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Abstract: Chemotherapy (CT) is the standard care for advanced pancreatic ductal adenocarcinoma
(PDAC); however, with limited efficacy. Hyperthermia (HT) treatment has been suggested as a
sensitizer to improve outcomes. However, the direct effect of the HT and CT combination is not
fully understood. Therefore, we aim to assess the direct cytotoxic effect of HT in PDAC cells as
monotherapy or in combination with chemotherapeutics. Different temperatures (37-, 40.5-, 41-, and
41.5 ◦C) and durations (6-, 12-, and 24 h) were tested in PDAC cell lines (BxPC-3, Capan-1, Capan-2,
PANC-1, and MIA-PaCa-2). Different concentrations of gemcitabine, 5-fluorouracil, and cisplatin
were also tested in these conditions. The impact on cell metabolic activity was determined by an
MTS assay. Enhancement of chemosensitivity was assessed by a reduction in half-maximal inhibitory
concentration (IC50). HT and chemotherapeutics interactions were classified as antagonistic, additive,
or synergistic using the combination index. HT inhibited cell proliferation in a cell type, temperature,
and duration-dependent manner. The induction of apoptosis was seen after 6 h of HT treatment,
eventually followed by secondary necrosis. The HT and CT combination led to an IC50 reduction
of the tested CT. At 12 h of HT, this effect was between 25 to 90% and reached a 95% reduction at
24 h. The additive or synergistic effect was demonstrated in all cell lines and chemotherapeutics,
although, again, this depended on cell type, duration, and temperature. HT is cytotoxic and enhances
the therapeutic effectiveness of gemcitabine, 5-fluorouracil, and cisplatin on PDAC cells. This result
was further confirmed by the decrease in the expression of RRM2, TS, and ERCC1 in BxPC-3 and
Capan-2 cells. These observations warrant further study in specific subsets of PDAC patients to
improve their clinical outcomes.

Keywords: thermal therapy; cell proliferation; anticancer therapy; 5-fluorouracil; gemcitabine; cisplatin

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid ma-
lignancies and is characterized by poor prognosis, with a 5-year overall survival rate of
around 10% [1]. For patients with locally advanced or metastatic cancer, as well as those
with recurrence after surgery, the treatment of choice is chemotherapy. Most frequently
used regimens include (combinations of) FOLFIRINOX (oxaliplatin, irinotecan, leucovorin,
5-fluorouracil), gemcitabine, nab-paclitaxel, and cisplatin [2,3], but their efficacy is low due
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to multiple factors. Poor drug penetration into the hypo-vascularized and the dense tumor
stroma plays a key role in PDAC refractoriness to current therapies. This poor vascular-
ization hampers oxygen delivery, resulting in a hypoxic microenvironment which further
diminishes the sensitivity of cancer cells to chemotherapeutics [4] and irradiation [5,6].

Hyperthermia (HT) has been suggested as a chemosensitizer for improving drug
distribution. Previous studies showed that heat increases vascular permeability and blood
flow in the stroma, thereby enhancing oxidative stress [7] and the resorption of anticancer
drugs into cancer cells [8–10]. Chemotherapy, thereby, becomes more effective without
increasing toxic effects on the patient [10–12]. This has been demonstrated in many phase
III clinical trials in patients affected by different tumor types [13–17].

HT can also induce selective tumor cell death when temperatures rise to the supra-
physiological range (39–42 ◦C) [18]. This would be the result of several mechanisms, one of
which is the increase in intracellular reactive oxygen species (ROS) [19–23]. Generally, at
these temperatures, it is assumed that the main modality of cell death is apoptosis.

In addition to apoptosis induction, ROS are implicated to be involved in other types
of cell death, such as autophagic cell death and necroptosis in cancer [7,23,24].

Aside from cellular ROS generation, there is some evidence that HT would also affect
the cell’s ability to repair single-strand breaks [25]. Combined, HT would both induce DNA
damage and impair DNA repair mechanisms.

Therapeutic modalities which rely on ROS, such as radiotherapy and some chemother-
apeutic drugs, have already been demonstrated to benefit from HT [26]. Indeed, HT
potentiates the efficacy of anti-tumor drugs by inhibiting tumor resistance genes such as
MDR1 gene expression and increasing the susceptibility of cells to several chemotherapy
drugs [27].

