Aminoglycosides:
Amikacin, Gentamicin, Kanamycin, Spectinomycin, Streptomycin,

Tobramycin
[65,66]

Hydroxylation
(under FAD-requiring monooxygenases

TetX and TetX2,)

Tetracyclines:
Tetracycline, Doxycycline, Minocycline, Tigecycline [69,70,78]
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2.1. Intrinsic Resistance of Microorganisms

The natural resistance of microorganisms to various medicinal agents can be intrinsic
(always expressed within the species) or induced (genes occur naturally in bacteria, but are
expressed only after exposure to an antibiotic).

Intrinsic resistance is a feature controlled by the bacterial genome and represents a
species characteristic. It does not depend on the contact with a specific antibiotic and is not
triggered by horizontal gene transfer [81].

Certain bacterial species can acquire tolerance to a drug or class of antibiotics due to
their structure and functional properties [82].

The most common mechanisms responsible for the intrinsic resistance are: reduced
outer membrane permeability of Gram-negative bacteria and the natural activity of efflux
pumps [83].

This characteristic of the species can be called “insensitivity” because it appears in
organisms that have never been sensitive to a specific therapeutic agent. This natural
insensitivity may be a result of different causes, such as [84,85]:

- Absence of antibiotic affinity for the bacterial target;
- Reduced drug uptake into the bacterial cell;
- Extrusion of the drug by chromosomally encoded active carriers;
- Biosynthesis of specific enzymes able to inactivate the antibiotic.

Due to the structural differences of bacteria, especially regarding membranes (Gram-
positive or Gram-negative), there are differences in their types of mechanisms of resistance,
as follows: Gram-negative bacteria use all four main mechanisms mentioned above, while
in the case of Gram-positive bacteria, due to their lack of the phospholipid outer membrane,
they do not have the ability to develop certain types of drug efflux mechanisms [86,87].

Currently, the prevalence of infections caused by Gram-negative bacteria is increasing
at a dangerous rate, these infections often being difficult to treat due to the intrinsic
resistance of Gram-negative pathogens that greatly reduces therapeutic options [79]. The
mechanisms presented are additional to the genetic inheritance which may contribute to an
increased level of intrinsic resistance. By combining these elements, intrinsic resistance has
been defined more precisely and it is increasingly accepted that this phenomenon is much
more complex [50].

As previously shown, all microorganisms have their own elements that contribute
to the formation of a phenotype characteristic of developing a certain susceptibility to
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antibiotics, known as intrinsic resistance “resistoma”. The appearance of mutations between
these elements determines that some bacteria are more vulnerable to antibiotics, while for
others a greater resistance is achieved. However, the acquisition of a phenotype that is
more resistant does not always involve a genetic change, either due to mutation or as a
consequence of the acquisition of a resistance gene by horizontal gene transfer. Phenotypic
resistance, which cannot be inherited, can be acquired through various processes including
the emergence and development of microbial biofilms, adaptation to different reproductive
pathways and the development of persistence [81].

In therapeutic practice, it is important to know the intrinsic resistance of a microbe
in order to avoid therapies that can be inefficient. For some bacterial pathogens (e.g.,
Pseudomonas aeruginosa, Mycobacterium tuberculosis) that are by nature resistant to a large
number of antimicrobial substances, there is a limited range of therapeutic options and this
further escalates the risk of acquired resistance [83].

Intrinsic bacterial resistance was reported for several microorganisms. Among anaero-
bic bacteria, this phenomenon was observed for: Sutterella wadsworthensis, Fusobacterium spp.,
Clostridium spp., Prevotella spp., Bilophila wadsworthia, Bacteroides spp. Their natural resis-
tance against aminoglycosides, many β-lactams, quinolones, metronidazole, imipenem,
ampicillin-sulbactam and piperacillin-tazobactam can be explained by various mechanisms,
such as: inhibition of aminoglycosides uptake determined by the absence of oxidative
metabolism or the incapacity to generate the active form of the drug through anaerobic
reduction reaction [88–92].

Gram-positive bacteria can produce broad spectrum β-lactamases, a group of bacterial
enzymes that can inactivate by enzymatic hydrolysis even third-generation cephalosporins
and aztreonam [93].

The acquisition of genetic elements is considered the main mechanism associated
with cephalosporin resistance in Listeria monocytogenes. Other AMR mechanisms such as
horizontal gene transfer, susceptibility to environmental stressors, biofilm formation, the
presence of persistent cells and efflux pumps are related to L. monocytogenes resistance to
some antibiotics, including fluoroquinolones [94].

The existence of AMR genes in lactic acid bacteria (Lactobacillus spp., Lactococcus spp.,
Leuconostoc spp. and Pediococcus spp.) as well as their capacity to transfer to other mi-
croorganisms is one of the mechanisms related to natural resistance to aminoglycosides
(gentamicin, kanamycin, streptomycin and neomycin), ciprofloxacin and trimethoprim.
Whole-genome sequencing probably allows the identification of all possible genetic determi-
nants of antimicrobial resistance in a microbial genome. Lack of suitable cell wall precursor
molecules prevents vancomycin from binding and inhibiting cell wall synthesis [95,96].

The mechanism of AMR in Gram-negative bacteria arises from the expression of an-
tibiotic inactivation enzymes and non-enzymatic pathways from the increase of intrinsic
resistance due to chromosomal gene mutations or acquired genetic material that carries
resistance genes [97,98]. The presence of chromosomal mutations (rplD, rplV and 23S
rRNA), ten macrolide resistance genes (MRG) and efflux pump overexpression determined
the resistance of E. coli to macrolides [99,100]. Klebsiella spp. have shown natural resis-
tance to ampicillin, cephalosporins and carbapenems. These bacteria produce enzymes
(beta-lactamases) that inactivate the drug before it can reach the PBPs. The resistance
is related to the emergence of the blaSCO-1 gene, which mediates the production of
class A carbenicillinase-like enzymes, mediated by plasmids of unknown origin, capa-
ble of hydrolyzing not only penicillins but also, to a lesser extent, cephalosporins and
carbapenems [101,102].

The intrinsic mechanisms underlying AMR predominate through the natural genes
found in the host chromosome, such as the multiresistant efflux systems of Gram-negative
bacteria being involved in rendering Serratia marcescens resistant to ampicillin, macrolides
and first-generation cephalosporins [103–105]. Stenotrophomonas maltophilia is able to pro-
duce enzymes (aminoglycoside acetyltransferases, beta-lactamases) that inactivate the
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antibiotic before it reaches its target. Other mechanisms involve efflux pumps. In addition,
these strains may develop multidrug resistance [106,107].

In the case of Acinetobacter spp., the microbial genes that cause AMR overexpress efflux
pumps or synthetize β-lactamases and the species are characterized by low membrane per-
meability; within the genus, over 210 β-lactamases have been identified. These enzymes are
serine hydrolases of class D according to the Ambler classification of β-lactamases (named
oxacylinase-OXA-enzymes). Acinetobacter spp. possess natural resistance to ampicillin,
oxacillin and glycopeptides [108–111].

For Enterococcus spp., inhibition of aminoglycoside uptake is determined by the ab-
sence of oxidative metabolism. Their resistance to all cephalosporins is linked to the lack of
PBPs that effectively bind and are inhibited by these beta-lactam antibiotics [112]. Resis-
tance to lincosamides in Enterococcus spp. is due to the plasmids that carry the antimicrobial
resistance genes [113,114].

For Pseudomonas aeruginosa, reduced uptake resulting in lower intracellular concentra-
tions explains the resistance to sulfonamides, trimethoprim, ampicillin, first- and second-
generation cephalosporins, tetracycline, and chloramphenicol [113,114].

Interest in intrinsic resistance genes has increased greatly in recent times, as these
genetic means not only can provide attractive therapeutic targets for new drugs that
enhance the effectiveness of existing antibiotics, but could also predict the future of
resistant pathogens.

A representative example of intrinsic antibiotic resistance is given by some MDR
Gram-negative bacteria unsusceptible to many classes of antibiotics that are clinically
effective in infections produced by Gram-positive bacteria. In Gram-negative bacteria,
this phenome is caused by the resistance of the cell membrane to the penetration of a
large number of molecules because MDR bacteria efflux pumps efficiently diminish the
intracellular concentration of the given drug [101,107,112].

2.2. Acquired Resistance of Microorganisms

Acquired resistance happens when pathogens become less sensitive to antibiotics
by which they were previously easily affected. This behavior is different from intrin-
sic resistance as the genes or the mutations responsible for resistance were not initially
present [115].

Pathogens, as well as commensal bacteria, are often homologous and are carriers of
transferable genetic elements [116].

Complex molecular mechanisms lead to the spread of microbial resistance, such
as [117]:

- Genetic transfer mechanisms: conjugation, transformation, transduction;
- Mobile genetic elements (MGEs).

2.2.1. Genetic Transfer: Conjugation, Transformation, Transduction

AMR is transmitted through genetic material transfer that can be “vertical” when
the descendants receive antibiotic-resistant genes or “horizontal” when microorganisms
(bacteria and viruses) interchange fragments of genetic material [118].

About 70 years ago, the introduction of experimental microbial genetics made possible
the horizontal gene transfer (HGT), thus identifying the growing problem of the evolution
of antibiotic resistance of pathogenic bacteria [119]. Research in the field of bacterial genetics
has shown that horizontal gene transfer is responsible for some of the genetic variations
that cause antibiotic resistance [120].

HGT occurs through three main mechanisms: (1) conjugation, (2) transformation
and (3) transduction (Figure 4). The succession of these stages is essential for a better
understanding of the molecular mechanism of AMR:

(1) Conjugation is the most common mechanism responsible for the transfer of resis-
tance genes, being a process carried out in several stages and which requires close cellular
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contact between the donor and the recipient cell. In this type of gene transfer, a fertility
factor F is present in the donor cell, which is an autonomous DNA molecule [121];

(2) Transformation involves the absorption of cloned DNA, which is released into the
environment as a result of cell lysis and is incorporated into the host cell by integration
into the genome or by recirculation of the DNA molecule (through plasmids) [121,122];

(3) Transduction is the result of some bacteriophages (viruses) infecting a bacteria and
incorporating a part of the viral genome into the host cell or transferring particular genes
into the cell [123,124]. It has been documented that antibiotic-resistant genes are mobilized
by bacteriophages for different bacterial species [125], but the role of bacteriophages in
the mechanism of antimicrobial-resistant genes transfer is not fully elucidated and is still
controversial [126–128].

In 2017, WHO developed a list (Table 3) of antibiotic-resistant microorganisms respon-
sible for severe diseases, in order to increase the global awareness of the AMR phenomenon.
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Table 3. The prioritization of microorganisms in terms of their pathogenicity. Adapted from [122],
published by Can J Microbiol, 2019.

Pathogen Resistance Type Competence

CRITICAL PRIORITY
Acinetobacter baumannii carbR Natural competence
Pseudomonas aeruginosa carbR Natural competence

Enterobacteriaceae carbR, cephR Predicted natural competence
(Klebsiella pneumonia, Escherichia coli, Enterobacter spp., Serratia spp.,

Proteus spp., Providencia spp., Morganella spp.)

HIGH PRIORITY
Enterobacteriaceae: Salmonella spp. flrqR Predicted natural competence

Staphylococcus aureus vanR Natural competence
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Table 3. Cont.

Pathogen Resistance Type Competence

Helicobacter pylori clarR Natural competence
Enterococcus faecium vanR -
Neisseria gonorrhoeae flrqR, cephR Natural competence
Campylobacter spp. flrqR Natural competence

MEDIUM PRIORITY
Enterobacteriaceae: Shigella spp. flrqR Predicted natural competence

Streptococcus pneumoniae penR Natural competence
Haemophilus influenza ampR Natural competence

Abbreviations: carbR = carbapenem-resistant; flrqR = fluoroquinolone-resistant; vanR = vancomycin-resistant;
clarR = clarithromycin-resistant; cephR = 3rd-generation cephalosporins-resistant; ampR = ampicillin-resistant;
penR = penicillin-resistant.

2.2.2. MGEs

MGEs play a critical role in the evolution and persistence of AMR. MGEs consist of
different genes and subelements which allow a large array of interactions with other genetic
elements that promote their adaptability and endurance, such as: plasmids, integrons,
transposons (Tn), insertion sequences (IS) and genomic islands; these are able to activate
resistant genes from various species of bacteria, animal hosts and the environment [129].
These MGEs are among the most important factors in the evolution of antibiotic resistance
due to the lateral gene transfer (LGT), a significant ability of bacteria that allows them to
share genetic resources [130,131].

- Plasmids are small DNA molecules that can reproduce separately from the host
chromosome and are different from the bacterial chromosome because they do not
carry vital genes, but genes that can be beneficial for the host cell [132]. The cell to
cell transfer of plasmids occurs through conjugation and transformation, and the
spread of resistant genes is primarily caused by plasmids that confer resistance to
some antibiotics, such as β-lactams, carbapenems and colistin [133,134].

- Integrons are genetic elements that can capture and rearrange exogenous DNA and
incorporate it into an individual genomic unit. The structure of these elements is de-
fined by the expression of an integrase gene (intI) and a recombination site (attI) [135].
Integron mobility is of major importance because they are associated with Tn and
plasmids and also play an essential part in the dissemination and spread of AMR [131].

- Transposable elements (TEs) are DNA segments that are able to be mobilized from
one site to another; they are inserted into DNA, are not separated and cannot replicate
on their own. Chromosomes, plasmids, viral genomes and other DNA molecules can
be included among the host molecules for TE. Bacteria possess two main types of TE:
IS and Tn.

2.3. Resistance versus Persistence and Tolerance to Antibiotics

Taking into consideration the increasing prevalence of antibiotic resistance of microor-
ganisms, it is very important to distinguish between the concepts of resistance, persistence
and tolerance to antibiotics. Bacteria resistant to a particular antimicrobial agent will nor-
mally cause transmission to descendants of the species, unless additional mutations have
occurred in the meantime.

The subpopulation of cells that is able to withstand radical antibiotic treatment without
being resistant constitutes the bacterial persister cells.

Over the last two decades, there have been numerous concerns about defining, evaluat-
ing and understanding bacterial persistence and establishing its relationship with antibiotic
resistance, heteroresistance or tolerance. Microbial persistence to antibiotics is not just an
instance of unicellular non-genetic heterogeneity but can also play a substantial role in the
failure of antibiotherapy [136].
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The persistence of microorganisms to various anti-infective agents is a characteristic
of bacterial cells that are not sensitive to the drug and do not possess resistance genes, due
to the stationary phase of the microorganism life cycle. Most antimicrobial agents have no
effect on cells that do not grow and divide actively [20,137,138].