Enhancement of the tumor-killing effect of chemotherapeutics by HT has been reported
for several cancer types, using both in vitro and in vivo models [28–31]. Whole-body ther-
mal treatment (WBTT) with gemcitabine and carboplatin emerged as a feasible treatment
that led to some clinical benefit in a small cohort of PDAC patients. However, a parallel
preclinical study showed no increase in the cytotoxicity of carboplatin and gemcitabine
when HT was applied shortly (1 h) at 39–41.8 ◦C on the PDAC cell line DAN-G [32]. These
controversial results and the urgent need for novel therapeutic strategies to overcome
therapy resistance should prompt further studies to determine the optimal thermal dose
for HT and chemotherapeutic combinations for PDAC.

Of note, HT can be applied as a local, regional, or whole-body treatment, and HT
modalities vary from short-term (typically between 1 and 4 h) to long-term (exceeding
4 h). The thermotolerance of the liver and brain determines the maximal feasible target
temperature, suited for clinical settings, to be equal to 41.8–42 ◦C, which may be maintained
for several hours [33–36]. We have previously reported the safety and tolerability of WBTT
at 41.5 ◦C for up to 3 consecutive exposures of 8 h in dogs and mini pigs [37,38].

In this study, we aimed to assess the direct cytotoxic effect of HT in PDAC either as
monotherapy or in combination with chemotherapeutic drugs to identify an improved
therapeutic modality for this type of cancer.

2. Materials and Methods
2.1. Cells and Reagents

Five different pancreatic cancer cell lines were used in this study: BxPC-3, Capan-1,
Capan-2, MIA- PaCa-2, and PANC-1 (all from American Type Culture Collection, 20110
Manassas, VA, USA). These cell lines were isolated from human patients: the BxPC-3
from a pancreas adenocarcinoma; Capan-1 from a liver metastasis of pancreatic ductal
adenocarcinoma; Capan-2 from a pancreatic adenocarcinoma tumor; MIA-PaCa-2 cells
from an undifferentiated human pancreatic carcinoma; and PANC-1 from a carcinoma of
the exocrine pancreas. Additionally, PWR-1E epithelial cells from a normal prostate were
included as a healthy control.
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Cells were cultured in an RPMI 1640 (BxPC-3, Capan-1 and Capan-2) or DMEM (MIA
PaCa-2, PANC-1) medium containing, respectively, 15% (MIA-PaCa-2 and Capan-1) or
10% (other cells) of heat-inactivated Fetal Bovine Serum, supplemented with 2 mM L-
glutamine at 37 ◦C in a 5% CO2 humidified atmosphere. For experimental use, the cells
were detached from the culture flask and seeded at optimal seeding density (BxPC-3 at
5000 cells/well; Capan-1 at 7500 cells/well; Capan-2 at 10,000 cells/well; MIA-PaCa-2 at
1500 cells/well; PANC-1 at 5000 cells/well; and PWR-1E at 11,000 cells/well) in 96-well
plates. All cells were kept at 37 ◦C in a humified atmosphere (5% CO2) for 24 h before
hyperthermia treatment.

2.2. Chemotherapeutics and Hyperthermia Schedule

Three chemotherapeutic compounds were used: 5-fluorouracil, cisplatin, and gem-
citabine (all from MilliporeSigma (owned by Merck KGaA) Fluery-les-Aubrais, France)
diluted in DMSO (vehicle).

The chemotherapeutic agents were serially diluted in an RPMI 1640 culture medium
and tested in 9 therapeutically relevant tissue concentrations [39]. Vehicle controls were
included in each condition. Prior to the evaluation at elevated temperatures, we performed
an initial screening of the cytotoxic activity of the chemotherapeutic compounds at 37 ◦C
(data not shown). To this end, we evaluated a series of concentrations of 2 to 5 doses
below the observed IC50. This led to the final optimal concentrations, which can be seen
in Supplementary Table S1. The experimental design is summarized in Figure 1. Briefly,
the cell culture plates were incubated for different exposure times (6, 12, or 24 h) in a
standard CO2 incubator (Binder CB160) preheated at different temperatures according to
the experimental setup (37-, 40.5-, 41-, or 41.5 ◦C). Thereafter, the medium was replaced by
a medium at 37 ◦C. The incubator was calibrated before starting the experiments using a
calibrated independent probe.
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Figure 1. Experimental design. Pancreatic tumor cell lines (BxPC-3, Capan-1, Capan-2, PANC-1,
and MIA-PaCa-2) were seeded and expanded for 24 h. Gemcitabine, 5-fluorouracil, and cisplatin
were added immediately after hyperthermia treatment using different temperatures (40.5-, 41-, and
41.5 ◦C) and durations (6-, 12-, and 24 h). Controls were kept at 37 ◦C. After 96 h, the influence
of chemotherapy and temperature on cell survival was determined by MTS assay. Created with
BioRender.com.
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Metabolic activity (MTS assay) was tested 96 h after exposure to the different tem-
peratures. Each assay was performed in triplicate. These experiments were performed at
Oncodesign (Dijon, France).