When bacterial cells are exposed to an antimicrobial agent, there are two possible situations:

1. Cells that are resistant to the antimicrobial agent. The non-resistant cells are killed by
the antimicrobial agent, and only the resistant cells will remain and grow.

2. Persister cells (latent, non-resistant) may be present. Sensitive cells are killed, leaving
only persister cells. When persister cells develop, the cells that are not in an inactive
state will still be susceptible to the antimicrobial agent.

The differences between resistant and persister cells are shown in Figure 5.
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Antibiotic tolerance among bacteria is the ability to survive longer treatments with
bactericidal antibiotics and can result from mutations caused by the evolution of bacterial
species, but also from general environmental conditions, which slow down the growth
of the microorganisms. As with resistance, persistence and tolerance were first observed
shortly after penicillin was introduced [139].

A high degree of persistence or tolerance to antibiotics leads to an increased number
of viable bacterial cells during antibiotic treatment, which leads to a higher probability of
mutations that confer antibiotic resistance.

Stress responses also play a significant part in the occurrence of persister cells and can
cause a temporal surge in cell mutation rates [140–142]. Thus, elevated levels of persistence
and mutation rates can operate synergistically under stress conditions and increase the
probability of resistance mutations [143]. The consequences of the responses to bacterial
stress, as a main determinant of the link between resistance and persistence, are illustrated
by the example of the emergence of persistent infections caused by Mycobacterium strains
due to high levels of oxidative stress [144].

Studies of Saccharomyces cerevisiae have shown an increased level of modified DNA,
which indicates a high mutation rate [145]. Recent research has suggested that heterogeneity
in the expression of the AcrAB-TolC multidrug efflux pump may generate a subpopula-
tion that not only has transient resistance to multiple drugs, but is also characterized by
slowdown growth and a reduced expression of the MutS DNA repair enzyme, leading to a
higher rate of spontaneous mutation [146].

The emergence of antibiotic tolerance allows bacteria with an improved genetic back-
ground to withstand the action of broad-spectrum antibiotic treatments [147]. Activating
bacterial metabolism has been suggested to counteract antibiotic tolerance by converting
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tolerant cells to sensitive ones, using exogenous metabolites such as nucleotides, amino
acids and tricarboxylic acid cycle metabolites [148]. A better understanding of the in vivo
mechanisms involved in antibiotic tolerance may in particular contribute to the targeting of
potential steps of bacterial metabolism. Antibiotic tolerance has been shown to be closely
associated with slow or reduced bacterial metabolism [139]. So, an increase in metabolism
may bring back the susceptibility of tolerant bacteria to antibiotics and adding specific
exogenous metabolites can enhance the metabolic status.

Two representative mechanisms for tolerance have been identified, namely “slow-
growing tolerance” and “delayed tolerance”, both related to metabolism alterations [149].

In various strategies for the development of new drugs, metabolic activity offers a
path to potentiate the action of antibiotics, based on the observation that the metabolism
of a microorganism is closely related to the environment, especially to nutrients. Thus,
changes in bacterial metabolism can restore sensitivity to antibiotics with the addition of
exogenous metabolites that interfere with the bacterial growth cycle [83].

Additionally, there are studies that surprisingly indicate that drug-tolerant and persis-
ter cell species are involved in tumor recurrence [150]. Several pieces of evidence indicate
that this phenotypic variability acts as an important factor in the development of resistance
to therapy [151]. This parallel between drug resistance of neoplastic cells and infections
shows that research on the phenomenon of persistence may contribute to obtaining favor-
able results in the treatment of cancer [152]. In the mechanism of bacterial persistence,
inhibition of lipid hydroperoxidase GPX4, needed for the survival of these species, leads to
cellular apoptosis, and therefore hinders the acquisition of drug resistance by neoplastic
cells [153]. Both microbiologists and clinicians need to understand, detect and target toler-
ance and persistence; this should ultimately lead to a decrease in the therapy failure rates
regarding infectious diseases and cancers [154].

Therefore, it is considered that tolerant and persister cells are responsible for recurrent
bacterial infections with major impact in the medical and industrial field, these phenotypes
being related to antibiotic resistance [136,155].

2.4. Microbial Biofilms

Biofilms are multicellular assemblages of microorganisms protected by an extracellular
matrix that enables microorganisms to grow under various conditions [156].

Through the microscopic investigation of natural ecosystems, it has been proved that
more than 99.9% of bacteria grow in biofilms [157]. Using the same microscopic techniques,
microbial communities in the form of biofilm have been discovered in chronic infections
and on various surfaces [158,159].

An association of microorganisms in the form of biofilm can consist of a single bacterial
species, but almost always the microbial biofilm is composed of different bacterial species,
and also fungi, protozoa, other microorganisms, debris and degradation products etc. [160].

For example, in dentistry, dental plaque biofilms comprise several hundreds of bacte-
rial species [161,162]:

(1) Gram-positive bacteria ferment carbohydrates especially in a diet high in carbohy-
drates and thus will develop in the dental biofilm, causing demineralization of teeth
and tooth decay, further leading to inflammation and even necrosis in the dental pulp
and periapical region;

(2) Gram-negative germs predominate in the supragingival and subgingival biofilms,
where anaerobic proteolytic bacteria can also be found, colonizing and causing inflam-
mation of gums and decomposition of periodontal fibers and bones and possibly tooth
loss, leading to gingivitis, chronic periodontitis or aggressive peri-implantitis. In addi-
tion, bacteria in the dental biofilm can cause systemic problems such as bacteremia by
spreading to other parts of the body.

Biofilms are surrounded by saccharide molecular chains called “extracellular poly-
meric substances” (EPS). The cells produce EPS and are aggregated by these chains, granting
them the possibility to develop resilient, stable and complex microbial communities that
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are three-dimensional (Figure 6). Biofilms are the size of a few layers of cells or even a few
centimeters in thickness, depending on environmental conditions [163,164].
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As early as 1982, a report highlighted a large number of Staphylococcus aureus cells
incorporated into a biofilm, which caused a systemic infection [165].

Biofilm formation is a way in which microorganisms protect themselves from other
microorganisms, and which allows them to survive in harsh conditions and offers the
possibility of spreading to other surfaces.

Bacterial biofilms can be present on contaminated surfaces and can play different roles
in nature, medicine and industry, sometimes beneficial, sometimes harmful. Microbial
biofilms can have health benefits when considered normal components of the microbiome
and can be critical to the efficiency of some industrial processes, such as wastewater
treatment. However, biofilms can often cause major problems as they could be a reason for
chronic infections and could contaminate various surfaces and the environment in industry,
affecting the technological process, etc. [166,167].

The eradication of biofilm is very difficult because, as some researchers have concluded,
the toughness of the microbial biofilm is due to tolerant and persister cells that can survive
antibiotic treatment [158,168].

Approximately 80% of human infections, mainly chronic infections (such as cystic
fibrosis, endocarditis and osteomyelitis) are caused by bacterial biofilms. The ability of
biofilm to withstand most antibiotics that are available has posed a dangerous threat to
various forms of life [163].

The key factor in the antibiotic resistance of microbial communities, in the form of
biofilms, is the multicellular nature of the biofilm, the major cause of resistance mechanisms.
There are numerous studies that have demonstrated the mechanism of biofilm formation:
bacterial cells are held together by EPS, leading to associations of multiple cells that create
the heterogeneous environment within the biofilm [169,170]. If the development of the
multicellular structure of the biofilm can be disrupted, the effectiveness of antibiotics as well
as the defense of the host organism could be increased, which can lead to the eradication of
a persistent infection [170–174].