Additional experiments were performed to clarify the type of cell death induced by
HT. First, we distinguished between apoptotic and necrotic cell death using an Apop-
tosis/Necrosis Detection Kit (ab176749, Abcam, Cambridge, UK) and by quantifying
BAX/BCL-2 expression (RT-qPCR) during the various HT conditions. To further elucidate
the potentiation of chemotherapy by HT, RT-qPCR data on differential expression of several
genes associated with chemotherapy sensitivity were obtained. These experiments were
performed at the Laboratory of Cell Biology and Histology, the University of Antwerp and
the Medical Oncology Laboratory, Cancer Center Amsterdam, Amsterdam UMC.

2.3. MTS Assay

The in vitro cytotoxic activity was revealed by MTS assay using a tetrazolium com-
pound (MTS,3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium) and an electron coupling reagent (PMS, phenazine methosulfate). MTS is
bioreduced by metabolically active cells into a formazan product that is directly soluble in
a culture medium and is used as an indicator of cell viability, proliferation, and cytotoxicity.

At the end of the cell treatment, 40 µL of a 0.22 µM freshly filtered combined solution
of MTS (20 mL at 2 mg/mL, Promega, Charbonnières-les-Bain, France) and PMS (1 mL
at 0.92 mg/mL, MilliporeSigma (owned by Merck KGaA) Fluery-les-Aubrais, France) in
Dulbecco’s Phosphate-Buffered Saline (DPBS, Cambrex, Paullo, Italy) was added to each
well. Absorbance (Optical Density, OD) was measured at 492 nm in each well using an
EnVision 2104 Multilabel Plate Reader (PerkinElmer, Villebon_sur-Yvette, France). For each
point of measurement, the data were normalized to a control value at 37 ◦C and values
were plotted in dose-response curves.

2.4. Quantitative Reverse-Transcriptase Polymerase-Chain-Reaction (RT-qPCR)

Total RNA of Capan-2 and BxPC-3 cells, subjected to 6, 12, and 24 h of HT at 41.5 ◦C and
controls at 37 ◦C, was extracted using the TRIzol reagent (Invitrogen, Carlsbad, CA, USA),
following the manufacturer’s instructions. To investigate apoptotic signaling, RT-qPCR
was performed using TaqMan® primers and probes for BAX and BCL2. Additionally, RT-
qPCR was carried out for ribonucleotide reductase subunit 2 (RRM2), thymidylate synthase
(TS), and excision repair cross-complementing-1 (ERCC1), respectively, as indicators for
gemcitabine, 5-fluorouracil, and cisplatin sensitivity. The cDNA was amplified using the
ABI-PRISM 7500 instrument (Applied Biosystems, Foster City, CA, USA) as previously
described [40,41]. Gene expression values were normalized to Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH).

2.5. Apoptosis and Necrosis Assay

To further determine the type of cell death induced by HT, Capan-2 and BxPC-3 cells
were labeled with an apoptosis/necrosis detection kit (ab176749, Abcam, Cambridge, UK).
Cells were stained according to the manufacturers’ protocol immediately after removal from
the hyperthermic conditions. This kit enables discrimination between healthy, apoptotic,
and necrotic cells. Cells incubated at 55 ◦C for 1 h were used as a positive control for
necrosis. Apoptosis was calculated relative to the respective cell lines growing at 37 ◦C,
during the logarithmic growth phase. Images were acquired via Nikon Eclipse TI inverted
microscope at a magnification of 4x. Quantitative analysis was performed using the
Fiji/ImageJ software [42]. Microscopic evaluation was performed in sextuplicate.

2.6. IC50 and Combination Index Calculation

The data from in vitro experiments on pancreatic cell lines were analyzed in order
to understand the impact of the combination of thermal treatment and chemotherapy
medications on cell proliferation after different time periods and at given temperatures.



Biomolecules 2022, 12, 651 5 of 16

The combination index (CI) was used to determine the degree of drug and thermal
treatment interaction as synergistic (CI < 0.9), additive (0.9 < CI > 1.1), or antagonistic
(CI > 1.1).