Recent studies have highlighted that peptide dendrimers TNS18 and G3KL have
shown promising activity in eradicating MDR bacteria (such as Staphylococcus aureus,
Pseudomonas aeruginosa and Acinetobacter baumannii, etc.) biofilms [175,176]. Peptide den-
drimers are able to damage the thickness and morphological structure of the biofilm in a
dose-dependent manner, leading to complete dispersion of the biofilm [15]. Due to their
branched structure, some peptide and glycopeptide dendrimers have remarkable stabil-
ity, preventing the activity of proteases [177–179]. Thus, dendrimers encoded G3KL and
TNS18 were studied. They are polycationic hydrophobic polymers without carbohydrate
ramifications, which intensely inhibit the biofilm under the MIC by interacting with the
bacterial cell membrane [180,181].
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3. Types of Resistance and Active Medication

The development of AMR is still a major global concern, being one of the most im-
portant challenges of the 21st century [182]. Public health assessment in the context
of antimicrobial resistance is necessary for the estimation of clinical reference points
(mainly morbidity and mortality) and economic indicators (direct costs, resource use
and medicine expenditures).

In order to limit AMR, different strategies have been suggested, an example being the
diversity in the use of antimicrobial drugs and the use of combinations: the administration
of two or more drugs, either alternatively or simultaneously, preferably using drugs with
different mechanisms of action [183,184].

Microbial species, over time, since the introduction of antibiotics into therapy, have
developed more or less specific resistance mechanisms. Thus, in the following are some
examples of resistant microbial species to different antibiotics, the mechanisms of resistance,
the infection developed and the antibiotics indicated for treating these infections:

- Methicillin-resistant Staphylococcus aureus;
- Vancomycin-resistant Staphylococcus aureus;
- Antibiotic-resistant Streptococcus pneumoniae;
- Vancomycin-resistant Enterococcus spp.;
- Antibiotic-resistant Clostridium difficile;
- Carbapenem-resistant Enterobacteriaceae spp.;
- Multidrug-resistant Pseudomonas aeruginosa [183,184].

3.1. Methicillin-Resistant Staphylococcus aureus

Worldwide, the second leading cause of death is represented by infectious diseases,
Staphylococcus aureus being a human pathogenic bacterium commonly involved in various
infections. Staphylococcus aureus belongs to the normal bacterial flora of the upper respira-
tory tract that can colonize other areas, leading to major dermatology or cardiac infections,
bacteremia, pneumonia, osteomyelitis, etc. S. aureus is also the major cause of postoperative
surgical site infection (SSI) and is an important cause of bloodstream infection (BSI) [178].

In recent decades, because of the development of the AMR phenomenon but also due
to the abuse of antibiotics, drug resistance of S. aureus has steadily increased, the global rate
of MRSA infections has grown and clinical anti-infective treatment for MRSA has become
increasingly challenging [180]. In approximately 25–30% of healthy individuals, there is a
colonization with S. aureus on the skin and nasopharyngeal membranes, without having a
pathogenic profile and not causing infections in an immunocompetent patient [181,185].
Still, S. aureus can generate a wide range of infections; some are benign infections of the skin
or soft tissues and others can endanger the patient’s life because they cause serious systemic
diseases. Therefore, the emergence of MRSA is a major public health problem [186,187].

MRSA can cause a wide range of infections: endocarditis, meningitis, skin and soft
tissue infections (cellulite, abscess), osteomyelitis, pneumonia, UTIs that seldom require
incision/drainage or debridement. MRSA has developed resistance to common antibi-
otics: beta-lactams, including amoxicillin, methicillin, nafcillin, penicillin, oxacillin and
cephalosporins. Outpatient oral antibiotic therapy for MRSA infections with a variable
duration of 7–10 days [188,189] includes clindamycin, delafloxacin, doxycycline, linezolid,
minocycline, omadacycline, tedizolid, trimethoprim-sulfamethoxazole. Antibiotics for in-
jection, intravenously or intramuscularly, are needed for more complicated infections: van-
comycin, linezolid or daptomycin [190–192] or teicoplanin [193]. Moreover, the association
daptomycin-ceftaroline showed promising outcomes in refractory MRSA bacteremia [194].

3.2. Vancomycin-Resistant Staphylococcus aureus (VRSA)

Vancomycin is an antibiotic isolated from Streptomyces orientalis cultures since 1957.
Its antimicrobial spectrum includes various Gram-positive and Gram-negative bacteria
(Staphylococcus spp., Enterococcus spp., Streptococcus spp., Pneumococcus spp., Listeria spp.,
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Corynebacterium spp. and Clostridium spp.). It can also be prescribed for the treatment of
MRSA infections and to patients with allergies to beta-lactams [195–197].

During the 1990s, some strains of S. aureus intermediate-resistant to vancomycin (VISA)
were identified (MIC ≤ 8 µg/mL). The molecular basis of VISA resistance is polygenic and
includes gradual mutations in genes that encode molecules that mostly concern bacterial cell
wall biosynthesis. In 1997, the first cases of VISA were officially announced in Japan [198].

VRSA isolates (MIC ≥ 16 µg/mL) have also been identified and have been reported
since 2002 [199,200]. The vanA gene (one of the most prevalent genetic determinants
associated with VRSA) [194] and operon existing on a plasmid are responsible for con-
ferring resistance in S. aureus strains, but the total number of infections produced by this
microorganism is quite low. By comparison, the number of VISA infections is rather high,
and the molecular mechanisms of resistance are not very well-determined. VISA infections
are usually associated with persistent infections, failure of vancomycin treatment and poor
clinical outcomes [201,202].

VRSA and VISA could cause dermatological infections, lung infections (pneumonia),
infections of the brain (meningitis) and of the urinary tract. Characteristics of the VISA
phenotype are an increase in the thickness of the cell wall [203]; reduction of peptidogly-
can crosslinking and decrease of the autolytic activity of enzymes from the bacterial cell
wall [204,205] and dysfunctions of the accessory gene regulator system and changes in
growth factors [206].

Treatment options for VRSA infections may include [207] daptomycin (associated with
ceftaroline), telavancin, ceftaroline, tedizolid, linezolid, oritavancin [203,207].

3.3. Antibiotic-Resistant Streptococcus pneumoniae

Phenotypic expression of S. pneumoniae resistance to beta-lactams occurs as a result
of a genetic structural change in the proteins that bind these antibiotics [208]. Macrolides
resistance is quite significant, so it is estimated to be between 20% and 40% for strains
isolated from S. pneumoniae. Mechanisms of resistance to macrolide are represented by:
alteration of the target ribosomal site, alteration of the antibiotic transport pathway and
degradation of the antibiotic [209]. Approximately 22% of S. pneumoniae isolates are resis-
tant to clindamycin. Similar to macrolide resistance, AMR to clindamycin involves a change
in the antibiotic’s target site [210]. The prevalence of fluoroquinolone (FQ) resistance is
generally low, although there are studies showing an increase in AMR to FQ. Resistance of
S. pneumoniae to FQ occurs through the following mechanisms: bacterial gene mutations,
the acquisition of genes encoded by plasmids and increased efflux mechanism [211–213].
The AMR of S. pneumoniae also increased for the tetracycline class, and the main mech-
anism is mediated by 2 genes that confer ribosomal protection [214]. The prevalence of
resistance to trimethoprim-sulfamethoxazole (TMP-SMX) is approximately 35%. As with
FQ, resistance to TMP-SMX is a consequence of mutations in the bacterial genome [215].