The combination index concept was first introduced by Chou T.C. and Talay P. [43,44]
to evaluate the degree of drug/drug interaction. Here, the original equation was adapted
as follows:

CI =
THT − Tref

IT50,HT − Tref
+

C50,drug

IC50,drug
= IT50,ratio,HT + IC50,ratio,drug (1)

where IT50,HT indicates the temperature required to inhibit cell viability by half of its
maximal effect when only HT is applied to the cell lines, and IC50,drug is the half-maximal
inhibitory concentration of a drug when chemotherapy is applied as monotherapy. THT
represents the treatment temperature and C50,drug the concentration required to provide
a reduction in cell viability by half of its maximal effect when thermal treatment, at the
temperature THT, and drugs are combined. From now on, we will refer to C50,drug as the
combination dose for HT and chemotherapy.

Tref = 37 ◦C is subtracted from THT and IT50,HT to take into account the fact that the
control temperature during the experiment is 37 ◦C. For the drug parameters C50,drug and
IC50,drug the control value is zero (i.e., no drug is present).

By rearranging the combination index equation, the dose reduction index (DRI)
can be calculated for each drug in combination with HT. According to the definition
by Chou et al. [43], the favorable DRI > 1.1 allows dose-reduction that leads to toxicity
reduction in the therapeutic application. A 0.9 < DRI < 1.1 indicates no dose reduction
while DRI < 0.9 indicates unfavorable dose reduction.

2.7. Statistical Analysis

IC50,drug and C50,drug were calculated by non-linear regression analysis using cell
proliferation data on GraphPad Prism version 9.3.1 (GraphPad Software, La Jolla, CA,
USA). IT50,HT was estimated with a data interpolation conducted with MATLAB using thin-
plate spline (TPS). This method is ideal for examining the combined effect of two continuous
predictors (i.e., time and temperature) on a single outcome (i.e., cell viability). Like other
smoothing splines, TPSs are fitted using a generalized additive model (GAM), which does
not require any a priori knowledge of the functional form of the data or the relationship
of interest. Interpolation was performed since the twelve data points extracted from the
in vitro experiments were not sufficient for the calculation of IT50,HT for all hyperthermia
treatment conditions.

Two-way ANOVA followed by Dunnett’s multiple comparison test was used to assess
the effect of HT on PDAC cell viability following exposure to different temperatures and
durations compared to the control cell line at 37 ◦C. Tukey’s multiple comparison test was
used to assess the effect of HT on the downregulation of RRM2, TS, and ERCC1 and on the
type of cell death in BxPC-3 and Capan-2 cells. The threshold for statistical significance
was set at p < 0.05.

3. Results
3.1. Cytotoxic Effect of HT Is Cell Type-, Temperature-, and Time-Dependent

To study the effects of HT alone on cell survival, treatments with different temperatures
and durations were applied to untreated PDAC cells. HT reduced cell viability, as measured
by MTS, to a different extent depending on the cell line (Figure 2). Capan-1 and BxPC-3
were the most thermosensitive and Capan-2 the most thermoresistant cell line. It was also
observed that by increasing temperature and time of heat exposure, the viability decreased.
HT did not appear to lead to a reduced viability of the control healthy cell line PWR-1E.
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Figure 2. Effect of hyperthermia on pancreatic cancer cells. Heatmap showing the effect of hyperther-
mia on different cell lines for different durations (6, 12, and 24 h) and different temperatures (37 ◦C
= control, 40.5-, 41-, and 41.5 ◦C). The color legend shows the percentage of relative cell survival
compared to controls. There is a general trend of increased cell death with increased temperature and
time of exposure. The healthy control cells are not killed by hyperthermia treatment. Results were
expressed as relative cell viability as compared to 37 ◦C. Statistical significance * p < 0.05; ** p < 0.001;
*** p < 0.0001; **** p < 0.00001.

3.2. HT Induces Apoptosis of PDAC

After observing diminished cellular metabolic activity as measured by the MTS assay
in several cell lines following HT, we sought to confirm whether this reflected the induction
of cell death (e.g., apoptosis). Therefore, the most and least thermosensitive cell lines
(e.g., BxPC-3 and Capan-2, respectively) were subjected to different durations of HT at
41.5 ◦C, followed by quantification of gene expression of the pro-apoptotic BAX and anti-
apoptotic BCL-2 and evaluation of the externalization of phosphatidylserine (PS) on the
outer membrane leaflet of the cells.

With increasing HT duration, the BAX/BCL-2 ratio increases accordingly, resulting
in a BAX/BCL-2 ratio of 1.35: 2.80: 4.65 for BxPC-3 after 6-, 12-, and 24 h, respectively
(Figure 3A). Additionally, it appears that Capan-2 cells are affected distinctly, as after 6 h of
HT a ratio of 0.84 is observed. However, after 12 and 24 h of HT, the ratio of BAX/BCL-2
increases to 1.56 and 3.95, suggesting that apoptosis is eventually induced in these cells
as well.