The most important infections caused by S. pneumoniae are pneumonia, ear, nose,
throat infections, hematological infections and meningitis [216,217]. Penicillin-resistant
strains are also frequently resistant to many other classes of antibiotics. Thus, resistance to
beta-lactams, macrolides, lincosamides, tetracyclines, trimethoprim-sulfamethoxazole and
fluoroquinolones was highlighted [218].

Medication includes cephalosporins, such as: ceftriaxone, cefotaxime, ceftaroline [219]
and antibiotics of different classes: vancomycin, fluoroquinolone (moxifloxacin, levofloxacin),
high doses of beta-lactams (amoxicillin, amoxicillin-clavulanate) and macrolides (azithromycin,
clarithromycin, erythromycin). Macrolides that have poor penetration into the cerebrospinal
fluid are excluded because they are ineffective in the treatment of meningitis [220,221].

3.4. Vancomycin–Resistant Enterococcus

Enterococcus species have developed mechanisms of resistance to several antimicrobial
agents. Intrinsic resistance mechanisms include low-affinity antibiotic-binding proteins



Biomedicines 2022, 10, 1121 18 of 38

and production of beta-lactamases. The mechanisms of resistance to vancomycin are due
to changes in peptidoglycan cell wall structure.

The main mechanism of action of vancomycin is represented by the inhibition of
peptidoglycan synthesis by binding to the terminal units of the D-Ala-D-Ala amino acid
chain. Modification of this terminal chain decreases the antibiotic affinity for this target,
causing the resistance of the microorganism to the action of vancomycin. This behavior is
encoded by genotypes that are identified as VanA to VanG. The most frequent are the VanA
and VanB genotypes, followed by the VanD and VanC chromosomal phenotypes. Bacterial
strains of VRE have a slightly different resistance to aminoglycosides [222,223].

VRE infections often occur in the hospital environment and can be easily transmitted
from person to person. VRE infections can be part of polymicrobial infections. Types of
VRE infection include meningitis, urinary tract infections, circulatory system infections,
endocarditis, post-surgery and catheter-related infections [224,225].

Treatment for VRE infections should be initiated based on the clinical history or failure
of previous antibiotic regimens [224,225]. First-line treatments in VRE infections associated
with E. faecalis [226–229] are: ampicillin +/− sulbactam, streptomycin, gentamicin, ceftriax-
one. Linezolid [230] and daptomycin could also be used [231] and the combination of some
of them is considered optimal.

3.5. Antibiotic-Resistant Clostridium difficile (ARCD)

Worldwide, Clostridium difficile (syn. Clostridioides difficile) infections (CDI) became the
most common nosocomial intestinal infection, posing a serious threat to Europe and the
United States [1,232]. In the early 2000s, ribotype 027 led to higher morbidity, mortality
and increased medical costs [233,234].

ARCD infection is caused by the exposure of the normal intestinal microbiome to
antibiotics that are inefficient against C. difficile, disrupting the former and allowing the
latter’s proliferation. Thus, there are many antibiotics associated with an increased risk of
developing Clostridium difficile infections: ampicillin, amoxicillin, cephalosporins, amino-
glycosides, lincomycin, clindamycin and fluoroquinolones (ciprofloxacin, moxifloxacin,
levofloxacin) [235,236]. The use of antibiotics is the most common risk factor for the emer-
gence of ARCD, but C. difficile infection can recur because this microorganism can survive
antimicrobial therapy upon cessation of therapy. It is also known that C. difficile is resis-
tant to many antibiotics frequently used for treating bacterial infections [237]. Statistical
evaluations based on many studies has showed AMR as follows: clindamycin and ery-
thromycin (10–100)%, cephalosporins and fluoroquinolones (50%) [238]. Another study
has showed that the great majority (more than 79%) of the strains tested with second-
generation cephalosporins or fluoroquinolones developed resistance very frequently. The
third-generation cephalosporins and broad-spectrum fluoroquinolones lead to AMR less
often, for a third of the tested strains [238].

Antibiotic resistance of C. difficile causes the occurrence or the recurrence of infection.
It has a decisive part in the emergence of new types of strains, often causing suboptimal
results that can conduce to inefficient treatment. Relapse after C. difficile infection, known
as (rCDI) affects ~25% of patients after completion of standard therapy and is associated
with substantial health care costs. To prevent rCDI in patients at risk, bezlotoxumab, the
first monoclonal antibody indicated against toxin C, was developed [239,240].

C. difficile cause life-threatening diarrhea and colitis in patients with recent antibi-
otic therapy. The infection can spread due to poor hygiene in the hospital environment,
non-compliance with these conditions or spread from person to person. Infection re-
quires isolating infected patients and stopping treatment with antibiotics that have caused
CDI [241,242]. Resistance is due to metabolism alteration, genetic mutation and biofilm
formation. Treatment options include vancomycin, fidaxomicin, metronidazole, minocy-
cline, azithromycin, clarithromycin [243,244] and bezlotoxumab monoclonal antibody. The
transplantation of fecal microbiota is necessary for recurrent C. difficile infections [245,246].
Warnings were stated regarding the practice of bacterial transplantation in 2019 [247].
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3.6. Carbapenem-Resistant Enterobacteriaceae (CRE)

Adaptation of microorganisms to various antibiotics has generated increasingly effec-
tive defense mechanisms, so that the resistance genes encoding this information have led
to the occurrence of highly resistant pathogens.

Gram-negative bacteria have expanded resistance. This is determined on the one hand
by the multiple structural adaptations and on the other hand by the antibiotic degradation
enzymes (e.g., ESBL, AmpC cephalosporinases and carbapenemases etc.) [248].

Carbapenamase enzymes are classified into class A, B and D [249]:

- Class A includes the most common carbapenemase—Klebsiella pneumoniae carbapene-
mase and imipenem-beta-lactamase;

- Class B includes metallo-beta-lactamase such as New Delhi metallo-lactamase. These
are located on plasmid vectors and other transport elements. Because of a large
variability (15–70%) these enzymes can evade molecular testing;

- Class D comprises OXA enzymes (carbapenemase hydrolyzing oxacillin), resembling
ESBL genes, making it difficult to separate the two by molecular testing methods [250].

Enterobacteriaceae spp. are saprophytic microorganisms, which under certain conditions
become pathogenic. The high mortality rate in case of serious infections with CRE microbial
species explains the high concern for this type of bacterial resistance [251]. Among the
carbapenem-resistant microorganisms, the following are noted: carbapenem-resistant
Klebsiella pneumoniae (CRKP), Escherichia coli and Enterobacter cloacae (Figure 7). Thus,
high mortality rates, between 30% and 75%, have been reported in patients with severe
CRE infections [252]. Mortality over 50% has been reported in patients with CRE blood
infections [253], and a mortality of 27% in patients with pneumonia or blood infection
caused by carbapenem-resistant K. pneumoniae [254]. This high mortality associated with
CRE is generally attributed to the lack of adequate treatment options and delayed initiation
of effective therapy [251].
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Figure 7. Rate of antimicrobial resistance of K. pneumoniae, E. coli and Enterobacter spp. isolates to
different antibiotics (AMK—amikacin, AZT—aztreonam, CAZ—ceftazidime, CFM—cefixime, CFZ—
cefazolin, CPM—cefepime, CTX—cefotaxime, ETP—ertapenem, GEN—gentamicin, IMI—imipenem,
MEM—meropenem, PTZ—piperacillin-tazobactam, TET—tetracycline, TMT-SMX—trimethoprim-
sulfamethoxazole, TOB—tobramycin). Adapted from [255], published by Infect Drug Resist, 2020.
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Moreover, besides the Enterobacteriaceae family, there are other Gram-negative bac-
teria resistant to carbapenems with clinical relevance such as: Pseudomonas aeruginosa,
Acinetobacter baumannii and, more recently, Stenotrophomonas maltophilia [256].