No significant difference in PS presence was observed between exposure of 6 and 12 h
for both cell lines. However, HT for 24 h significantly increased the number of PS positive
cells for the BxPC-3 cell line (1.23-fold increase versus controls at 37 ◦C, Figure 3B). No
significant increase was observed in PS positivity for the Capan-2 cell line. Necrosis was
practically absent after 6 h of HT (0% and 0.8% for BxPC-3 and Capan-2, respectively).

Both cell lines showed an increase in necrotic cells following 24 h of HT (BxPC-3: 7%
of the total number of cells; Capan-2: 8% of cells). HT at 55 ◦C for 1 h led to complete
disruption of cellular integrity and over 99.99% reduction in viable cells for both cell lines.
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Figure 3. Hyperthermia induces apoptosis in PDAC cells. (A) BAX/BCL-2 expression ratio signifi-
cantly increases over HT duration for both cell lines. Values were normalized for GAPDH expression
and calculated relative to controls at 37 ◦C. (B) Expression of phosphatidylserine (PS) on the outer
membrane is significantly increased after 24 h of HT only for BxPC-3. Data are normalized to controls
at 37 ◦C. Data for Capan-2 are shown in Supplementary Figure S1. No significant differences in
PS positivity were observed for Capan-2. (C) Representative fluorescence microscopy imaging of
BxPC-3 and Capan-2 cells at 37 ◦C (control) and after 24 h at 41.5 ◦C. Viable cells are stained blue,
apoptotic cells are stained green (PS), and necrotic nuclei are stained red. Images were acquired at
4× magnification. Scale bars represent 200 µm. All error bars represent 95% CI. Statistical significance
** p < 0.001; *** p < 0.0001; **** p < 0.00001.

These results show that exposure to long periods of HT induces mainly apoptotic
cell death in at least BxPC-3 cells, demonstrated by the significant increase in cellular
BAX/BCL-2 ratios and the PS presence in the outer membrane leaflet, eventually being
followed by secondary necrosis.

Overall, a high presence of PS was detected on both BxPC-3 and Capan-2 cells at 37 ◦C
(Figure 3C).

3.3. HT May Reduce the Required Dose of Chemotherapy

IT50,HT and IC50,drug data obtained from HT for 24 h and drugs administered as single
therapy and combination doses between the two treatments are reported in Table 1. Values
from all experimental conditions are reported in Supplementary Table S2. The calculated
standard deviations for IC50 values were always found to be below 15% of the average.
For clarity, these results are not added to Table 1. HT and CT induced dose-dependent
cell killing of cultured PDAC cells. IT50,HT values were plotted in Figure 4A. Overall, by
increasing the time of exposure, the required temperature to reach 50% of cell viability
decreased. IC50,drug for each condition were derived from the dose curves, as reported in
the representative Figure 4B,C and in the Supplementary Figures S2–S6.
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Table 1. IC50,drug, IT50,HT and combination doses between hyperthermia for 24 h and 5-fluorouracil, gemcitabine, and cisplatin.

BxPC-3 PANC-1 Capan-1 Capan-2 MIA-PaCa-2

Drug Time THT

(◦C)

IT50,HT

(◦C)

IC50,drug

(µM)

C50,drug

(µM)

IT50,HT

(◦C)

IC50,drug

(µM)

C50,drug

(µM)

IT50,HT

(◦C)

IC50,drug

(µM)

C50,drug

(µM)

IT50,HT

(◦C)

IC50,drug

(µM)

C50,drug

(µM)

IT50,HT

(◦C)

IC50,drug

(µM)

C50,drug

(µM)

40.5
41 5.04

0.90
41.5 9.11

1.63
41 0.26

0.018
41.9 41.36

13.57
41.45 5.9

4.70
41 0.04 0.12 0.0036 6.03 2.375-

Fluorouracil 24 h
41.5 0.00015 0.13 0.0002 1.18 0.03
40.5

41 0.06
0.01

41.5 19.34
0.20

41 0.06
0.0055

41.9 0.40
0.28

41.45 0.12
0.10

41 0.0016 0.05 0.0013 0.08 0.06Gemcitabine 24 h
41.5 0.00006 - 0.0002 0.015 0.0008
40.5

41 1.40
0.12

41.5 12.11
1.03

41 0.27
0.017

41.9 0.27
0.017

41.45 5.59
2.72

41 0.0016 0.06 0.005 0.0053 0.33Cisplatin 24 h
41.5 0.00012 0.014 0.0007 0.0007 0.0007
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Figure 4. Combination of time and temperature effects on cell proliferation as illustrated by heatmaps
for the calculation of IT50,HT and IC50,drug for thermal therapy (A) Heatmaps showing the relative
cell viability in function of time and temperature were used to calculate IT50,HT for thermal therapy.
IT50,HT values are shown for each of the cell lines at 6-, 12-, and 24 h. Heatmaps show that treatment
duration increases the cytotoxic effect of thermal therapy observed by a lower IT50,HT (i.e., lower
temperatures are needed to decrease cell viability by half of its maximal effect). (B,C): Dose curve
response of BxPC-3 and Capan-2 to gemcitabine for 24 h.

The values IC50,ratio,drug, defined as the ratio between the combination dose of chemother-

apy and the IC50,drug

(
i.e.,

C50,drug
IC50,drug

)
, are reported in Supplementary Table S3 and plotted,

as percentages, in Figure 5A. It was observed that the combination of the two treatments
reduced the required dose of the chemotherapy compared to when it was administered as
a single therapy. This effect starts at applications of 12 h, where a 50% reduction in drug
concentration was observed and increased to a 75–95% reduction at 24 h of HT. Results were
cell type-, temperature- and time-dependent, showing a clear trend of increased cytotoxic
effects after 12 and 24 h exposure at the highest temperatures (41-, and 41.5 ◦C). This result
is further confirmed by the calculation of the DRI (Figure 5B). As a general trend, after 12
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and 24 h of thermal treatment, the combination of the two therapies is favorable and allows
the reduction of the anticancer drug.

Figure 5. Hyperthermia enhances the cytotoxic effect of chemotherapeutic agents. Heatmap dis-
playing the IC50,ratio, drug which represent the combined effect of hyperthermia and chemotherapy
compared to single therapy (drug administered at 37 ◦C). Data are expressed as a percentage of
IC50,drug at 37 ◦C experimental conditions. X indicates data not available (A). Dose reduction index
values are plotted in (B) to further confirm the results expressed as relative IC50,ratio, drug. Unfavor-
able: DRI < 0.8; Moderate unfavorable: 0.8 < DRI > 0.85; Mild unfavorable: 0.85 < DRI > 0.9; No
dose reduction: 0.9 < DRI > 1.1; Mild Favorable: 1.1 < DRI > 1.3; Moderate favorable 1.3 < DRI > 1.8;
Favorable DRI > 1.8. X indicates data not available.

3.4. HT Has an Additive/Synergistic Anticancer Effect in Some Pancreatic Cancer Cell Lines

The combination index (CI) was calculated to determine whether the combination of
HT and chemotherapy was synergistic, additive, or antagonistic. The results are reported
in Supplementary Table S3 and summarized in Figure 6. Overall, HT enhanced the efficacy
of gemcitabine, 5-fluorouracil and cisplatin in killing pancreatic cancer cells, with addi-
tive/synergistic interaction in most experimental conditions. However, this effect depends
on multiple factors, specifically: time, temperature, drug, and cell type. Amongst the
tested drugs combined with HT, 5-fluorouracil showed the highest synergy with BxPC-3,
gemcitabine with PANC-1, and cisplatin with Capan-2 when HT was applied for 12 h. Of
note, overall, HT enhanced the effect of chemotherapeutics, but it was difficult to see a
synergistic effect when HT was applied for 24 h. We hypothesize that this limitation was
due to the high effect already achieved by HT alone, as observed in other studies using
high doses of chemotherapy [45].
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Figure 6. Hyperthermia and chemotherapeutics have additive/synergistic anticancer effects.
Heatmap showing the combination index of hyperthermia and chemotherapy using different pancre-
atic cell lines and different temperatures and durations of hyperthermia. The combined effect between
the two therapies is expressed as antagonistic, additive, or synergistic. Strong synergism: CI < 0.8;
Synergism: 0.8 < CI > 0.85; Moderate synergism: 0.85 < CI > 0.9; Addition: 0.9 < CI > 1.1; Moderate
antagonism: 1.1< CI >1.3; Antagonism 1.3< CI >1.8; Strong Antagonism CI > 1.9. X indicates data
not available.

3.5. HT Downregulates the Expression of Chemoresistance-Associated Genes

As we observed an overall additive or synergistic effect of HT on chemotherapeutic
drugs, we aimed to investigate further the higher drug sensitization mechanisms of HT.
More specifically, the downregulation of the expression of RRM2 has been shown to increase
PDAC sensitivity towards gemcitabine [46]. Additionally, low expression levels of ERCC1
would increase sensitivity towards cisplatin [47,48]. Lastly, TS, a target of the (pro-)drug
5-FU, is upregulated in cancer cells as a mechanism for 5-FU resistance [49]. If HT increases
the sensitivity of PDAC cells toward chemotherapeutic drugs, downregulation of these
genes is expected.