Thus, several elements that define the threat of carbapenem-resistant Gram-negative
pathogens can be listed: (i) the increasing prevalence of these pathogens worldwide since
the beginning of the century [257]; (ii) lack of other safe and effective therapeutic agents after
decreased efficacy of carbapenems due to the occurrence of AMR [258]; (iii) high mortality
rate associated with infections with carbapenem-resistant Gram-negative bacteria [259].

Infections caused by CRE include lung infections, blood infections, UTIs, abdominal,
febrile neutropenia, upper respiratory tract, surgical wound infections and meningitis.
CRE infections tend to be nosocomial, particularly in patients with catheters or associated
with various medical devices (endoscopes, duodenoscopes). The main resistance mech-
anism is the production of carbapenemases. blaKPC and blaNDM are the most frequent
carbapenemase-encoding genes in CRKP and CREC (carbapenem-resistant E. coli) [260–263].
Recently, several resistance factors have been reported, even more than 2 carbapenemases
in a single strain. The importance of these new elements of resistance, transported mainly
by transmissible plasmids, is highlighted [264]. In addition, the production of ESBL and/or
AmpC enzymes in combination with mutations in membrane proteins (OmpK35, OmpK36),
and overexpression of efflux pumps, are important for the occurrence of the carbapenem
resistance [265,266].

Combinations of antibiotics from different classes are recommended for treatment:
ceftazidime/aztreonam-avibactam, ceftolozane-tazobactam, meropenem-vaborbactam,
imipenem-cilastatin, relebactam, plazomicin, eravacycline and cefiderocol, phosphomycin,
minocycline, tigecycline [255,256].

3.7. MDR Pseudomonas aeruginosa

Pseudomonas aeruginosa is a saprophytic microorganism belonging to the normal in-
testinal flora that can become a dangerous pathogen. Nosocomial infections caused by
this microorganism are various: gastrointestinal infections, urinary tract infections and
septicemia and they are difficult to treat because of a limited number of active antibi-
otics (Figure 8). Thus, in addition to its intrinsic resistance for β-lactam antibiotics, these
bacteria can become resistant to several classes of antibiotics (e.g., aminoglycosides, fluoro-
quinolones etc.).
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In their evolution, these microorganisms have used multiple mechanisms to maintain
their genomic plasticity, biofilm formation, enzymatic quorum, horizontal gene transfer
and enzymatic adaptation (chromosomal β-lactamase), being the main mechanisms of
AMR [267]. Resistance to P. aeruginosa is often multimodal, leading to limited antibiotic
efficacy in infections caused by this microorganism. These mechanisms could exist at the
same time, and could generate a combined resistance to many antibiotics, thus limiting
treatment options [268,269] (Figure 9).
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Pseudomonas sp. can be frequently present in nosocomial infection and can have severe
consequences for immune-compromised people. These infections can be localized in: circu-
latory system, lung, soft tissue, after burns, complicated UTI and abdomen, cardiovascular
system or brain, or they can be related to the medication application system (catheter and
surgical wounds). MDR Pseudomonas aeruginosa falls into the category of germs which pose
a “serious” threat [272].

Recommendations for treatment of MDR Pseudomonas aeruginosa include combinations such
as: ceftazidime-colistin, ceftazidime-avibactam, ceftolozane-tazobactam, ceftolozane-tazobactam,
meropenem, levofloxacin, fosfomycin-colistin, macrolides-tobramycin-trimethoprim-rifampin,
imipenem-tigecycline-amikacin, polymyxin-aminoglycoside, cefepime-tazobactam, imipenem-
amikacin-cefepime, tigecycline-amikacin-cefepime [272–281].

4. Perspectives in Diminishing Antimicrobial Resistance

The antimicrobial resistance issue can be addressed by combining two or more an-
tibiotics. Their different mechanisms of action provide a higher efficacy. Lately, the
research on antimicrobial resistance has been conducted in many directions: bacterio-
phages, antimicrobial peptides, metal nanoparticles, combinatorial treatment, antibiotic
hybrids, etc. [282–284].

4.1. Bacteriophages

The use of bacteriophages in both prophylaxis and curative treatment against drug-
resistant bacteria has emerged as an alternative to antibiotics [285,286].

Bacteriophages are viruses present in all ecosystems, capable of infecting and destroy-
ing bacteria, having a significant impact on microbial communities, including on bacterial
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ecology, decreasing the AMR phenomenon [287]. The mechanism by which bacteriophages
infect bacteria is the delivery of the DNA of the phages or even foreign DNA into bacterial
cells, thus adding genes to already compromised bacterial genomes [288].

DNA or RNA genome of the phages is encapsulated in a protein capsid and can
additionally be supplemented by a tail that attaches to targeted bacterial surface receptors
and then injects its own genome into bacterial cells, with the appearance of modulations, as
follows: modification of bacterial metabolic metabolism for synthesis of the viral proteins
and copying of the viral genome. Once the viral particles are assembled, the bacterial cell
is lysed. As a result of this process, numerous new phages are released [289]. Figure 10
shows this mechanism schematically.
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Bacteriophages have several advantages over conventional antibiotics: (i) the most
important is their specificity, because their action usually targets a single bacterial species,
leaving the host microbiome unaffected; (ii) bacteriophage replication depends on the
presence of the host bacteria and as a result has a self-limiting character [290]. Thus, the
main concerns for the therapeutic use of bacteriophages are the possibility of transferring
virulence or antibiotic resistance genes, which requires a thorough knowledge of the
genomes of these species [291].

In addition to major advantages, there are many others that make it an important
strategy in finding new ways to combat AMR and MDR, such as:

- The ability of phages through various self-replication mechanisms to increase their
number where their host is present and self-dosing, which prevents the need for
repeated administration of phages at the site of action [292];

- They remain in the environment in which they were inoculated as long as the host
exists. When all the bacteria have been lysed, the respective phages will also disap-
pear [293];

- Closely related to their specificity is the mechanism of action which is different from
antibiotics and thus addresses MDR bacterial species [294,295];

- Phages can be used alone or together with other therapeutic agents (antibiotics, vac-
cines or various proteins) [285,289];



Biomedicines 2022, 10, 1121 23 of 38

- Unlike antibiotics, phages are effective both in preventing the biofilm formation and
in eliminating bacterial biofilms [296];

- Phages have an important adaptive characteristic so that they can evolve and be able
to have an action on bacteria in infecting and lysing them and can adapt to resistant
strains [297,298].

Several disadvantages that limit the use of bacteriophages in therapy have been re-
ported, among which: the lack of strain-specific antibacterial activity, low efficacy due to
destruction triggered by the immune system and pharmaceutical formulation development
difficulties [299–301]. The main disadvantage of bacteriophages is the emergence of resis-
tant mutant bacterial species, resulting mainly from the denaturation of bacterial protein
structures (lipopolysaccharides, outer membrane proteins), which are not always essential
for bacterial survival. One approach to removing this shortcoming is to make combinations
between bacteriophages and some antibiotics [302,303].