Indeed, as depicted in Figure 7, HT induces significant decreases in the expression of
RRM2, TS, and ERCC1 in BxPC-3 and Capan-2 cells in all but two conditions compared
to controls. The effect depends on the increasing duration of HT. Interestingly, 12 h of HT
leads to a significant increase in the expression of RRM2 in Capan-2 cells, which may be
reflected in the observed antagonism with gemcitabine in these conditions. Furthermore,
the expression of TS in BxPC-3 cells is downregulated after 6 h of HT and appears to plateau
following durations exceeding 12 h. As such, these findings may partly explain why HT
leads to higher sensitivity of PDAC cells to chemotherapy.
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Figure 7. Hyperthermia leads to downregulation of RRM2, TS, and ERCC1. Relative expression
of RRM1, TS, and ERCC1 in (A) BxPC-3 cells and (B) Capan-2 cells. Expression is normalized to
GAPDH and calculated relative to cells incubated at 37 ◦C. Statistical significance ns = not significant;
* p < 0.05; *** p < 0.0001; **** p < 0.00001.
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4. Discussion

In this study, we demonstrated that HT reduces the viability of pancreatic tumor cells
and that its efficacy is cell type-, temperature-, and duration-dependent. Apoptosis was
seen after 6 h of HT in at least BxPC-3 cells, demonstrated by the significant increase in
cellular BAX/BCL-2 ratios and the PS presence in the outer membrane leaflet. Secondary
necrosis was also observed. Capan-2 cells are differently affected as the ratio of BAX/BCL-2
only increases after 12 and 24 h of HT. Overall, a high presence of PS was detected on
both BxPC3 and Capan-2 cells at 37 ◦C. This result is confirmed by a previous study [50]
which reported that viable PDAC cells exhibit abnormally high levels of PS in the outer
membrane leaflet.

Interestingly, the effect of HT on cell viability is strongly influenced by the cell type.
We indeed used different PDAC cellular models that are representative of different PDAC
characteristics, such as those possessing a more mesenchymal (PANC-1) or epithelial
(BxPC-3) phenotype. Our results further proved the different thermal sensitivity of PDAC
by confirming BxPC-3 as the most thermosensitive and Capan-2 as the most thermoresistant
among the tested cell lines. Other research groups have also observed that some PDACs
are inherently more resistant to drugs and hyperthermic effects [32].

In addition, we showed that HT potentiates the tumor-killing effects of gemcitabine,
5-fluorouracil, and cisplatin, which are used in chemotherapy regimens to treat PDAC
patients [2,3]. One of the mechanisms that could be responsible for this observed effect is
the downregulation of the expression of several genes associated with the mechanisms of
action of the anticancer drugs (e.g., RRM1, TS, ERCC1). These effects are also dependent
on the cell type, temperature, and duration of HT. These findings could support ongoing
preclinical and clinical studies in the search for the optimal synergistic thermal and drug
dose that could improve PDAC outcomes.

Despite many advancements in the current knowledge of PDAC genomics, most
clinical efforts with experimental drugs have failed so far, and the prognosis for patients,
unfortunately, remains poor. This grim prognosis is mainly due to its low treatment
success rate. The tumor microenvironment, specifically the dense stroma, creates an
immunosuppressive environment, blocking the efficacy of anti-cancer treatments [1]. HT
has been proven to improve outcomes in the clinical setting [17], but the direct effect
of the combination of hyperthermia and specific chemotherapeutics on the tumor cells
remains unclear.

Previous work with a PDAC cell line [30] failed to show a cytotoxic effect of HT when
applied as single therapy. However, the treatment was performed for only up to 90 min
at 42 ◦C. In contrast, our results show that prolonged exposure to HT as monotherapy
has a significantly stronger effect on cell viability, with the maximal effect potentially
occurring after 24 h of exposure. These exposures are not easily attainable in clinical
settings because this treatment is performed under general anesthesia. Nevertheless, a
6 h treatment was possible in a previous study [51] and is being applied in the ongoing
ElmediX First-In-Human trial (NCT04467593, unpublished data). Notably, in this study, we
show that exposure of PDAC cells of 6 h to HT induces a significant amount of apoptosis in
PDAC cells. In addition, preliminary preclinical data suggest that the total HT duration
may be delivered sequentially in 2–4 sessions with similar efficacy (data not shown). In
other words, HT could potentially be fractionated in a similar fashion to radiotherapy, i.e.,
a total exposure time of 24 h could be achieved when divided over 4 sessions of 6 h.

Regarding the combination with chemotherapy, our results show that HT can lower
the required doses of chemotherapeutics to achieve equal efficacy in vitro. This could
improve outcomes and result in fewer side effects for the patients, considering that the
current polychemotherapy (e.g., FOLFIRINOX) strategies provide only modest survival
benefits, which are associated with high toxicity.

As discussed, several mechanisms may explain the potentiation of tumor-killing by
heat treatment, some of which involve apoptosis induction by increasing intracellular
ROS. Cancer cells are known to possess relatively high levels of base-line ROS, which
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promote tumorigenesis up to a certain threshold. However, ROS levels surpassing this
threshold would be responsible for further increased protein misfolding, cellular stress, and
the eventual initiation and maintenance of several pro-apoptotic signaling pathways [52].
High ROS levels have also been demonstrated to stimulate both the intrinsic and extrinsic
apoptotic cell death pathways [52].

Extensive ROS signaling can lead to apoptosis via sustained P53 activation, resulting
in the transcriptional downregulation of anti-apoptotic proteins of the Bcl-2 family [52].
HT also promotes apoptosis by upregulating BAX expression [27], a pro-apoptotic pro-
tein that can induce the release of cytochrome c, activate caspase proteases, and induce
nuclear fragmentation.

Aside from cellular ROS generation, resulting in cell death, HT has also been shown
to affect the DNA-repair mechanisms in cancer cells. For example, BRCA2 levels in human
cancer cells rapidly diminish during HT, resulting in impaired repair of double-strand DNA
breaks [53]. Nevertheless, the exact mechanisms causing HT-induced apoptosis remain to
be elucidated.

As previously reported [18,54], HT does not impair the cell viability of healthy cells.
Heat shock proteins (HSP) have been suggested to play a role in the thermotolerance of
the healthy cells [7,51]. Cancer cells have higher levels of partially activated HSP because
they are coping with higher levels of constitutively misfolded proteins [55]. This is mainly
due to the rapid rate of proliferation and hypoxia or acidic tumor microenvironment. So, a
sufficiently increased level of ROS and misfolded proteins, induced by the combination of
cytotoxic drugs and hyperthermia, may not be matched by the capacity of the intracellular
HSP mechanism. Thus, the subsequent enhanced proteotoxic stress can be more toxic to
cancer cells than to normal cells [56,57].

With our studies, we have been able to identify the optimal thermal dose for HT and
chemotherapeutics combinations for different PDAC cells. However, the main limitation
of this study is the fact that cells were evaluated in 2D culture conditions. Considering
the characteristic tumor microenvironment of PDAC and the importance of 3D cellular
interaction in proliferation and cell death processes, it is crucial that further research is
performed, exploiting more complex in vitro and in vivo models. Especially considering
that, for example, the diffusion of chemotherapeutic drugs can be significantly influenced
in a 3D versus 2D cellular environment.

Although additional studies are needed for translation to the in vivo and the clini-
cal situation, these findings do support further development of hyperthermal treatment
for pancreatic cancer. Moreover, we hypothesize that HT could be a key modality for
reducing tumor resistance since its efficacy is not limited by a low pO2 and low pH tumor
microenvironment [34]. These conditions are typical for PDAC and constitute an important
limiting factor for other anticancer treatments such as chemo- and radiotherapy [5,6,58,59].
However, the synergistic interaction of HT with specific anticancer drugs might overcome
these challenges.

5. Conclusions

Hyperthermia is cytotoxic for pancreatic tumor cells, and its efficacy is cell type-,
temperature-, and duration-dependent. As such, prolonged HT at 41.5 ◦C induces apoptosis
rather than (primary) necrosis in PDAC cells. HT potentiates the tumor-killing effect of
gemcitabine, 5-fluorouracil, and cisplatin and may have an additive or synergistic effect
with chemotherapeutics drugs when used in combination with the optimal thermal and
drug dose in specific PDAC patients. Ultimately, future work will help to better clarify the
pharmacodynamics and biomarkers of what we hope will be a new therapeutic strategy in
the fight against this therapy-resistant disease.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12050651/s1, Figure S1: Expression of phosphatidylserine
(PS) on the outer membrane of Capan-2.; Figures S2–S6: Dose-response curve; Table S1: Serial dilution
of chemotherapeutics; Table S2: IC50,drug, IT50,HT and combination doses between hyperthermia and
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5-fluorouracil, gemcitabine, and cisplatin (6-, 12-, 24 h); Table S3: IC50,ratio,drug (and combination
index values of chemotherapy combined with hyperthermia treatment.
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