To avoid therapeutic failure in this new approach, the concept of personalized therapy
by using appropriate bacteriophages for their activity against bacteria isolated from infected
patients was highlighted. This approach allows the precise targeting of the invading
pathogen, while representing the basic concept in “precision medicine” [304,305].

The fundamental characteristic of bacteriophages, to eliminate pathogenic bacteria tar-
gets without adversely affecting the microbiome, is the approach of personalized medicine.
In the present, researchers focus on the use of bacteriophages for the treatment of MDR
infections. This conclusion is based on positive scientific reports of experimental cases, as
well as several clinical studies launched worldwide [306–308].

4.2. Antimicrobial Peptides

Antimicrobial peptides (AMPs) are small peptides (10 up to 60 amino acid residues)
widespread in nature playing a key role in the immune system of mammals, amphib-
ians, microorganisms, insects, etc. The majority of AMPs are cationic and their action
mechanisms include membrane targeting and non-membrane targeting (membrane perme-
abilization, inhibition of intracellular functions, immunomodulatory activity, disassembly
of biofilms, etc.). Many AMPs proved to be active on ESKAPE pathogens at low MICs.
The presence of metal ions, the pH and enzymes (especially proteases) may influence
antimicrobial activity of AMPs. Currently, many AMPs are subject to clinical studies and
some of them are already approved by FDA (gramicidin, daptomycin, colistin, vancomycin,
dalbavancin, telavancin, etc.). The use of AMPs is limited due to their susceptibility to
hydrolytic degradation, lack of specifics, poor bioavailability, short half-lives, toxicity and
high production costs. More studies are needed in order to obtain increased activity of
AMPs and to modulate their absorption, distribution, metabolism, excretion and toxicity
(ADMET) properties [309–312].

4.3. Metal Nanoparticles and Metal-Nanoparticle-Based Combinatorial Treatments

Another therapy alternative to treat mainly ESKAPE bacteria is represented by nanopar-
ticles with metals (e.g., silver, gold, etc.) or metal oxides (e.g., zinc oxide, titan dioxide, etc.).
These compounds increase cell permeability through disrupting of the cell membrane,
release metal ions and interact with DNA or sulfur- and phosphorous-containing com-
pounds and have some advantages such as: limited risks compared to other antibiotics
(e.g., adverse reactions, AMR, etc.), control delivery, large therapeutic window, etc. On
the other hand, these compounds are not long-term studied and have moderate stability
in biological fluids and presented an under-optimal metal ions release. The stabilizing of
metal nanoparticles could be realized with proteins, nucleic acids and polysaccharides used
as biopolymers. Furthermore, metal-nanoparticle-based combinatorial treatments with
antibiotics improve the antimicrobial activity, have a better efficiency (including against
MDR bacteria) due to the synergism of action at lower antibiotic doses, and present a lower
risk of toxicity or antibiotic resistance [313,314].
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4.4. Antibiotic Hybrids

Antibiotic hybrids are covalent structures between two antibiotics with different
mechanism of action or between an antibiotic and an adjuvant such as efflux pump inhibitor
(e.g., naringenin, quercetin, kaempferol, chrysin and genistein, etc.) or siderophore (iron
carrier) used to facilitate the access to the target or to increase the antibiotic efficacy. The
combination of iron-chelating siderophore with biocidal pharmacophore is named “Trojan
horse strategy” and allows the hijacking of the bacterial iron transport system and increases
the drug concentration inside the cell (e.g., cefiderocol derived by ceftazidime and catechol
2-chloro-3,4-dihydroxybenzoic acid) [284,315].

The covalent link could be cleavable into two independent molecules in pro-drug
structures (e.g., cefamandole derivative linked to omadine) or could be non-cleavable in
antibiotic hybrid drugs (e.g., cadazolid-containing ciprofloxacin and tedizolid). In this case,
the structure represents a single compound with a specific mechanism of action [316].

Currently, the most hybrids studied contain: (i) fluoroquinolones (hybrids of ciprofloxacin
with trimethoprim, naringenin a flavonoid, neomycin, pyrazinamide, tobramycin; 4H-4-
oxoquinolizine with rifampicin pharmacophore; etc.); (ii) tobramycin (e.g., hybrids with
lysine peptoid mimic, paroxetine); (iii) fluoroquinolone and tobramycin (e.g., moxifloxacin-
tobramycin hybrid, ciprofloxacin-tobramycin hybrid etc.) [284,316].

Even if the research in this field is promising, some major difficulties have been
identified: (i) the pharmacokinetics could be non-complementary, (ii) the combination ratio
different form 1:1 is unavailable, (iii) the designing of the bacterium-specific cleavable
linker that is stable and capable of withstanding human metabolic enzymes is needed;
(iv) the adequate permeability Gram-negative bacteria, etc. [284].

4.5. Guidelines for Rational Use of Antibiotics

Because of AMR high incidence and risk, all stakeholders should contribute to the fight
against this major problem. Many institutions or professional associations have published
guidelines against AMR. For example, the Infectious Diseases Society of America elaborated
some guidelines regarding the treatment of antimicrobial resistance. In this document,
guidelines on the treatment of hospital infections caused by some Gram-negative bacteria
resistant to antibiotics with significant morbidity and mortality are provided [317].

Another institutional organism involved in this fight is The World Organization
for Animal Health. Its main objectives are improving quality of veterinary education
worldwide (including in the fields of microbiology, pharmacology and ethics), international
cooperation, ensuring the animal health surveillance and a rapid response to contain
outbreaks at source, etc. [318].

Despite the large number of these recommendations, many of them were not consid-
ered. Thus, the decision-makers should be more involved in the analyzing and reporting of
AMR cases [319].

Lately, the authorities and professional associations introduced guidelines in order to
determine an adequate use of antibiotics in hospitals. These contain several strategies, such
as [320–322]:

- Optimization and even decrease of antibiotic prescriptions,
- Usage of targeted antibiotics based only on the clinical and microbiological diagnostic

(the transition from empirical therapy to targeted therapy),
- Reporting, collecting and analyzing of data regarding antimicrobial susceptibility and

antibiotic consumption,
- Optimization of doses, treatment duration and dosing time intervals, according to the na-

ture and severity of the infection, including the usage of biomarkers (e.g., procalcitonin),
- Parenteral-to-oral conversion if sufficient bioavailability is assured,
- Reduction of routine use for some antibiotics (e.g., cephalosporins, fluoroquinolones, etc.)

in favor of others (e.g., penicillin), etc.
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5. Conclusions

The emergence of AMR is considered one of the most important challenges of the
21st century. An increased risk of morbidity and mortality is associated with infections
caused mainly by ESKAPE pathogens that have become resistant to one or more antibiotics.
The study of these emerging microorganisms and the mechanisms by which they develop
resistance as well as comprehensive knowledge of the effective therapeutic options could
help to minimize the pace of AMR. Besides various political-legislative measures, in order to
reduce the spread of AMR, it is recommended to avoid automedication and the unnecessary
prescription of antibiotics, as well as giving up their misuse. Furthermore, novel antibiotics
or alternative therapies are needed in order to address the problem of AMR.
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Abbreviations

ADMET absorption, distribution, metabolism, excretion and toxicity
AMK amikacin
AMPs antimicrobial peptides
AMR antimicrobial resistance (AMR)
ARCD antibiotic-resistant Clostridium difficile
attI recombination site
AZT aztreonam
BSI bloodstream infection
CAZ ceftazidime
CDI Clostridium difficile infections
CFM cefixime
CFZ cefazolin
CPM cefepime
CRE carbapenem-resistant Enterobacteriaceae spp.
CREC carbapenem-resistant Escherichia coli
CRKP carbapenem-resistant Klebsiella pneumoniae
CTX cefotaxime
EPS extracellular polymeric substances
ESBL extended spectrum beta-lactamases
ETP ertapenem
FQ fluoroquinolone
GEN gentamicin
HGT horizontal gene transfer
IMI imipenem
intI integrase gene
IS insertion sequences
LGT lateral gene transfer
MDR multidrug-resistant
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MEM meropenem
MGEs mobile genetic elements
MIC minimum inhibitory concentration
MRG macrolide resistance genes
MRSA methicillin-resistant Staphylococcus aureus
PBP Penicillin-binding proteins
PDR pan-drug-resistant
PTZ piperacillin-tazobactam
rCDI relapse after Clostridium difficile infection
SSI surgical site infection
TEs transposable elements
TET tetracycline
TMT-SMX trimethoprim-sulfamethoxazole
Tn transposons
TOB tobramycin
UTIs urinary tract infections
VISA Staphylococcus aureus intermediate-resistant to vancomycin
VRE vancomycin-resistant enterococci
VRSA vancomycin-resistant Staphylococcus aureus
XDR Extensively drug-resistant

References
1. Georgescu, M.; Ginghină, O.; Raita, S.; Tăpăloagă, D.; Ilie, L.; Negrei, C.; Popa, D.E.; Varlas, V.; Multescu, R.; Rosca, A.C.; et al.

Natural alternative remedies in the background of updated recommendations for the prophylactic and therapeutic approach of
clostridium difficile infections. Farmacia 2018, 66, 4. [CrossRef]

2. Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Med. Chem. 2014, 6, 25. [CrossRef] [PubMed]
3. Dadgostar, P. Antimicrobial resistance: Implications and costs. Infect. Drug Resist. 2019, 12, 3903–3910. [CrossRef]
4. Capita, R.; Alonso-Calleja, C. Antibiotic-resistant bacteria: A challenge for the food industry. Crit. Rev. Food Sci. Nutr. 2013, 53,

11–48. [CrossRef]
5. Hutchings, M.; Truman, A.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [CrossRef]
6. Peraman, R.; Kumar Sure, S.; Azger Dusthackeer, V.N.; Chilamakuru, N.B.; Reddy Yiragamreddy, P.; Pokuri, C.; Kutagulla, V.K.;

Chinni, S. Insights on recent approaches in drug discovery strategies and untapped drug targets against drug resistance. Future J.
Pharm. Sci. 2021, 7, 56. [CrossRef]

7. Yusuf, E.; Bax, H.I.; Verkaik, N.J.; van Westreenen, M. An update on eight “New” antibiotics against multidrug-resistant
gram-negative bacteria. J. Clin. Med. 2021, 10, 1068. [CrossRef]

8. Annunziato, G. Molecular sciences strategies to overcome antimicrobial resistance (AMR) making use of non-essential target
inhibitors: A review. Int. J. Mol. Sci. 2019, 20, 5844. [CrossRef]

9. WHO/Europe|Antimicrobial Resistance—About AMR. Available online: https://www.euro.who.int/en/health-topics/disease-
prevention/antimicrobial-resistance/about-amr (accessed on 2 April 2022).

10. Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial resistance: A global emerging threat to public health systems.
Crit. Rev. Food Sci. Nutr. 2017, 57, 2857–2876. [CrossRef]

11. Norrby, S.R.; Nord, C.E.; Finch, R. Lack of development of new antimicrobial drugs: A potential serious threat to public health.
Lancet Infect. Dis. 2005, 5, 115–119. [CrossRef]

12. Central Asian and European Surveillance of Antimicrobial Resistance. 2020. Available online: https://www.euro.who.int/en/
health-topics/disease-prevention/antimicrobial-resistance/publications/2020/central-asian-and-european-surveillance-of-
antimicrobial-resistance.-annual-report-2020 (accessed on 2 April 2022).

13. Monnet, D.L.; Harbarth, S. Will coronavirus disease (COVID-19) have an impact on antimicrobial resistance? Eurosurveillance
2020, 25, 2001886. [CrossRef] [PubMed]

14. Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al.
Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [CrossRef]

15. Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar,
M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable Deaths and disability-adjusted life-years caused by infections with
antibiotic-resistant bacteria in the EU and the European economic area in 2015: A population-level modelling analysis. Lancet
Infect. Dis. 2019, 19, 56. [CrossRef]

16. About Antibiotic Resistance|CDC. Available online: https://www.cdc.gov/drugresistance/about.html (accessed on
2 April 2022).

17. Rezasoltani, S.; Yadegar, A.; Hatami, B.; Asadzadeh Aghdaei, H.; Zali, M.R. Antimicrobial resistance as a hidden menace lurking
behind the COVID-19 Outbreak: The global impacts of too much hygiene on AMR. Front. Microbiol. 2020, 11, 3097. [CrossRef]

http://doi.org/10.31925/farmacia.2018.4.1
http://doi.org/10.4137/PMC.S14459
http://www.ncbi.nlm.nih.gov/pubmed/25232278
http://doi.org/10.2147/IDR.S234610
http://doi.org/10.1080/10408398.2010.519837
http://doi.org/10.1016/j.mib.2019.10.008
http://doi.org/10.1186/s43094-021-00196-5
http://doi.org/10.3390/jcm10051068
http://doi.org/10.3390/ijms20235844
https://www.euro.who.int/en/health-topics/disease-prevention/antimicrobial-resistance/about-amr
https://www.euro.who.int/en/health-topics/disease-prevention/antimicrobial-resistance/about-amr
http://doi.org/10.1080/10408398.2015.1077192
http://doi.org/10.1016/S1473-3099(05)70086-4
https://www.euro.who.int/en/health-topics/disease-prevention/antimicrobial-resistance/publications/2020/central-asian-and-european-surveillance-of-antimicrobial-resistance.-annual-report-2020
https://www.euro.who.int/en/health-topics/disease-prevention/antimicrobial-resistance/publications/2020/central-asian-and-european-surveillance-of-antimicrobial-resistance.-annual-report-2020
https://www.euro.who.int/en/health-topics/disease-prevention/antimicrobial-resistance/publications/2020/central-asian-and-european-surveillance-of-antimicrobial-resistance.-annual-report-2020
http://doi.org/10.2807/1560-7917.ES.2020.25.45.2001886
http://www.ncbi.nlm.nih.gov/pubmed/33183403
http://doi.org/10.1016/S0140-6736(21)02724-0
http://doi.org/10.1016/S1473-3099(18)30605-4
https://www.cdc.gov/drugresistance/about.html
http://doi.org/10.3389/fmicb.2020.590683


Biomedicines 2022, 10, 1121 27 of 38

18. Rawson, T.M.; Ming, D.; Ahmad, R.; Moore, L.S.P.; Holmes, A.H. Antimicrobial use, drug-resistant infections and COVID-19. Nat.
Rev. Microbiol. 2020, 18, 409–410. [CrossRef]

19. Ghibu, S.; Juncan, A.M.; Rus, L.L.; Frum, A.; Dobrea, C.M.; Chiş, A.A.; Gligor, F.G.; Morgovan, C. The particularities of
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